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p - prime
F - number field
C/F - smooth complete curve with good
reduction at places above p

J - Jacobian of C.
(additional data) ⇒ p-adic heigh pairing

h : J(F ) × J(F ) → Qp

Mazur-Stein-Tate (2004) computation in the case
of g(C) = 1.

Goal: compute in general.
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p-adic height pairings on curves
- Coleman Gross (1985)
χ =

∏
χv : IF/F× → Qp a character

Height pairing h =
∑

hv : J(C) × J(C) → Qp
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hv for v not dividing p

v - non archimedian, C/K, K = Fv,
y, z ∈ Div0(C) with disjoint support.

C̃ - regular model for C
ỹ, z̃ - extensions of y and z to rational divisors on
C̃, one of which has zero intersection with all
components of special fiber.
hv(y, z) = 〈y, z〉v · χv(πv).

〈y, z〉v = ỹ · z̃.
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Local heights above p

[K : Qp] < ∞, C/K smooth complete curve,
J = J(C).

We need auxiliary data: A choice of a
complementary subspace W to F 0H1

dr(C/K).

J(L) = Div0(C ⊗ L)/{(f) , f ∈ L×(C)}

where L ⊃ K.
To define hv we need

• The universal vectorial extension of J and its
logarithm.

• Coleman’s integration theory
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Universal vectorial extension of
J

T (L) = {ω on CL of third kind} ⊂ Ω1(L(C))

Third kind means simple poles and residues in Z

⊃ T`(L) = {d log(f) , f ∈ L×(C)}

0 → Ω1(CL) → T (L)
Res
−−→ Div0(CL) → 0

quotienting by T`(L)

0 → Ω1(CL) → T (L)/T`(L) := G(L) → J(L) → 0
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Universal vectorial extension of
J
which are L-points for the universal vectorial
extension

0 → Ω1(C) → G → J → 0

Taking tangent spaces at 0 we get

0 → H1,0(C) → H1
dr(C/K) → H0,1(C) → 0
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The logarithm
Logarithm for a commutative group scheme over
a p-adic field

logG : G(K) → H1
dr(C/K)

which is the identity on H1,0(C).

On the computation of p-adic Height Pairings – p.8/25



Branch of log and trace
×
Fv

χv //

log
v

��>
>>

>>
>>

>
Qp

Fv

trv

??~~~~~~~~
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Coleman integration and the
height
ω ∈ Ω1(K×(C)) ⇒ Fω : C(K̄) → K̄ (depends on
the choice of log) unique up to constant.

Easy: exists and unique ωy ∈ T (K) s.t.
• Res ωy = y

• log(ωy) ∈ W

Set hv(y, z) = tr(
∫

z
ωy)

For all v we have hv((f), z) = χv(f(z)) hence h

factors via J .
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The double index and log

ω, η ∈ K((z))dz.

want a notion of Res0 Fωη

Problem: ω = a0dz/z + · · · ⇒
Fω = a0 log(z) + · · · , Res0 log(z)dz/z =?.

However, there is no problem if either ω or η has

no residue (in second case define as −Res0 Fηω)
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Solution: double index 〈Fω, Fη〉 depending on
both Fω and Fη, bilinear, antisymmetric and equal
to above when defined.

Key idea: 〈log(z), log(z)〉 = 0.

〈Fω + C,Fη〉 = 〈Fω, Fη〉 + C Res0 η

Global index:∑
x∈C〈Fω, Fη〉x := 〈Fω, Fη〉gl = 〈ω, η〉gl where Fη,

Fω are Coleman integrals.

Can replace indexes on points by an index on an

annulus.
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The projection formula
Theorem (B.) Define for a meromorphic form ω,
Ψ(ω) ∈ H1

dr(C) by

〈ω, α〉gl = Ψ(ω) ∪ [α]

for α of the second kind. Then
• For ω ∈ T (K), Ψ(ω) = log(ω)

• For another form η

〈ω, η〉gl = Ψ(ω) ∪ Ψ(η)
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Remarks
1. A similar projections exists in the rigid context:
ω is a rigid form on a wide open U ⊂ C.
The projection is the unique Frobenius
equivariant splitting of

H1
dr(C) → H1

dr(U)

2. The projection formula reduces the computa-

tion of the log to the computation of Coleman in-

tegrals.

On the computation of p-adic Height Pairings – p.14/25



Remarks
1. A similar projections exists in the rigid context:
ω is a rigid form on a wide open U ⊂ C.
The projection is the unique Frobenius
equivariant splitting of

H1
dr(C) → H1

dr(U)

2. The projection formula reduces the computa-

tion of the log to the computation of Coleman in-

tegrals.

On the computation of p-adic Height Pairings – p.14/25



Remarks
3. When computing 〈ω, α〉gl for α of the second

kind only the Coleman integral of α needs to be

computed.
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Computation of Coleman inte-
grals
Computation of Coleman integrals has been
done by Gutnik and by Kedlaya Bradshaw for
forms with residually Weierstrass singularities.

More general forms require either more general

reduction or some tricks using double indices

again.
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Sketch of the algorithm at p

Observation: may assume our divisors are
anti-symmetric
Start with antisymmetric y and z.

First step: compute Coleman integral for a basis
of de Rham cohomology αi and a cup product
matrix.

⇒ can compute Ψ.

Note: no further Coleman integration required.
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Second step
“Compute” ωy - pick any ω with residue divisor y
and compute its log = Ψ.

This allows to compute the holomorphic ω − ωy.

Since its integral is known it suffices to compute∫
z
ω.
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Third step

We want to compute
∫ P

−P
ω = 2F (P ) with F = Fω

antisymmetric.

Mimic the computation of Coleman integrals

η := φω − pω

η is “of the second kind” - it has no residues on
annuli

By the assumptions on F we have

σ(F (φ(σ−1(P )))) − pF (P ) =
1

2

∫ P

−P

η
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so suffices to compute RHS.

Let µ be a form whose residue divisor is
(P ) + (−P )

RHS =
∑

Res µ

∫
η

sum over singular points of µ.
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Up to knowing Ψ(η) ∪ Ψ(µ) this is the same as

∑
Res η

∫
µ

sum over the singularities of η.

This is better since η is “of second kind” so
∫

µ
need not be a Coleman integral.

Note: η has an essential singularity on the
Weierstrass discs.
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How to compute local heights
away from p
Surprize: not much previous work.

Idea (which I hope works): Imitate Tate’s
construction of the canonical height.

〈y, z〉v is approximated by {y, z}v = naive
intersection pairing.

error depends on degrees of y, z and on the re-

duction type of C.
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Theory of hyperelliptic curves: effective
2ny = y′ + (f), with y′ of small degree.

So:

2n〈y, z〉v = 〈y′, z〉v + v(f(z)) ∼ {y′, z}v + v(f(z))

hence

〈y, z〉v ∼ 2−n ({y′, z}v + v(f(z)))

〈y, z〉v has bounded denominators hence get an-

swer for a sufficiently large n.
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hence

〈y, z〉v ∼ 2−n ({y′, z}v + v(f(z)))

〈y, z〉v has bounded denominators hence get an-

swer for a sufficiently large n.
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2y = y1 + (f1)

4y = 2y1 + (f 2
1 ) = y2 + (f2) + (f 2

1 )

2ny = yn + (fn) + (f 2
n−1) + (f 2n−1

1 )

so

〈y, z〉v ∼ 2−n{y′, z}v +
∑

v(fi(z))/2i
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Problem
Problem: Hard to determine what’s the required
n.

Solution?: Use work of Kausz to bounded num-

ber of components in reduction in terms of val-

uation of discriminant: To y2 = f associate the

discriminant D = ∆(f)gV 8g+4 where V is the co-

volume inside H0(C̃, Ω1) of the module generated

by xidx/y. Then v(D) bounds a weighted sum of

the number of singular points of the minimal reg-

ular model.
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