On Convergence in the Sato-Tate Conjecture

William Stein (joint work with Barry Mazur)

Sage Days 5, Clay Math Institute, 2007

Purpose

Find a possible "next question to ask", now that so much is understood about the Sato-Tate conjecture due to work of Taylor, Haris, et al.

Hecke Eigenvalues

Let E be a non-CM elliptic curve over \mathbb{Q}, and

$$
a_{p}=p+1-\# E\left(\mathbf{F}_{p}\right)
$$

Theorem (Hasse): $-1<\frac{a_{p}}{2 \sqrt{p}}<1$.
Sato and Tate: How are these numbers distributed? A conjecture...

Convergence to the semicircle distribution

The following slides each contain 8 plots. Each plot displays the distribution of normalized a_{p} for the lowest conductor elliptic curves of different rank and all a_{p} for $p<C$, for $C=10^{3}, 10^{4}, 10^{5}, 10^{6}$.

Rank 0 Rank 1 Rank 2
Rank 3 Rank 4 Rank 5
Rank 6 Rank 7 Rank 8

Sato-Tate Frequency Histograms: $C=10^{3}$

Sato-Tate Frequence Histograms: $C=10^{4}$

Sato-Tate Frequence Histograms: $C=10^{5}$

Sato-Tate Frequence Histograms: $C=10^{6}$

Quantify the convergence?

Barry Mazur: "How can we precisely quantify the convergence of the blue data to the red semicircle theoretical distribution?"

Some Functions (copy on blackboard)

E an elliptic curve; $a_{p}=p+1-\# E\left(\mathbf{F}_{p}\right)$

- $X(T)=\frac{\int_{-1}^{T} \sqrt{1-x^{2}} d x}{\int_{-1}^{1} \sqrt{1-x^{2}} d x}=$ area under arc of semicircle
- $Y_{C}(T)=\frac{\#\left\{\text { primes } p<C:-1<\frac{a_{p}}{2 \sqrt{p}}<T\right\}}{\#\{\text { primes } p<C\}}$.
- $\Delta(C)=\sqrt{\int_{-1}^{1}\left(X(T)-Y_{C}(T)\right)^{2} d T}=$ the L_{2}-norm of the difference of $X(T)$ and $Y_{C}(T)$, and $\Delta(C)_{\infty}$ the L_{∞}-norm.

The Sato-Tate Conjecture

Let $\Delta(C)_{\infty}$ be the max of the difference between the theoretical semicircle distribution and actual data using primes up to C.
Sato-Tate Conjecture:

$$
\lim _{C} \Delta(C)_{\infty}=0
$$

Theorem (Taylor, M. Harris, et al.): If E has multiplicative reduction at some prime, then the Sato-Tate conjecture is true. [Key part of proof is that symmetric power L-functions (see Mark Watkins' talk) are modular.]

Plotting Δ (up to 10^{3})

sage: e37a = SatoTate(EllipticCurve('37a'), 10^6) sage: show(e37a.plot_Delta(10^3, plot_points=400, max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is $\Delta(C)_{\infty}$ and the blue line is $\Delta(C)$. By Sato-Tate, they both go to 0 as $C \rightarrow \infty$.

Plotting Δ (up to 10^{4})

sage: e37a = SatoTate(EllipticCurve('37a'), 10^6) sage: show (e37a.plot_Delta(10^4, plot_points=200, max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is $\Delta(C)_{\infty}$ and the blue line is $\Delta(C)$. By Sato-Tate, they both go to 0 as $C \rightarrow \infty$.

Plotting Δ (up to 10^{5})

```
sage: e37a = SatoTate(EllipticCurve('37a'), 10^6)
sage: show(e37a.plot_Delta(10^5, plot_points=200,
    max_points=100), ymax=0.1, ymin=0, figsize=[10,3])
```


The red line is $\Delta(C)_{\infty}$ and the blue line is $\Delta(C)$. By Sato-Tate, they both go to 0 as $C \rightarrow \infty$.

Plotting Δ (up to 10^{6})

```
sage: e37a = SatoTate(EllipticCurve('37a'), 10^6)
sage: show(e37a.plot_Delta(10^6, plot_points=200,
    max_points=100), ymax=0.1, ymin=0, figsize=[10,3])
```


The red line is $\Delta(C)_{\infty}$ and the blue line is $\Delta(C)$. By Sato-Tate, they both go to 0 as $C \rightarrow \infty$.

QUESTION: What about the speed of convergence? I.e., how does $\Delta(C)$ or $\Delta(C)_{\infty}$ converge to 0 ?

The Akiyama-Tanigawa Conjecture

Conjecture (Akiyama-Tanigawa [Math Comp., 1999]): For every $\epsilon>0$, for $C \gg 0$ we have

$$
\Delta(C)_{\infty} \leqslant \frac{1}{C^{1 / 2-\epsilon}}
$$

Theorem (A-T): This conjecture implies the Generalized Riemann Hypothesis for $L(E, s)$.

See Barry Mazur's forthcoming Notices paper for more discussion, references, and pretty pictures.

Log Plots

Let's test out Akiyama-Tanigawa, instead of plotting $\Delta(C)$ which just goes to 0 quickly, we instead plot $-\log _{C}(\Delta(C))$.

1. How does this function compare to $\frac{1}{2}$? I.e., does it eventually get within ϵ of $\frac{1}{2}$.
2. Can we find a simple function that conjecturally nicely approximates
$-\log _{C}(\Delta(C))$?

Rank 0 curve 11a; $p<10^{6}$; with 300 sample points

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 1 curve 37 a ; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 2 curve 389a; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 3 curve 5077a; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 4 curve [1,-1,0,-79,289]; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 5 curve [0, 0, 1, -79, 342]; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 6 curve [1, 1, 0, -2582, 48720]; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 7 curve $[0,0,0,-10012,346900] ; p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Rank 8 curve $[0,0,1,-23737,960366] ; p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

Elkies rank $\geqslant 28$ curve; $p<10^{6}$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Red line is $1 / 2$.

OK, are those lines really going up to $1 / 2 ? ? ?$

Understanding the Data Better?

Can one predict the asymptotic shape of the curve $\Delta(C)$, say, in terms of either arithmetic invariants of the curve or perhaps in terms of zeros of $L(E, s)$ on the critical strip?

For some curves $\Delta(C)$ is quickly very close to $1 / 2$, e.g., the curves of rank 0 and 1 above.

Fitting the "random" Rank 0 curve $y^{2}=x^{3}+19 x+234$

- The black curve is

$$
\frac{1}{2}-\frac{1}{\log (X)}
$$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Conductor $=24093568=2^{7} \cdot 41 \cdot 4591$

Low zeros?

```
sage: EllipticCurve('11a').Lseries_zeros(10)
[6.36261389, 8.60353962, 10.0355091,
    11.4512586, 13.5686391, 15.9140726,
    17.0336103, 17.9414336, 19.1857250,
    20.3792605]
```

```
sage: EllipticCurve([19,234]).Lseries_zeros(10)
[0.255961213, 0.739839807, 1.03144159,
    1.78804887, 2.11227980, 2.42762599,
    3.11102036, 3.26810134, 3.68155235,
    4.13888170]
```


Fitting the Rank 3 Curve 5077a

- The black curve is

$$
\frac{1}{2}-\frac{3 / 3}{\log (X)}
$$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.

Fitting the Rank 4 [1,-1,0,-79,289]; $p<10^{6}$

- The black curve is

$$
\frac{1}{2}-\frac{4 / 3}{\log (X)}
$$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.

Fitting Rank 8 [0, 0, 1, -23737, 960366]; $p<10^{6}$

- The black curve is

$$
\frac{1}{2}-\frac{19 / 9}{\log (X)}
$$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.

Fitting Rank 28 curve; $p<10^{6}$

- The black curve is

$$
\frac{1}{2}-\frac{28 / 9}{\log (X)}
$$

- Green line is $-\log _{C}\left(\Delta(C)_{\infty}\right)$.
- Blue line is $-\log _{C}(\Delta(C))$, with a grey tubular numerical integration error bound.
- Changing the $28 / 9$ at all moves the black curve visibly away from the green and blue plots!

Conjectural convergence of the measure of convergence

Conjecture (Stein): For any E there is a constant α such that

$$
\frac{1}{2}-\frac{\alpha}{\log (C)} \leqslant-\log _{C}(\Delta(C)) \leqslant \frac{1}{2}
$$

for all C.
This further refines the Akiyama-Tanigawa conjecture about converge of the function $\Delta(C)$ (that measures convergence in the Sato-Tate conjecture). Recall that for all $\epsilon>0$, AT conjecture that have

$$
\begin{gathered}
\Delta(C) \leqslant O\left(\frac{1}{C^{1 / 2-\epsilon}}\right) \\
-\log _{C}(\Delta(C)) \gg 1 / 2-\epsilon
\end{gathered}
$$

The Sato-Tate convergence parameter

For an elliptic curve E let $k(C)$ be the constant that minimizes the L_{2} norm of this (i.e. the distance between the black and blue curves above!):

$$
\frac{1}{2}-\frac{k(C)}{\log (C)}+\log _{C}(\Delta(C))
$$

Thus $k(C)$ is a function of k.
(I haven't attempted to prove that $k(C)$ exists.)
Definition: The Sate-Tate convergence parameter of E is

$$
k_{E}=\lim _{C \rightarrow \infty} k(C)
$$

(I don't know if this exists. replace by limsup and liminf?)
Challenge: Find a conjectural formula for k_{E} in terms the critical zeros of $L(E, s)$?

Another future direction...

We have

$$
X^{1 / 2-1 / \log (X)}=\frac{X^{1 / 2}}{X^{1 / \log (X)}}=e \cdot X^{1 / 2}
$$

We thus entertain the possibility (following the format of the people who work with random matrices etc.) that the true distribution is well approximated by something like

$$
a \cdot(\log X)^{b} \cdot X^{c}
$$

for appropriate constants a, b, c.
So for the rank 3 example above we might choose

$$
a=e, \quad b=0, \quad c=1 / 2
$$

but there may be better choices?

More future direction...

1. Restrict to intervals $[a, b] \subset(-1,1)$. (This seems to have little to know impact.)
2. Push computations much further (next slide).

Pushing Computations Further

1. Drew Sutherland (an MIT postdoct) has some amazingly fast multithreaded code for computing all a_{p} for $p<C$ quickly (and much much more - over 20,000 lines of new (pure) C code.
2. On sage.math his code computes all a_{p} for $p<C=10^{7}$ in less than 5 seconds!
3. For comparison, $C=10^{7}$ takes Sage (via PARI) 94 seconds and Magma (via M Watkins' code) 81.25 seconds (on sage.math, a 16-core opteron 246.).
4. Drew: "My guess then is that on an idle system it would take about 5 minutes to do p to 10^{9}."
