The SAGE Coercion Model

Robert Bradshaw

Oct 2, 2007

Outline of Topics

(1) Mathematics
(2) Mechanics

Examples

Ring Examples from SD 4

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]($ not $\operatorname{Frac}(\mathbf{Z}[x]))$

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]($ not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]$ (not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]$ (not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.
- $\mathbf{Z}[x]+\mathbf{Z}[y]$ error due to unknown relation between x and y and ambiguous order

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]($ not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.
- $\mathbf{Z}[x]+\mathbf{Z}[y]$ error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}\left[\zeta_{m}\right]+\mathbf{Q}\left[\zeta_{n}\right] \in \mathbf{Q}\left[\zeta_{\text {/cm(m,n) }}\right]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]($ not $\operatorname{Frac}(\mathbf{Z}[x]))$
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.
- $\mathbf{Z}[x]+\mathbf{Z}[y]$ error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}\left[\zeta_{m}\right]+\mathbf{Q}\left[\zeta_{n}\right] \in \mathbf{Q}\left[\zeta_{\text {lcm }(m, n)}\right]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^{n}}+\mathbf{F}_{p^{m}}$ works using Conway polynomials

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]$ (not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.
- $\mathbf{Z}[x]+\mathbf{Z}[y]$ error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}\left[\zeta_{m}\right]+\mathbf{Q}\left[\zeta_{n}\right] \in \mathbf{Q}\left[\zeta_{\text {lcm }(m, n)}\right]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^{n}}+\mathbf{F}_{p^{m}}$ works using Conway polynomials
- $\mathbf{Z} / 16 \mathbf{Z}+\mathbf{Z} / 12 \mathbf{Z} \in \mathbf{Z} / 4 \mathbf{Z}$

Examples

Ring Examples from SD 4

- $\mathbf{Z}[x] / \mathbf{Z} \in \mathbf{Q}[x]($ not $\operatorname{Frac}(\mathbf{Z}[x])$)
- $\mathbf{Q}+\mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z} / 5 \mathbf{Z}+\mathbf{Z}[x] \in \mathbf{Z} / 5 \mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z} / 5 \mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z} / 5 \mathbf{Z}$.
- $\mathbf{Z}[x]+\mathbf{Z}[y]$ error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}\left[\zeta_{m}\right]+\mathbf{Q}\left[\zeta_{n}\right] \in \mathbf{Q}\left[\zeta_{\text {lcm }(m, n)}\right]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^{n}}+\mathbf{F}_{p^{m}}$ works using Conway polynomials
- $\mathbf{Z} / 16 \mathbf{Z}+\mathbf{Z} / 12 \mathbf{Z} \in \mathbf{Z} / 4 \mathbf{Z}$
- $\mathbf{Q}+\operatorname{Matrix}_{n, m}(\mathbf{Z}[x]) \in \operatorname{Matrix}_{n, m}(\mathbf{Q}[x])$

Cases

Three main cases for arithmetic between R, S.

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically

Cases

Three main cases for arithmetic between R, S.

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
- $\mathbb{Q}\left[\zeta_{n}\right] \rightarrow \mathbb{C}$ for CyclotomicField
- Quotient objects

Cases

Three main cases for arithmetic between R, S.

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
- Embedding may be implicit
- $\mathbb{Q}\left[\zeta_{n}\right] \rightarrow \mathbb{C}$ for CyclotomicField
- Quotient objects

Cases

Three main cases for arithmetic between R, S.

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
- Embedding may be implicit
- $\mathbb{Q}\left[\zeta_{n}\right] \rightarrow \mathbb{C}$ for CyclotomicField
- Quotient objects
- (Hard) $R \rightarrow Z$ and $S \rightarrow Z$ canonically ("pushouts")

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$
- $\operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$
- $\operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$

Definition

Let a construction tower of R be a series of objects R_{i} and functors F_{i} such that $R_{i+1}=F_{i}\left(R_{i}\right)$ with $R_{n}=R$.

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$
- $\operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$

Construction Functors and Towers

- Most objects are the result of applying functors to simpler objects
- $\mathbb{Z}_{p}[x, y]$
- $\mathbb{Q}(\sqrt{5})[[t]]$
- $\operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$

Definition

Let a construction tower of R be a series of objects R_{i} and functors F_{i} such that $R_{i+1}=F_{i}\left(R_{i}\right)$ with $R_{n}=R$.

Pushforwards

Pushforwards need a reasonable initial object

Pushforwards

Pushforwards need a reasonable initial object

- Case 1. Construction towers converge

Pushforwards

Pushforwards need a reasonable initial object

- Case 1. Construction towers converge
- Case 2. Canonical coercion between towers

Merging Towers

(example)

Implementation

(demo)

Requirements

Implementation in SAGE
- Fast

Requirements

Implementation in SAGE

- Fast
- Non-intrusive

Requirements

Implementation in SAGE

- Fast
- Non-intrusive
- Transitive

Requirements

Implementation in SAGE

- Fast
- Non-intrusive
- Transitive
- Correct

Implementation

$$
\text { sage: } a+b
$$

Executes
if have_same_parent (a, b) :
return a.add_c (b)
else: \# bin_op_c
if $A=$ lookup_action ($a, b, o p)$:
return $A(a, b)$
if xmap, ymap = lookup_coercion (a, b) return x map(a) $+\operatorname{ymap}(b)$
Fail
Everything is cached for speed (custom dict)

Special functions

- R.coerce_map_from()
- R.get_action()
- cannonical_coercion
- pushout

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time $R=\operatorname{Ring}(. .$. , embeddings $=X$)

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time $\mathrm{R}=\operatorname{Ring}(. .$. , embeddings $=\mathrm{X}$)
- Wrappers $\mathrm{R}=$ AssertEmbeddings (T, S, f) where $f: T \rightarrow S$

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time $\mathrm{R}=\operatorname{Ring}(. .$. , embeddings $=\mathrm{X}$)
- Wrappers $\mathrm{R}=$ AssertEmbeddings (T, S, f) where $f: T \rightarrow S$

Currently needs some cleaning up.

User embedding (proposal)

User embedding (proposal)

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time $\mathrm{R}=\mathrm{Ring}(. .$. , embeddings=X)
- Wrappers $\mathrm{R}=$ AssertEmbeddings($\mathrm{T}, \mathrm{S}, \mathrm{f}$) where $f: T \rightarrow S$

Currently needs some cleaning up.
What do you, as a developer, want to define?

