Computing Coleman Integrals in SAGE

Robert Bradshaw and Kiran Kedlaya

SAGE Days 5: Oct 1, 2007

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties

- Additivity

$$
\int_{P}^{Q} \omega+\int_{Q}^{R} \omega=\int_{P}^{R} \omega
$$

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties

- Additivity

$$
\begin{aligned}
& \int_{P}^{Q} \omega+\int_{Q}^{R} \omega=\int_{P}^{R} \omega \\
& \int_{P}^{Q}(\alpha \omega+\beta \eta)=\alpha \int_{P}^{Q} \omega+\beta \int_{P}^{Q} \eta
\end{aligned}
$$

- Linearity

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties

- Additivity

$$
\int_{P}^{Q} \omega+\int_{Q}^{R} \omega=\int_{P}^{R} \omega
$$

- Linearity

$$
\int_{P}^{Q}(\alpha \omega+\beta \eta)=\alpha \int_{P}^{Q} \omega+\beta \int_{P}^{Q} \eta
$$

- Change of variables $\int_{\phi(P)}^{\phi(Q)} \omega=\int_{P}^{Q} \phi^{*}(\omega)$

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties

- Additivity

$$
\int_{P}^{Q} \omega+\int_{Q}^{R} \omega=\int_{P}^{R} \omega
$$

- Linearity

$$
\int_{P}^{Q}(\alpha \omega+\beta \eta)=\alpha \int_{P}^{Q} \omega+\beta \int_{P}^{Q} \eta
$$

- Change of variables $\int_{\phi(P)}^{\phi(Q)} \omega=\int_{P}^{Q} \phi^{*}(\omega)$
- FTC

$$
\int_{P}^{Q} d f=f(Q)-f(P)
$$

Properties of Coleman Integrals

Let $P, Q, R \in U=X-Z, \phi: X \rightarrow X^{\prime}$, and $f \in A^{\dagger}$. Then the following properties hold:

Properties

- Additivity

$$
\int_{P}^{Q} \omega+\int_{Q}^{R} \omega=\int_{P}^{R} \omega
$$

- Linearity

$$
\int_{P}^{Q}(\alpha \omega+\beta \eta)=\alpha \int_{P}^{Q} \omega+\beta \int_{P}^{Q} \eta
$$

- Change of variables $\int_{\phi(P)}^{\phi(Q)} \omega=\int_{P}^{Q} \phi^{*}(\omega)$
- FTC $\quad \int_{P}^{Q} d f=f(Q)-f(P)$
- Local analyticity (on each open disc of $U^{a n}$).

Tiny Integrals

In each residue class of U the function is locally analytic.

Tiny Integrals

In each residue class of U the function is locally analytic.

- Let P, Q be in the same residue class.

Tiny Integrals

In each residue class of U the function is locally analytic.

- Let P, Q be in the same residue class.
- Choose a linear interpolation from P to Q.

Tiny Integrals

In each residue class of U the function is locally analytic.

- Let P, Q be in the same residue class.
- Choose a linear interpolation from P to Q.
- E.g. if $y^{2}=a(x)$ we can let

$$
x(t)=t P_{x}+(1-t) Q_{x} \text { and } y(t)=\sqrt{a(x(t))}
$$

Tiny Integrals

In each residue class of U the function is locally analytic.

- Let P, Q be in the same residue class.
- Choose a linear interpolation from P to Q.
- E.g. if $y^{2}=a(x)$ we can let

$$
x(t)=t P_{x}+(1-t) Q_{x} \text { and } y(t)=\sqrt{a(x(t))}
$$

- Formally integrate

$$
\int_{P}^{Q} \omega=\int_{P}^{Q} f(x, y) \frac{d x}{y}=\int_{0}^{1} \frac{f(x(t), y(t))}{y(t)} \frac{d x}{d t} d t
$$

as a power series in t.

Tiny Integrals

In each residue class of U the function is locally analytic.

- Let P, Q be in the same residue class.
- Choose a linear interpolation from P to Q.
- E.g. if $y^{2}=a(x)$ we can let

$$
x(t)=t P_{x}+(1-t) Q_{x} \text { and } y(t)=\sqrt{a(x(t))}
$$

- Formally integrate

$$
\int_{P}^{Q} \omega=\int_{P}^{Q} f(x, y) \frac{d x}{y}=\int_{0}^{1} \frac{f(x(t), y(t))}{y(t)} \frac{d x}{d t} d t
$$

as a power series in t.

- Because P and Q are in the same residue class, all power series are actually power series in $p t$. This lets us calculate $\int_{P}^{Q} \omega$ to any desired precision if P and Q are in the same residue class.

Teichmüller Points

Let $\phi: A^{\dagger} \rightarrow A^{\dagger}$ be a q-power Frobenius lift viewed as acting on $A \dagger$.

Teichmüller Points

Let $\phi: A^{\dagger} \rightarrow A^{\dagger}$ be a q-power Frobenius lift viewed as acting on $A \dagger$.

Definition

A Teichmüller point is a point P such that $\phi(P)=P$.

Teichmüller Points

Let $\phi: A^{\dagger} \rightarrow A^{\dagger}$ be a q-power Frobenius lift viewed as acting on $A \dagger$.

Definition

A Teichmüller point is a point P such that $\phi(P)=P$.

Fact

There is a Teichmüller point in every residue class.

Kedlaya's algorithm for Computing the Action of Frobenius

Let $C: y^{2}=f(x)$ where f is of degree $2 g+1$, and $\phi=\operatorname{Frob}_{p}$. .

Kedlaya's algorithm for Computing the Action of Frobenius

Let $C: y^{2}=f(x)$ where f is of degree $2 g+1$, and $\phi=\operatorname{Frob}_{p}$. .

- There is a (not necessarily canonical) lift of ϕ acting on A^{\dagger}, but we can extend it non-cannonically by letting $\phi(x)=x^{p}$ and

$$
\phi(y)=\sqrt{\phi(f)\left(x^{p}\right)}=y^{p}\left(1+\frac{\phi(f)\left(x^{p}\right)-f(x)^{p}}{y^{2 p}}\right)^{1 / 2}
$$

Kedlaya's algorithm for Computing the Action of Frobenius

Let $C: y^{2}=f(x)$ where f is of degree $2 g+1$, and $\phi=\operatorname{Frob}_{p}$. .

- There is a (not necessarily canonical) lift of ϕ acting on A^{\dagger}, but we can extend it non-cannonically by letting $\phi(x)=x^{p}$ and

$$
\phi(y)=\sqrt{\phi(f)\left(x^{p}\right)}=y^{p}\left(1+\frac{\phi(f)\left(x^{p}\right)-f(x)^{p}}{y^{2 p}}\right)^{1 / 2}
$$

- For each basis element $\frac{x^{i} d x}{y}$ of $H_{M W}^{1}(C)$ compute

$$
\phi^{*}\left(\frac{x^{i} d x}{y}\right)=\frac{p x^{p i+p-1} d x}{\phi(y)}
$$

Kedlaya's algorithm for Computing the Action of Frobenius

Let $C: y^{2}=f(x)$ where f is of degree $2 g+1$, and $\phi=\operatorname{Frob}_{p}$. .

- There is a (not necessarily canonical) lift of ϕ acting on A^{\dagger}, but we can extend it non-cannonically by letting $\phi(x)=x^{p}$ and

$$
\phi(y)=\sqrt{\phi(f)\left(x^{p}\right)}=y^{p}\left(1+\frac{\phi(f)\left(x^{p}\right)-f(x)^{p}}{y^{2 p}}\right)^{1 / 2} .
$$

- For each basis element $\frac{x^{i} d x}{y}$ of $H_{M W}^{1}(C)$ compute

$$
\phi^{*}\left(\frac{x^{i} d x}{y}\right)=\frac{p x^{p i+p-1} d x}{\phi(y)}
$$

- Write each $\phi\left(x^{i} d x / y\right)$ in terms of $x^{i} d x / y, 0 \leq i<2 g$, using the relations $y^{2}=f(x), 2 y d y=f^{\prime}(x) d x$ and $d\left(x^{i} y^{j}\right)=0$.

Kedlaya's algorithm for Computing the Action of Frobenius

Let $C: y^{2}=f(x)$ where f is of degree $2 g+1$, and $\phi=\operatorname{Frob}_{p}$. .

- There is a (not necessarily canonical) lift of ϕ acting on A^{\dagger}, but we can extend it non-cannonically by letting $\phi(x)=x^{p}$ and

$$
\phi(y)=\sqrt{\phi(f)\left(x^{p}\right)}=y^{p}\left(1+\frac{\phi(f)\left(x^{p}\right)-f(x)^{p}}{y^{2 p}}\right)^{1 / 2} .
$$

- For each basis element $\frac{x^{\prime} d x}{y}$ of $H_{M W}^{1}(C)$ compute

$$
\phi^{*}\left(\frac{x^{i} d x}{y}\right)=\frac{p x^{p i+p-1} d x}{\phi(y)} .
$$

- Write each $\phi\left(x^{i} d x / y\right)$ in terms of $x^{i} d x / y, 0 \leq i<2 g$, using the relations $y^{2}=f(x), 2 y d y=f^{\prime}(x) d x$ and $d\left(x^{i} y^{j}\right)=0$.
- As before, high powers of y are necessarily to be p-adicly small.

Connecting Integrals

Let P, Q be Teichmüller points.

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=\int_{P}^{Q} \omega_{i}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=\int_{\phi(P)}^{\phi(Q)} \omega_{i}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=\int_{P}^{Q} \phi^{*} \omega_{i}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=\int_{P}^{Q}\left(d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}\right)
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=\int_{P}^{Q} d f_{i}+\sum_{j=1}^{n} A_{i j} \int_{P}^{Q} \omega_{j}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=f_{i}(Q)-f_{i}(P)+\sum_{j=1}^{n} A_{i j} \int_{P}^{Q} \omega_{j}
$$

Connecting Integrals

Let P, Q be Teichmüller points.

- Choose a basis $\omega_{1}, \ldots, \omega_{n}$ for $H_{M W}^{1}(\bar{U})$.
- Calculate the action of ϕ on each basis element, letting

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=1}^{n} A_{i j} \omega_{j}
$$

- Compute each $\int_{P}^{Q} \omega_{j}$ by solving a linear system

$$
\int_{P}^{Q} \omega_{i}=f_{i}(Q)-f_{i}(P)+\sum_{j=1}^{n} A_{i j} \int_{P}^{Q} \omega_{j}
$$

- Use linearity to integrate arbitrary ω.

Putting it all together

Let P, Q be arbitrary points in U.

Putting it all together

Let P, Q be arbitrary points in U.

- Compute Teichmüller points P^{\prime}, Q^{\prime} in the same residue classes as P, Q respectively.

Putting it all together

Let P, Q be arbitrary points in U.

- Compute Teichmüller points P^{\prime}, Q^{\prime} in the same residue classes as P, Q respectively.
- Now we can calculate

$$
\int_{P}^{Q} \omega=
$$

Putting it all together

Let P, Q be arbitrary points in U.

- Compute Teichmüller points P^{\prime}, Q^{\prime} in the same residue classes as P, Q respectively.
- Now we can calculate

$$
\int_{P}^{Q} \omega=\int_{P}^{P^{\prime}} \omega
$$

Putting it all together

Let P, Q be arbitrary points in U.

- Compute Teichmüller points P^{\prime}, Q^{\prime} in the same residue classes as P, Q respectively.
- Now we can calculate

$$
\int_{P}^{Q} \omega=\int_{P}^{P^{\prime}} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega
$$

Putting it all together

Let P, Q be arbitrary points in U.

- Compute Teichmüller points P^{\prime}, Q^{\prime} in the same residue classes as P, Q respectively.
- Now we can calculate

$$
\int_{P}^{Q} \omega=\int_{P}^{P^{\prime}} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega+\int_{Q^{\prime}}^{Q} \omega
$$

History in SAGE

- MSRI Graduate Student Workshop 2006
- Kedlaya's algorithm for computing action of Frobenius implemented for Elliptic Curves in context of point counting and computing p-adic heights.
- Robert Bradshaw, David Harvey, Jen Balakrishnan, Liang Xiao

History in SAGE

- MSRI Graduate Student Workshop 2006
- Kedlaya's algorithm for computing action of Frobenius implemented for Elliptic Curves in context of point counting and computing p-adic heights.
- Robert Bradshaw, David Harvey, Jen Balakrishnan, Liang Xiao
- Arizona Winter School 2007
- Extend algorithm to keep track of exact forms, hyperelliptic curves
- Teichmüller points, tiny integrals, etc.
- Robert Bradshaw, Kiran Kedlaya, Ralf Gerkmann, Miljan Brakovevic
- Much optimization since

History in SAGE

- MSRI Graduate Student Workshop 2006
- Kedlaya's algorithm for computing action of Frobenius implemented for Elliptic Curves in context of point counting and computing p-adic heights.
- Robert Bradshaw, David Harvey, Jen Balakrishnan, Liang Xiao
- Arizona Winter School 2007
- Extend algorithm to keep track of exact forms, hyperelliptic curves
- Teichmüller points, tiny integrals, etc.
- Robert Bradshaw, Kiran Kedlaya, Ralf Gerkmann, Miljan Brakovevic
- Much optimization since
- Spring 2007
- David Harvey's asymptotic improvements
- Hyperelliptic curve implementation in C++
- Very fast, but unsuitable for Coleman Integrals. (Maybe not?)

Implementation Details

- Uses Newton iteration to calculate Teichmüller points, square roots, etc.

Implementation Details

- Uses Newton iteration to calculate Teichmüller points, square roots, etc.
- Specialized parent classes SpecialCubicQuotientRing, SpecialHyperellipticQuotientRing, and MonskyWashnitzerDifferentialRing.

Implementation Details

- Uses Newton iteration to calculate Teichmüller points, square roots, etc.
- Specialized parent classes SpecialCubicQuotientRing, SpecialHyperellipticQuotientRing, and MonskyWashnitzerDifferentialRing.
- Required and resulted in massive speedup of Laurent series and power series (among other things).

Implementation Details

Main files
\$ wc - $1 .$.
2285 elliptic_curves/monsky_washnitzer.py
182 elliptic_curves/ell_padic_field.py
232 hyperelliptic_curves/hyperelliptic_padic_field.py
131 hyperelliptic_curves/frobenius. pyx
2015 hyperelliptic_curves/frobenius_cpp.cpp

Demo

Demo

Demo

```
sage: K = pAdicField (19, 15)
sage: E = EllipticCurve(K, '11a').weierstrass_model()
sage: P = E(K(14/3), K(11/2))
sage: 5*P
(0: : O O(19^15) : 0)
sage: w = E.invariant_differential()
sage: w.coleman_integral(P, 2*P)
O(11^7)
```


Demo

$$
\begin{aligned}
& \text { sage: } K=p A d i c F i e l d(11,7) \\
& \text { sage: } x=\text { polygen (K) } \\
& \text { sage: } C=\text { HyperellipticCurve (x^5 + 33/16*x^4 } \\
& \left.+3 / 4 * x^{\wedge} 3+3 / 8 * x^{\wedge} 2-1 / 4 * x+1 / 16\right) \\
& \text { sage: } P=C(-1,1) ; P 1=C(-1,-1) \\
& \text { sage: } \mathrm{Q}=\mathrm{C}(0,1 / 4) ; \mathrm{Q} 1=\mathrm{C}(0,-1 / 4) \\
& \text { sage: } x, y=C . m o n s k y-w a s h n i t z e r_{-} \text {gens () } \\
& \text { sage: } w=C . i n v a r i a n t \text { differential () } \\
& \text { sage: w. coleman_integral (} \mathrm{P}, \mathrm{Q} \text {) } \\
& \mathrm{O}\left(11^{\wedge} 7\right)
\end{aligned}
$$

What's taking it so long?

sage: w. coleman_integral ($\mathrm{P}, 2 * \mathrm{P}$)

```
0.000s -- setup
0.210s -- tiny integrals
1.307s -- mw calc
0.000s -- eval f
0.002s -- eval f Rational Field
0.395s -- changing rings
0.011s -- eval f 19-adic Field with capped relativ
0.004s -- solve lin system
```


What's taking it so long?

sage: w. coleman_integral ($\mathrm{P}, 2 * \mathrm{P}$)

```
0.000s -- setup
0.210s -- tiny integrals
1.307s -- mw calc
0.000s -- eval f
0.002s -- eval f Rational Field
0.395s -- changing rings
0.011s -- eval f 19-adic Field with capped relativ
0.004s -- solve lin system
```


What's taking it so long?

matrix_of_frobenius_hyperelliptic

```
0.000s -- setup
0.007 s -- x_to_p
0.005s -- frob_Q
0.149s -- sqrt
0.013s -- compose
0.019s -- setup
0.185s -- frob basis elements
0.193s -- rationalize
0.926s -- reduce
```


What's taking it so long?

- Currently reduce goes back and forth between \mathbb{Q} and $\mathbb{Z} / p^{n} \mathbb{Z}$.

What's taking it so long?

- Currently reduce goes back and forth between \mathbb{Q} and $\mathbb{Z} / p^{n} \mathbb{Z}$.
- Linear algebra in \mathbb{Q} is fast, but coefficients grow quickly.

What's taking it so long?

- Currently reduce goes back and forth between \mathbb{Q} and $\mathbb{Z} / p^{n} \mathbb{Z}$.
- Linear algebra in \mathbb{Q} is fast, but coefficients grow quickly.
- This is the perfect application of fast p-adic linear algebra (and polynomials).

What's taking it so long?

- Currently reduce goes back and forth between \mathbb{Q} and $\mathbb{Z} / p^{n} \mathbb{Z}$.
- Linear algebra in \mathbb{Q} is fast, but coefficients grow quickly.
- This is the perfect application of fast p-adic linear algebra (and polynomials).
- We don't even need precision tacking

What's taking it so long?

- Currently reduce goes back and forth between \mathbb{Q} and $\mathbb{Z} / p^{n} \mathbb{Z}$.
- Linear algebra in \mathbb{Q} is fast, but coefficients grow quickly.
- This is the perfect application of fast p-adic linear algebra (and polynomials).
- We don't even need precision tacking
- There are other obvious optimizations elsewhere too

Future Work

- Iterated Coleman Integrals

Future Work

- Iterated Coleman Integrals
- Extend to non-prime \mathbb{Q}_{q}

Future Work

- Iterated Coleman Integrals
- Extend to non-prime \mathbb{Q}_{q}
- Extend to $p=2,3$

Future Work

- Iterated Coleman Integrals
- Extend to non-prime \mathbb{Q}_{q}
- Extend to $p=2,3$
- Optimize, convert to Cython or $\mathrm{C} / \mathrm{C}++$

