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Properties of Coleman Integrals

Let P,Q,R ∈ U = X − Z , φ : X → X ′, and f ∈ A†. Then the following
properties hold:

Properties

Additivity
∫ Q
P ω +

∫ R
Q ω =

∫ R
P ω

Linearity
∫ Q
P (αω + βη) = α

∫ Q
P ω + β

∫ Q
P η

Change of variables
∫ φ(Q)
φ(P) ω =

∫ Q
P φ∗(ω)

FTC
∫ Q
P df = f (Q)− f (P)

Local analyticity (on each open disc of Uan).
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Tiny Integrals

In each residue class of U the function is locally analytic.

Let P,Q be in the same residue class.

Choose a linear interpolation from P to Q.

E.g. if y2 = a(x) we can let

x(t) = tPx + (1−t)Qx and y(t) =
√

a(x(t))

Formally integrate∫ Q

P
ω =

∫ Q

P
f (x , y)

dx

y
=

∫ 1

0

f (x(t), y(t))

y(t)

dx

dt
dt

as a power series in t.

Because P and Q are in the same residue class, all power series are
actually power series in pt. This lets us calculate

∫ Q
P ω to any desired

precision if P and Q are in the same residue class.
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Teichmüller Points

Let φ : A† → A† be a q-power Frobenius lift viewed as acting on A†.

Definition

A Teichmüller point is a point P such that φ(P) = P.

Fact

There is a Teichmüller point in every residue class.
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Kedlaya’s algorithm for Computing the Action of Frobenius

Let C : y2 = f (x) where f is of degree 2g + 1, and φ =Frobp. .

There is a (not necessarily canonical) lift of φ acting on A†, but we
can extend it non-cannonically by letting φ(x) = xp and

φ(y) =
√
φ(f )(xp) = yp

(
1 +

φ(f )(xp)− f (x)p

y2p

)1/2

.

For each basis element x idx
y of H1

MW (C ) compute

φ∗
(

x idx

y

)
=

pxpi+p−1dx

φ(y)
.

Write each φ
(
x idx/y

)
in terms of x idx/y , 0 ≤ i < 2g , using the

relations y2 = f (x), 2ydy = f ′(x)dx and d(x iy j) = 0.

As before, high powers of y are necessarily to be p-adicly small.
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Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi =

∫ Q

P
ωi

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi =

∫ φ(Q)

φ(P)
ωi

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi =

∫ Q

P
φ∗ωi

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system

∫ Q

P
ωi =

∫ Q

P

dfi +
n∑

j=1

Aijωj



Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi =

∫ Q

P
dfi +

n∑
j=1

Aij

∫ Q

P
ωj

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi = fi (Q)− fi (P) +

n∑
j=1

Aij

∫ Q

P
ωj

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Connecting Integrals

Let P,Q be Teichmüller points.

Choose a basis ω1, . . . , ωn for H1
MW (U).

Calculate the action of φ on each basis element, letting

φ∗ωi = dfi +
n∑

j=1

Aijωj .

Compute each
∫ Q
P ωj by solving a linear system∫ Q

P
ωi = fi (Q)− fi (P) +

n∑
j=1

Aij

∫ Q

P
ωj

Use linearity to integrate arbitrary ω.

Bradshaw, Kedlaya () Coleman Integration SAGE Days 5: Oct 1, 2007 6 / 18



Putting it all together

Let P,Q be arbitrary points in U.

Compute Teichmüller points P ′,Q ′ in the same residue classes as
P,Q respectively.

Now we can calculate∫ Q

P
ω =

∫ P′

P
ω +

∫ Q′

P′
ω +

∫ Q

Q′
ω

P

Q
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History in SAGE

MSRI Graduate Student Workshop 2006

Kedlaya’s algorithm for computing action of Frobenius implemented for
Elliptic Curves in context of point counting and computing p-adic
heights.
Robert Bradshaw, David Harvey, Jen Balakrishnan, Liang Xiao

Arizona Winter School 2007

Extend algorithm to keep track of exact forms, hyperelliptic curves
Teichmüller points, tiny integrals, etc.
Robert Bradshaw, Kiran Kedlaya, Ralf Gerkmann, Miljan Brakovevic
Much optimization since

Spring 2007

David Harvey’s asymptotic improvements
Hyperelliptic curve implementation in C++

Very fast, but unsuitable for Coleman Integrals. (Maybe not?)
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Implementation Details

Uses Newton iteration to calculate Teichmüller points, square roots,
etc.

Specialized parent classes SpecialCubicQuotientRing,
SpecialHyperellipticQuotientRing, and
MonskyWashnitzerDifferentialRing.

Required and resulted in massive speedup of Laurent series and power
series (among other things).
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Implementation Details

Main files

$ wc − l . . .

2285 e l l i p t i c c u r v e s / m o n s k y w a s h n i t z e r . py
182 e l l i p t i c c u r v e s / e l l p a d i c f i e l d . py
232 h y p e r e l l i p t i c c u r v e s / h y p e r e l l i p t i c p a d i c f i e l d . py
131 h y p e r e l l i p t i c c u r v e s / f r o b e n i u s . pyx

2015 h y p e r e l l i p t i c c u r v e s / f r o b e n i u s c p p . cpp
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Demo

Demo
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Demo

sage : K = p A d i c F i e l d ( 1 9 , 15)
sage : E = E l l i p t i c C u r v e (K, ’11 a ’ ) . w e i e r s t r a s s m o d e l ( )
sage : P = E(K( 1 4 / 3 ) , K( 1 1 / 2 ) )
sage : 5∗P
(0 : 1 + O(19ˆ15) : 0)
sage : w = E . i n v a r i a n t d i f f e r e n t i a l ( )
sage : w. c o l e m a n i n t e g r a l (P , 2∗P)
O(11ˆ7)
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Demo

sage : K = p A d i c F i e l d ( 1 1 , 7)
sage : x = p o l y g e n (K)
sage : C = H y p e r e l l i p t i c C u r v e ( x ˆ5 + 33/16∗ x ˆ4

+ 3/4∗ x ˆ3 + 3/8∗ x ˆ2 − 1/4∗ x + 1/16)
sage : P = C(−1 , 1 ) ; P1 = C(−1 , −1)
sage : Q = C( 0 , 1 / 4 ) ; Q1 = C( 0 , −1/4)
sage : x , y = C . m o n s k y w a s h n i t z e r g e n s ( )
sage : w = C . i n v a r i a n t d i f f e r e n t i a l ( )
sage : w. c o l e m a n i n t e g r a l (P , Q)
O(11ˆ7)
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What’s taking it so long?

sage : w. c o l e m a n i n t e g r a l (P , 2∗P)

0 . 0 0 0 s −− s e t u p
0 . 2 1 0 s −− t i n y i n t e g r a l s
1 . 3 0 7 s −− mw c a l c
0 . 0 0 0 s −− e v a l f
0 . 0 0 2 s −− e v a l f R a t i o n a l F i e l d
0 . 3 9 5 s −− c h a n g i n g r i n g s
0 . 0 1 1 s −− e v a l f 19− a d i c F i e l d w i t h capped r e l a t i v e p r e c i s i o n 15
0 . 0 0 4 s −− s o l v e l i n system
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What’s taking it so long?

m a t r i x o f f r o b e n i u s h y p e r e l l i p t i c

0 . 0 0 0 s −− s e t u p
0 . 0 0 7 s −− x t o p
0 . 0 0 5 s −− f r o b Q
0 . 1 4 9 s −− s q r t
0 . 0 1 3 s −− compose
0 . 0 1 9 s −− s e t u p
0 . 1 8 5 s −− f r o b b a s i s e l e m e n t s
0 . 1 9 3 s −− r a t i o n a l i z e
0 . 9 2 6 s −− r e d u c e
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What’s taking it so long?

Currently reduce goes back and forth between Q and Z/pnZ.

Linear algebra in Q is fast, but coefficients grow quickly.

This is the perfect application of fast p-adic linear algebra (and
polynomials).

We don’t even need precision tacking

There are other obvious optimizations elsewhere too
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Future Work

Iterated Coleman Integrals

Extend to non-prime Qq

Extend to p = 2, 3

Optimize, convert to Cython or C/C++
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