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Purpose

Find a possible “next question to ask”, now that
so much is understood about the Sato-Tate
conjecture due to work of Taylor, Haris, et al.



Hecke Eigenvalues
Let E be a non-CM elliptic curve over Q, and

ap = p + 1−#E(Fp).

Theorem (Hasse): −1 <
ap

2
√

p
< 1.

Sato and Tate: How are these numbers distributed? A
conjecture...



Convergence to the semicircle distribution

The following slides each contain 8 plots. Each plot
displays the distribution of normalized ap for the lowest
conductor elliptic curves of different rank and all ap for
p < C, for C = 103, 104, 105, 106.

Rank 0 Rank 1 Rank 2
Rank 3 Rank 4 Rank 5
Rank 6 Rank 7 Rank 8



Sato-Tate Frequency Histograms: C = 103



Sato-Tate Frequence Histograms: C = 104



Sato-Tate Frequence Histograms: C = 105



Sato-Tate Frequence Histograms: C = 106



Quantify the convergence?

Barry Mazur: “How can we precisely
quantify the convergence of the blue
data to the red semicircle theoretical
distribution?”



Some Functions (copy on blackboard)

E an elliptic curve; ap = p + 1−#E(Fp)

I X (T ) =

∫ T
−1

√
1− x2dx∫ 1

−1

√
1− x2dx

= area under arc of semicircle

I YC(T ) =
#

{
primes p < C : −1 <

ap
2
√

p < T
}

# {primes p < C}
.

I ∆(C) =

√∫ 1

−1
(X (T )− YC(T ))2dT = the L2-norm of the

difference of X (T ) and YC(T ), and ∆(C)∞ the L∞-norm.



The Sato-Tate Conjecture

Let ∆(C)∞ be the max of the difference between the theoretical
semicircle distribution and actual data using primes up to C.

Sato-Tate Conjecture:

lim
C→∞

∆(C)∞ = 0

Theorem (Taylor, M. Harris, et al.): If E has
multiplicative reduction at some prime, then the
Sato-Tate conjecture is true. [Key part of proof
is that symmetric power L-functions (see Mark
Watkins’ talk) are modular.]



Plotting ∆ (up to 103)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ3, plot_points=400,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 104)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ4, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 105)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ5, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 106)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ6, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



“The next question to ask...”

QUESTION: What about the speed of
convergence? I.e., how does ∆(C) or
∆(C)∞ converge to 0?



The Akiyama-Tanigawa Conjecture

Conjecture (Akiyama-Tanigawa [Math Comp.,
1999]): For every ε > 0, for C � 0 we have

∆(C)∞ 6
1

C1/2−ε
.

Theorem (A-T): This conjecture implies the
Generalized Riemann Hypothesis for L(E , s).

See Barry Mazur’s forthcoming Notices paper
for more discussion, references, and pretty
pictures.



Log Plots

Let’s test out Akiyama-Tanigawa, instead of
plotting ∆(C) which just goes to 0 quickly, we
instead plot − logC(∆(C)).

1. How does this function compare to
1
2

? I.e.,

does it eventually get within ε of 1
2.

2. Can we find a simple function that
conjecturally nicely approximates
− logC(∆(C))?



Rank 0 curve 11a; p < 106; with 300 sample points

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 1 curve 37a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 2 curve 389a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 3 curve 5077a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 4 curve [1,-1,0,-79,289]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 5 curve [0, 0, 1, -79, 342]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 6 curve [1, 1, 0, -2582, 48720]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 7 curve [0, 0, 0, -10012, 346900]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 8 curve [0, 0, 1, -23737, 960366]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Elkies rank > 28 curve; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.

OK, are those lines really going up to 1/2???



Understanding the Data Better?

Can one predict the asymptotic shape of the
curve ∆(C), say, in terms of either arithmetic
invariants of the curve or perhaps in terms of
zeros of L(E , s) on the critical strip?

For some curves ∆(C) is quickly very close to
1/2, e.g., the curves of rank 0 and 1 above.



Fitting the “random” Rank 0 curve y2 = x3 + 19x + 234

I The black curve is
1
2
− 1

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Conductor = 24093568 = 27 · 41 · 4591



Low zeros?

sage: EllipticCurve(’11a’).Lseries_zeros(10)
[6.36261389, 8.60353962, 10.0355091,
11.4512586, 13.5686391, 15.9140726,
17.0336103, 17.9414336, 19.1857250,
20.3792605]

sage: EllipticCurve([19,234]).Lseries_zeros(10)
[0.255961213, 0.739839807, 1.03144159,
1.78804887, 2.11227980, 2.42762599,
3.11102036, 3.26810134, 3.68155235,
4.13888170]



Fitting the Rank 3 Curve 5077a

I The black curve is
1
2
− 3/3

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting the Rank 4 [1,-1,0,-79,289]; p < 106

I The black curve is
1
2
− 4/3

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting Rank 8 [0, 0, 1, -23737, 960366]; p < 106

I The black curve is
1
2
− 19/9

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting Rank 28 curve; p < 106

I The black curve is
1
2
− 28/9

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Changing the 28/9 at all moves the black curve visibly

away from the green and blue plots!



Conjectural convergence of the measure of
convergence

Conjecture (Stein): For any E there is a constant α such that

1
2
− α

log(C)
6 − logC(∆(C)) 6

1
2

for all C.

This further refines the Akiyama-Tanigawa conjecture about
converge of the function ∆(C) (that measures convergence in
the Sato-Tate conjecture). Recall that for all ε > 0, AT
conjecture that have

∆(C) 6 O
(

1
C1/2−ε

)

− logC(∆(C)) � 1/2− ε



The Sato-Tate convergence parameter

For an elliptic curve E let k(C) be the constant that minimizes
the L2 norm of this (i.e. the distance between the black and
blue curves above!):

1
2
− k(C)

log(C)
+ logC(∆(C))

Thus k(C) is a function of k .

(I haven’t attempted to prove that k(C) exists.)

Definition: The Sate-Tate convergence parameter of E is

kE = lim
C→∞

k(C).

(I don’t know if this exists. replace by limsup and liminf?)

Challenge: Find a conjectural formula for kE in terms the
critical zeros of L(E , s)?



Another future direction...

We have

X 1/2−1/ log(X) =
X 1/2

X 1/ log(X)
= e · X 1/2.

We thus entertain the possibility (following the format of the
people who work with random matrices etc.) that the true
distribution is well approximated by something like

a · (log X )b · X c

for appropriate constants a, b, c.
So for the rank 3 example above we might choose

a = e, b = 0, c = 1/2,

but there may be better choices?



More future direction...

1. Restrict to intervals [a, b] ⊂ (−1, 1). (This seems to have
little to know impact.)

2. Push computations much further (next slide).



Pushing Computations Further

1. Drew Sutherland (an MIT postdoct) has some amazingly
fast multithreaded code for computing all ap for p < C
quickly (and much much more – over 20,000 lines of new
(pure) C code.

2. On sage.math his code computes all ap for p < C = 107 in
less than 5 seconds!

3. For comparison, C = 107 takes Sage (via PARI) 94
seconds and Magma (via M Watkins’ code) 81.25 seconds
(on sage.math, a 16-core opteron 246.).

4. Drew: “My guess then is that on an idle system it would
take about 5 minutes to do p to 109.”


