The SAGE Coercion Model

Robert Bradshaw

Oct 2, 2007

Bradshaw ()

SAGE Coercion

3 Oct 2, 2007 1 / 13

590

イロト イポト イヨト イヨト

590

イロト イヨト イヨト

ra		()

990

◆ロ > ◆母 > ◆臣 > ◆臣 >

Examples

Ring Examples from SD 4

• $Z[x]/Z \in Q[x]$ (not Frac(Z[x]))

rad		()

990

◆ロ > ◆母 > ◆臣 > ◆臣 >

Examples

Ring Examples from SD 4

- $Z[x]/Z \in Q[x]$ (not Frac(Z[x]))
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$

ads	0

nac

- 4 回 🕨 🔺 国 🕨 - 4 国 🕨 - 4 国 🕨 - 4 国 🕨

- $Z[x]/Z \in Q[x]$ (not Frac(Z[x]))
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.

< 日 > < 同 > < 三 > < 三 >

nac

- $Z[x]/Z \in Q[x] \text{ (not Frac}(Z[x]))$
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.
- **Z**[x] + **Z**[y] error due to unknown relation between x and y and ambiguous order

< 日 > < 同 > < 三 > < 三 >

- $Z[x]/Z \in Q[x] \text{ (not Frac}(Z[x]))$
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.
- **Z**[x] + **Z**[y] error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}[\zeta_m] + \mathbf{Q}[\zeta_n] \in \mathbf{Q}[\zeta_{lcm(m,n)}]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$

- $Z[x]/Z \in Q[x] \text{ (not Frac}(Z[x]))$
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.
- **Z**[x] + **Z**[y] error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}[\zeta_m] + \mathbf{Q}[\zeta_n] \in \mathbf{Q}[\zeta_{lcm(m,n)}]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^n} + \mathbf{F}_{p^m}$ works using Conway polynomials

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

- $Z[x]/Z \in Q[x] \text{ (not Frac}(Z[x]))$
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.
- **Z**[x] + **Z**[y] error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}[\zeta_m] + \mathbf{Q}[\zeta_n] \in \mathbf{Q}[\zeta_{lcm(m,n)}]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^n} + \mathbf{F}_{p^m}$ works using Conway polynomials
- $Z/16Z + Z/12Z \in Z/4Z$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $Z[x]/Z \in Q[x] \text{ (not Frac}(Z[x]))$
- $\mathbf{Q} + \mathbf{Z}[x] \in \mathbf{Q}[x]$ and $\mathbf{Z}/5\mathbf{Z} + \mathbf{Z}[x] \in \mathbf{Z}/5\mathbf{Z}[x]$
- $\mathbf{Q} * \mathbf{Z}/5\mathbf{Z}$ error due to no morphism from "all" of \mathbf{Q} into $\mathbf{Z}/5\mathbf{Z}$.
- **Z**[x] + **Z**[y] error due to unknown relation between x and y and ambiguous order
- $\mathbf{Q}[\zeta_m] + \mathbf{Q}[\zeta_n] \in \mathbf{Q}[\zeta_{lcm(m,n)}]$ as cyclotomic fields are created with an embedding into $\overline{\mathbf{Q}}$
- $\mathbf{F}_{p^n} + \mathbf{F}_{p^m}$ works using Conway polynomials
- $Z/16Z + Z/12Z \in Z/4Z$
- $\mathbf{Q} + \operatorname{Matrix}_{n,m}(\mathbf{Z}[x]) \in \operatorname{Matrix}_{n,m}(\mathbf{Q}[x])$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
 - $\mathbb{Q}[\zeta_n] \to \mathbb{C}$ for CyclotomicField
 - Quotient objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- (Easy) $R \to S$ or $S \to R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
 - Embedding may be implicit
 - $\mathbb{Q}[\zeta_n] \to \mathbb{C}$ for CyclotomicField
 - Quotient objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- (Easy) $R \rightarrow S$ or $S \rightarrow R$ canonically
- (Medium) $R \rightarrow S$ or $S \rightarrow R$ with specified embedding
 - Embedding may be implicit
 - $\mathbb{Q}[\zeta_n] \to \mathbb{C}$ for CyclotomicField
 - Quotient objects
- (Hard) $R \rightarrow Z$ and $S \rightarrow Z$ canonically ("pushouts")

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Most objects are the result of applying functors to simpler objects

< ロ > < 同 > < 回 > <

500

• Most objects are the result of applying functors to simpler objects • $\mathbb{Z}_p[x, y]$

200

イロト イポト イヨト イヨト

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - $\mathbb{Q}(\sqrt{5})[[t]]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

500

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - $\mathbb{Q}(\sqrt{5})[[t]]$
 - $Mat_{2\times 2}(\mathbb{Q}_p)$

500

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - ℚ(√5)[[t]]
 - $Mat_{2\times 2}(\mathbb{Q}_p)$

Definition

Let a **construction tower** of R be a series of objects R_i and functors F_i such that $R_{i+1} = F_i(R_i)$ with $R_n = R$.

• Most objects are the result of applying functors to simpler objects

< ロ > < 同 > < 回 > <

500

• Most objects are the result of applying functors to simpler objects • $\mathbb{Z}_p[x, y]$

500

・ロト ・ 同ト ・ 日ト ・ 日

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - $\mathbb{Q}(\sqrt{5})[[t]]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

500

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - $\mathbb{Q}(\sqrt{5})[[t]]$
 - $Mat_{2\times 2}(\mathbb{Q}_p)$

500

- Most objects are the result of applying functors to simpler objects
 - $\mathbb{Z}_p[x, y]$
 - ℚ(√5)[[t]]
 - $Mat_{2\times 2}(\mathbb{Q}_p)$

Definition

Let a **construction tower** of R be a series of objects R_i and functors F_i such that $R_{i+1} = F_i(R_i)$ with $R_n = R$.

Pushforwards need a reasonable initial object

596

イロト イヨト イヨト

Pushforwards need a reasonable initial object

• Case 1. Construction towers converge

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

590

Pushforwards need a reasonable initial object

- Case 1. Construction towers converge
- Case 2. Canonical coercion between towers

< 口 > < 同 ·

nac

(example)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(demo)

	ha		(

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Fast

- Fast
- Non-intrusive

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Fast
- Non-intrusive
- Transitive

900

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Fast
- Non-intrusive
- Transitive
- Correct

590

◆ロ > ◆母 > ◆臣 > ◆臣 >

```
sage: a + b
Executes
if have_same_parent(a,b):
    return a.add_c(b)
else: # bin_op_c
    if A = lookup_action(a,b, op):
        return A(a,b)
    if xmap, ymap = lookup_coercion(a,b)
        return xmap(a) + ymap(b)
    Fail
```

Everything is cached for speed (custom dict)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- R.coerce_map_from()
- R.get_action()
- cannonical_coercion
- pushout

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

• Mutable parents and side effects can be bad

500

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time R = Ring(..., embeddings=X)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time R = Ring(..., embeddings=X)
- Wrappers R = AssertEmbeddings(T, S, f) where $f: \mathcal{T} \rightarrow S$

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー の々や

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time R = Ring(..., embeddings=X)
- Wrappers R = AssertEmbeddings(T, S, f) where $f: T \rightarrow S$

Currently needs some cleaning up.

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー の々や

- Mutable parents and side effects can be bad
- Contexts with Embeddings(...)
- At ring creation time R = Ring(..., embeddings=X)
- Wrappers R = AssertEmbeddings(T, S, f) where $f: T \rightarrow S$

Currently needs some cleaning up. What do you,as a developer, want to define?

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー の々や