Number Fields - Sage versus Magma: Status Report

William Stein
University of Washington, Seattle

Sage Days 5: Clay Math Institute

Elements of Number Fields

1. All elements represented as absolute polys over \mathbb{Q}, though arbitrary towers of relative number fields are supported.
2. (J Mohler) Uses NTL $\mathbb{Z}[x]$ for all arithmetic (ZZ poly and denominator). Slightly slower than Magma, though not too bad. (timings use V2.13-10 Magma on Intel Core2 Linux)
3. (R Bradshaw) Special optimized class for quadratic fields, that is off today, and will be on after a coding sprint this week.

Sage and Magma basic arithmetic...

sage: K. <a> = NumberField ($\left.\mathrm{x}^{\wedge} 5+17 * \mathrm{x}^{\wedge} 3+2 * \mathrm{x}^{\wedge} 2+3 * \mathrm{x}-15\right)$
sage: $b=(a+1 / 3)^{\wedge} 10 ; b$
$-766181 / 243 * a \wedge 4-12095555 / 729 * a \wedge 3-2411338 / 729 * a \wedge 2+193$
sage: time for _ in xrange (10~5) : c=b*b
CPU times: user 1.56 s , sys: 0.04 s , total: 1.60 s
Wall time: 1.61

MAGMA:
$>R<x\rangle$:= PolynomialRing(RationalField());
$>\mathrm{K}\left\langle\mathrm{a}>:=\right.$ NumberField $\left(\mathrm{x}^{\wedge} 5+17 * \mathrm{x}^{\wedge} 3+2 * \mathrm{x}^{\wedge} 2+3 * \mathrm{x}-15\right)$;
$>\mathrm{b}:=(\mathrm{a}+1 / 3)^{\wedge} 10 ; \mathrm{b}$;
$1 / 59049 *\left(-186181983 * a^{\wedge} 4-979739955 * a^{\wedge} 3-195318378 * a^{\wedge} 2+\right.$ $>$ time for i in $\left[1 . .10^{\wedge} 5\right]$ do $c:=b * b ;$ end for;
Time: 0.390

Sage and Magma basic arithmetic... (bigger degree)

sage: K.<a> = NumberField(x^100 + 17*x^3 + 2*x^2 + 3*x - 15 sage: $b=(a+1 / 3)^{\wedge} 100$
sage: time for _ in xrange (10^3): c=b*b
CPU times: user 0.91 s , sys: 0.00 s , total: 0.91 s
Wall time: 0.98

MAGMA:
> R<x> := PolynomialRing(RationalField());
$>\mathrm{K}\left\langle\mathrm{a}>:=\right.$ NumberField $\left(\mathrm{x}^{\wedge} 100+17 * \mathrm{x}^{\wedge} 3+2 * \mathrm{x}^{\wedge} 2+3 * \mathrm{x}-15\right)$;
$>\mathrm{b}:=(\mathrm{a}+1 / 3)^{\wedge} 100$;
> time for i in [1..10^3] do $c:=b * b$; end for;
Time: 0.420

Sage and Magma basic arithmetic... (even bigger degree)

```
sage: K.<a> = NumberField(x^500 + 17*x^3 + 2*x^2 + 3*x - 1!
sage: b = (a+1/3)^500
sage: time for _ in xrange(10^2): c=b*b
CPU times: user 2.17 s, sys: 0.01 s, total: 2.18 s
Wall time: 2.18
```

MAGMA:
> R<x> := PolynomialRing(RationalField());
$>\mathrm{K}\langle\mathrm{a}>:=$ NumberField (x^500 + 17*x^3 + 2*x^2 + 3*x -15) ;
$>\mathrm{b}:=(\mathrm{a}+1 / 3)^{\wedge} 500$;
> time for i in [1..10^2] do $c:=b * b$; end for;
Time: 0.450

FLINT

FLINT will make Sage faster for general number fields arithmetic...

1. Now in Sage, but only in a testing/development form.
2. See Bill Hart's talk tonight.

Sage and Magma Quadratic field arithmetic...

Thanks to Robert Bradshaw, quadratic field arithmetic in Sage is (about to be!) faster in Sage than in PARI and Magma:
sage: K.<a> = QuadraticField(7)
sage: $b=(2 / 3) * a+5 / 8$
sage: time for _ in xrange (10~5) : c=b*b + b*b
CPU times: user 0.31 s , sys: 0.00 s , total: 0.31 s
MAGMA:
> K<a> := QuadraticField(7);
$>\mathrm{b}:=(2 / 3) * \mathrm{a}+5 / 8$;
> time for i in [1..10^5] do c := b*b+b*b; end for;
Time: 0.610

PARI:
? b = Mod((2/3)*a + 5/8, $\left.\mathrm{a}^{\wedge} 2-7\right)$; gettime;
? for ($\mathrm{i}=0,10^{\wedge} 5, \mathrm{c}=\mathrm{b} * \mathrm{~b}+\mathrm{b} * \mathrm{~b}$); gettime/1000.0
$\% 6=0.67300000000000000000000000000000000000$

A relative number field arithmetic example...

Magma is vastly better than Sage in the example below, maybe because Sage chooses a horrible absolute poly and works modulo it:

```
sage: K.<a,b,c> = NumberField([x^2 + 1, x^3 - 2, x^2 - 5])
# a^2 == -1, b^3 == 2, c^2 == 5
sage: d = (a+b+c)^5; d
(140*b^2 + (80*c + 10)*b + 40*c + 76)*a + (20*c + 2)*b^2 +
sage: time for _ in xrange(10^3): c=d*d + d*d
CPU times: user 1.42 s, sys: 0.04 s, total: 1.46 s
sage: d.polynomial() # absolute poly rep
535290512/29215513833*x^11 + 186767562/9738504611*x^10 - .
```

MAGMA:
$>\mathrm{K}\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$:= NumberField([x^2 + 1, $\left.\left.\mathrm{x}^{\wedge} 3-2, \mathrm{x}^{\wedge} 2-5\right]\right)$;
$>d:=(a+b+c)^{\wedge} 5$;
$(140 * \mathrm{~b} \wedge 2+(80 * \mathrm{c}+10) * \mathrm{~b}+(40 * \mathrm{c}+76)) * \mathrm{a}+(20 * \mathrm{c}+2) * \mathrm{~b} \wedge 2$
$>$ time for i in [1..10^3] do c := $d * d+d * d$; end for;
Timo• $0 \cap 60$

Class Group Computation

1. Easy to set a global proof True and proof False flag for all number field functions (me and David Roe).
2. The default is proof True.
3. Sage uses PARI for its class group computations.
4. Class group computations in Sage are already usually faster than in Magma (Bill Hart).

Class Group Examples...

```
sage: K.<a> = NumberField(x^3 + 1838)
sage: C = K.class_group(); C
Class group of order 27 with structure C9 x C3 of Number Field i
sage: C.gens()
    [Fractional ideal class (50, a - 8) of Number Field in a with de
    Fractional ideal class (26, a - 2) of Number Field in a with de
sage: I = C.0; J = C.1
sage: I
Fractional ideal class (50, a - 8) of Number Field in a with def
sage: I^9
Trivial principal fractional ideal class of Number Field in a wi
sage: J^2
Fractional ideal class (6, a^2 - 2*a - 2) of Number Field in a w
```


Class Groups: Sage versus Magma without Proof

```
Timings from Bill Hart (see sage-devel):
Proof = False
```

deg, bits, iter : Pari Magma

2,	10,	10000	$:$	$27 s$	$86 s$
2,	20,	2000	$:$	$25 s$	$142 s$
2,	30,	300	$:$	$25 s$	$115 s$
2,	40,	100	$:$	$50-80 s$	$348 s$

$x^{\wedge} 2-678650306441557 * x+232491039415161$	$:$	$5.81 s$	$243 s$
$x^{\wedge} 2+400359911885097 * x+1023437292772615$	$:$	$8.33 s$	\ldots
$x^{\wedge} 2+788021445418312 * x+62108142321374$	$:$	$136 . ? ? s$	\ldots
$x^{\wedge} 2+310104001090081 * x+526420096868844$	$:$	$2.18 s$	$156 s$
$x^{\wedge} 2+29148692184930 * x+697845351766239$	$:$	$1.45 s$	$63.5 s$

Class Groups: Sage versus Magma without Proof (degree 3)

Timings from Bill Hart (see sage-devel):
Proof $=$ False

deg, bits,	iter	$:$	Pari	Magma	
3,	5,	5000	$:$	15 s	28 s
3,	10,	1000	$:$	23 s	26 s
3,	15,	100	$:$	$15-20 \mathrm{~s}$	$14-39 \mathrm{~s}$

$x^{\wedge} 3-327878 * x^{\wedge} 2-1038886 * x+711300: 1.12 s \quad 10.6 s$
$x^{\wedge} 3+244636 * x^{\wedge} 2+536860 * x-435475: 0.545 s \quad 5.25 s$
$x^{\wedge} 3-840752 * x^{\wedge} 2+979860 * x-141846: 2.38 \mathrm{~s}$ 26.15s
$x^{\wedge} 3-994421 * x^{\wedge} 2-866767 * x-513979 \quad 3.53 s \quad 35.5 s$
$x^{\wedge} 3-649099 * x^{\wedge} 2+997454 * x+787504: 0.332 \mathrm{~s}$
3.81s
$x^{\wedge} 3+33354817 * x^{\wedge} 2-17000985 * x-4985420: 10.2 s \quad 109 \mathrm{~s}$
$x^{\wedge} 3+16766060 * x^{\wedge} 2+491009 * x-25868840: 8.24 s \quad 111 s$
$x^{\wedge} 3-3069789 * x^{\wedge} 2+31777984 * x-24323311: 7.93 s$ 100s
$x^{\wedge} 3+11823123 * x^{\wedge} 2+20775154 * x-20239321$: 17.6s 192s
$x^{\wedge} 3-26450070 * x^{\wedge} 2+10700466 * x-27026226$

Class Groups: Sage versus Magma with Proof

Relative Number Fields

The interface now makes sense (it really sucked before). Also, many nice convenience functions for moving between absolute and relative extensions, vector spaces, etc.

```
sage: K.<a,b,c> = NumberField([x^2 + 1, x^2 + 3, x^2 + 5])
sage: (a+b+c).matrix()
[b+c 1]
[ -1 b + c]
sage: L = K.base_field(); M = L.base_field()
sage: (a+b+c).norm(L)
2*c*b + -7
sage: (a+b+c).norm(M)
-11
sage: z = (a+b+c).norm(L); z.norm(M)
-11
sage: R.<x> = K[]
sage: f = (x^3 - (a+b)*x + c)*(x-2*a)*(x^2 - b); f
x^6 + ((-2)*a)*x^5 + ((-1)*a + (-2)*b)*x^4 + ...
sage: f.factor()
(x + (-2)*a) * (x^2 + (-1)*b)* (x^3 + ((-1)*a + (-1)*b)*x + c)
```


Embeddings

sage: K. $\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle=$ NumberField $\left(\left[\mathrm{x}^{\wedge} 2+1, \mathrm{x}^{\wedge} 2+3, \mathrm{x}^{\wedge} 2+5\right]\right)$
sage: K.embeddings(L)
[Relative number field endomorphism of Number Field in a with de Defn: a |--> a b |--> b c |--> c,

Relative number field endomorphism of Number Field in a wi Defn: a |--> (-1)*a b |--> (-1)*b c |--> c] sage: $f=K . e m b e d d i n g s(L)[-1] ; \quad f(a+b+c+2 / 3)$ $(-1) * a+(-1) * b+c+2 / 3$
sage: K.<a> = NumberField(x^3 - 2)
sage: L = K.galois_closure()
sage: K.embeddings(L)
sage: K.<a> = NumberField(x^3 - 2)
sage: L = K.galois_closure()
sage: K.embeddings(L) \# 3 morphisms output; L can be CC, CDF, [Ring morphism:

From: Number Field in a with defining polynomial x^3-2
To: Number Field in a1 with defining polynomial $\mathrm{x}^{\wedge} 6+40 * \mathrm{x}^{\wedge} 3$ Defn: a |--> 1/84*a1^4 + 13/42*a1,

Orders

sage: K.<a> = NumberField(x^3 - 2)
sage: $02=\mathrm{K} . \operatorname{order}(2 * a)$; 02
Order with module basis 1, $2 * \mathrm{a}, 4 * \mathrm{a}^{\wedge} 2$ in Number Field in a with sage: $03=$ K.order ([12*a^2, 24]); 03
Order with module basis 1, $288 * a, 12 * a^{\wedge} 2$ in Number Field in a wi sage: 03.index_in(02)
432
sage: a in 02
False
sage: 02.intersection(03)
Order with module basis 1, 288*a, 12*a^2 in Number Field in a wi
sage: time NumberField(x^19 + 23*x + 12, 'a').maximal_order()
CPU times: user 0.04 s , sys: 0.02 s , total: 0.05 s
Wall time: 0.06
Order with module basis $1,1 / 6 * a^{\wedge} 18+1 / 6 * a^{\wedge} 17+1 / 6 * a^{\wedge} 16+\ldots$
User always see everything in terms of the number field basis, unlike in Magma.

Number Fields: Status Report

1. Doctest coverage is now better. I brought it to 100%, but then Robert and I wrote a lot of new code...
2. Aside from speed issues mentioned above, there is a still much general work to be done on number fields.
3. Over 50 messages in sage-devel recently like this:

From: Bill Hart to sage-devel
Subject: [sage-devel] Re: number fields My personal opinion is that SAGE should ...
4. Much work in this direction hasn't begun yet:
$\overline{\mathbb{Q}}$, completions, embeddings, linear algebra, order pseudo-basis
5. Focus right now is in having a sane interface that has usable speed, and at least provides most of the functionality of Magma's number fields package as soon as possible (!), so that we can port code and worry about making things faster.

Thanks. Questions?

Now is the time to report bugs, concerns, issues, etc., with number fields!

