On the computation of p-adic Height Pairings

Amnon Besser

p-prime F - number field C / F - smooth complete curve with good reduction at places above p

p- prime

F - number field
C / F - smooth complete curve with good reduction at places above p
J - Jacobian of C.
(additional data) $\Rightarrow p$-adic heigh pairing

$$
h: J(F) \times J(F) \rightarrow \mathbb{Q}_{p}
$$

p-prime
F - number field
C / F - smooth complete curve with good reduction at places above p
J - Jacobian of C.
(additional data) $\Rightarrow p$-adic heigh pairing

$$
h: J(F) \times J(F) \rightarrow \mathbb{Q}_{p}
$$

Mazur-Stein-Tate (2004) computation in the case of $g(C)=1$.
Goal: compute in genereral. ,

p-adic height pairings on curvos - Coleman Gross (1985)

$\chi=\Pi \chi_{v}: I_{F} / F^{\times} \rightarrow \mathbb{Q}_{p}$ a character
p-adic height pairings on curvos - Coleman Gross (1985)
$\chi=\Pi \chi_{v}: I_{F} / F^{\times} \rightarrow \mathbb{Q}_{p}$ a character
Height pairing $h=\sum h_{v}: J(C) \times J(C) \rightarrow \mathbb{Q}_{p}$

h_{v} for v not dividing p

v - non archimedian, $C / K, K=F_{v}$,
$y, z \in \operatorname{Div}_{0}(C)$ with disjoint support.

h_{v} for v not dividing p

v - non archimedian, $C / K, K=F_{v}$, $y, z \in \operatorname{Div}_{0}(C)$ with disjoint support. \tilde{C} - regular model for C

h_{v} for v not dividing p

v - non archimedian, $C / K, K=F_{v}$, $y, z \in \operatorname{Div}_{0}(C)$ with disjoint support.
\tilde{C} - regular model for C \tilde{y}, \tilde{z} - extensions of y and z to rational divisors on \tilde{C}, one of which has zero intersection with all components of special fiber.

h_{v} for v not dividing p

v - non archimedian, $C / K, K=F_{v}$,
$y, z \in \operatorname{Div}_{0}(C)$ with disjoint support.
\tilde{C} - regular model for C
\tilde{y}, \tilde{z} - extensions of y and z to rational divisors on \tilde{C}, one of which has zero intersection with all components of special fiber.
$h_{v}(y, z)=\langle y, z\rangle_{v} \cdot \chi_{v}\left(\pi_{v}\right)$.
$\langle y, z\rangle_{v}=\tilde{y} \cdot \tilde{z}$.

Local heights above p

$\left[K: \mathbb{Q}_{p}\right]<\infty, C / K$ smooth complete curve, $J=J(C)$.

Local heights above p

$\left[K: \mathbb{Q}_{p}\right]<\infty, C / K$ smooth complete curve, $J=J(C)$.
We need auxiliary data: A choice of a complementary subspace W to $F^{0} H_{\mathrm{dr}}^{1}(C / K)$.

Local heights above p

$\left[K: \mathbb{Q}_{p}\right]<\infty, C / K$ smooth complete curve, $J=J(C)$.
We need auxiliary data: A choice of a complementary subspace W to $F^{0} H_{\mathrm{dr}}^{1}(C / K)$.

$$
J(L)=\operatorname{Div}_{0}(C \otimes L) /\left\{(f), f \in L^{\times}(C)\right\}
$$

where $L \supset K$.

Local heights above p

$\left[K: \mathbb{Q}_{p}\right]<\infty, C / K$ smooth complete curve, $J=J(C)$.
We need auxiliary data: A choice of a complementary subspace W to $F^{0} H_{\mathrm{dr}}^{1}(C / K)$.

$$
J(L)=\operatorname{Div}_{0}(C \otimes L) /\left\{(f), f \in L^{\times}(C)\right\}
$$

where $L \supset K$.
To define h_{v} we need

- The universal vectorial extension of J and its logarithm.
. . Cọleman’ṣ inṭẹgratị̣ọ theory.

Universal vectorial extension of

 J$$
T(L)=\left\{\omega \text { on } C_{L} \text { of third kind }\right\} \subset \Omega^{1}(L(C))
$$

Third kind means simple poles and residues in \mathbb{Z}

$$
\supset T_{\ell}(L)=\left\{\mathrm{d} \log (f), f \in L^{\times}(C)\right\}
$$

Universal vectorial extension of

 J$$
T(L)=\left\{\omega \text { on } C_{L} \text { of third kind }\right\} \subset \Omega^{1}(L(C))
$$

Third kind means simple poles and residues in \mathbb{Z}

$$
\begin{aligned}
& \supset T_{\ell}(L)=\left\{\mathrm{d} \log (f), f \in L^{\times}(C)\right\} \\
& \qquad 0 \rightarrow \Omega^{1}\left(C_{L}\right) \rightarrow T(L) \xrightarrow{\text { Res }} \operatorname{Div}_{0}\left(C_{L}\right) \rightarrow 0
\end{aligned}
$$

Universal vectorial extension of

 J$$
T(L)=\left\{\omega \text { on } C_{L} \text { of third kind }\right\} \subset \Omega^{1}(L(C))
$$

Third kind means simple poles and residues in \mathbb{Z}

$$
\begin{aligned}
& \supset T_{\ell}(L)=\left\{\mathrm{d} \log (f), f \in L^{\times}(C)\right\} \\
& \qquad 0 \rightarrow \Omega^{1}\left(C_{L}\right) \rightarrow T(L) \xrightarrow{\text { Res }} \operatorname{Div}_{0}\left(C_{L}\right) \rightarrow 0
\end{aligned}
$$

quotienting by $T_{\ell}(L)$

$$
0 \rightarrow \Omega^{1}\left(C_{L}\right) \rightarrow T(L) / T_{\ell}(L):=G(L) \rightarrow J(L) \rightarrow 0
$$

Universal vectorial extension of J

which are L-points for the universal vectorial extension

$$
0 \rightarrow \Omega^{1}(C) \rightarrow G \rightarrow J \rightarrow 0
$$

Universal vectorial extension of J

which are L-points for the universal vectorial extension

$$
0 \rightarrow \Omega^{1}(C) \rightarrow G \rightarrow J \rightarrow 0
$$

Taking tangent spaces at 0 we get

$$
0 \rightarrow H^{1,0}(C) \rightarrow H_{\mathrm{dr}}^{1}(C / K) \rightarrow H^{0,1}(C) \rightarrow 0
$$

The logarithm

Logarithm for a commutative group scheme over a p-adic field

$$
\log _{G}: G(K) \rightarrow H_{\mathrm{dr}}^{1}(C / K)
$$

which is the identity on $H^{1,0}(C)$.

Branch of log and trace

Coleman integration and the

 height$\omega \in \Omega^{1}\left(K^{\times}(C)\right) \Rightarrow F_{\omega}: C(\bar{K}) \rightarrow \bar{K}$ (depends on the choice of \log) unique up to constant.

Coleman integration and the

 height$\omega \in \Omega^{1}\left(K^{\times}(C)\right) \Rightarrow F_{\omega}: C(\bar{K}) \rightarrow \bar{K}$ (depends on the choice of \log) unique up to constant.
Easy: exists and unique $\omega_{y} \in T(K)$ s.t.

- $\operatorname{Res} \omega_{y}=y$
- $\log \left(\omega_{y}\right) \in W$

Coleman integration and the

 height$\omega \in \Omega^{1}\left(K^{\times}(C)\right) \Rightarrow F_{\omega}: C(\bar{K}) \rightarrow \bar{K}$ (depends on the choice of \log) unique up to constant.
Easy: exists and unique $\omega_{y} \in T(K)$ s.t.

- $\operatorname{Res} \omega_{y}=y$
- $\log \left(\omega_{y}\right) \in W$

Coleman integration and the

 height$\omega \in \Omega^{1}\left(K^{\times}(C)\right) \Rightarrow F_{\omega}: C(\bar{K}) \rightarrow \bar{K}$ (depends on the choice of \log) unique up to constant.
Easy: exists and unique $\omega_{y} \in T(K)$ s.t.

- $\operatorname{Res} \omega_{y}=y$
- $\log \left(\omega_{y}\right) \in W$

Set $h_{v}(y, z)=\operatorname{tr}\left(\int_{z} \omega_{y}\right)$

Coleman integration and the

height

$\omega \in \Omega^{1}\left(K^{\times}(C)\right) \Rightarrow F_{\omega}: C(\bar{K}) \rightarrow \bar{K}$ (depends on the choice of \log) unique up to constant.
Easy: exists and unique $\omega_{y} \in T(K)$ s.t.

- $\operatorname{Res} \omega_{y}=y$
- $\log \left(\omega_{y}\right) \in W$

Set $h_{v}(y, z)=\operatorname{tr}\left(\int_{z} \omega_{y}\right)$
For all v we have $h_{v}((f), z)=\chi_{v}(f(z))$ hence h factors via J.

The double index and \log

 $\omega, \eta \in K((z)) d z$.
The double index and \log

$\omega, \eta \in K((z)) d z$.
want a notion of $\operatorname{Res}_{0} F_{\omega} \eta$

The double index and log

$\omega, \eta \in K((z)) d z$.
want a notion of $\operatorname{Res}_{0} F_{\omega} \eta$
Problem: $\omega=a_{0} d z / z+\cdots \Rightarrow$

$$
F_{\omega}=a_{0} \log (z)+\cdots, \operatorname{Res}_{0} \log (z) d z / z=?
$$

The double index and log

$\omega, \eta \in K((z)) d z$.
want a notion of $\operatorname{Res}_{0} F_{\omega} \eta$
Problem: $\omega=a_{0} d z / z+\cdots \Rightarrow$
$F_{\omega}=a_{0} \log (z)+\cdots, \operatorname{Res}_{0} \log (z) d z / z=$?.
However, there is no problem if either ω or η has no residue (in second case define as - $\operatorname{Res}_{0} F_{\eta} \omega$)

Solution: double index $\left\langle F_{\omega}, F_{\eta}\right\rangle$ depending on

 both F_{ω} and F_{η}, bilinear, antisymmetric and equal to above when defined.
Solution: double index $\left\langle F_{\omega}, F_{\eta}\right\rangle$ depending on

 both F_{ω} and F_{η}, bilinear, antisymmetric and equal to above when defined.Key idea: $\langle\log (z), \log (z)\rangle=0$.

Solution: double index $\left\langle F_{\omega}, F_{\eta}\right\rangle$ depending on both F_{ω} and F_{η}, bilinear, antisymmetric and equal to above when defined.
Key idea: $\langle\log (z), \log (z)\rangle=0$.
$\left\langle F_{\omega}+C, F_{\eta}\right\rangle=\left\langle F_{\omega}, F_{\eta}\right\rangle+C \operatorname{Res}_{0} \eta$

Solution: double index $\left\langle F_{\omega}, F_{\eta}\right\rangle$ depending on both F_{ω} and F_{η}, bilinear, antisymmetric and equal to above when defined.

Key idea: $\langle\log (z), \log (z)\rangle=0$.
$\left\langle F_{\omega}+C, F_{\eta}\right\rangle=\left\langle F_{\omega}, F_{\eta}\right\rangle+C \operatorname{Res}_{0} \eta$
Global index:
$\sum_{x \in C}\left\langle F_{\omega}, F_{\eta}\right\rangle_{x}:=\left\langle F_{\omega}, F_{\eta}\right\rangle_{g l}=\langle\omega, \eta\rangle_{g l}$ where F_{η}, F_{ω} are Coleman integrals.

Solution: double index $\left\langle F_{\omega}, F_{\eta}\right\rangle$ depending on both F_{ω} and F_{η}, bilinear, antisymmetric and equal to above when defined.

Key idea: $\langle\log (z), \log (z)\rangle=0$.
$\left\langle F_{\omega}+C, F_{\eta}\right\rangle=\left\langle F_{\omega}, F_{\eta}\right\rangle+C \operatorname{Res}_{0} \eta$
Global index:
$\sum_{x \in C}\left\langle F_{\omega}, F_{\eta}\right\rangle_{x}:=\left\langle F_{\omega}, F_{\eta}\right\rangle_{g l}=\langle\omega, \eta\rangle_{g l}$ where F_{η}, F_{ω} are Coleman integrals.

Can replace indexes on points by an index on an annụulus.

The projection formula

Theorem (B.) Define for a meromorphic form ω, $\Psi(\omega) \in H_{\mathrm{dr}}^{1}(C)$ by

$$
\langle\omega, \alpha\rangle_{g l}=\Psi(\omega) \cup[\alpha]
$$

for α of the second kind. Then

- For $\omega \in T(K), \Psi(\omega)=\log (\omega)$

The projection formula

Theorem (B.) Define for a meromorphic form ω, $\Psi(\omega) \in H_{\mathrm{dr}}^{1}(C)$ by

$$
\langle\omega, \alpha\rangle_{g l}=\Psi(\omega) \cup[\alpha]
$$

for α of the second kind. Then

- For $\omega \in T(K), \Psi(\omega)=\log (\omega)$
- For another form η

$$
\langle\omega, \eta\rangle_{g l}=\Psi(\omega) \cup \Psi(\eta)
$$

Remarks

1. A similar projections exists in the rigid context:
ω is a rigid form on a wide open $U \subset C$. The projection is the unique Frobenius equivariant splitting of

$$
H_{\mathrm{dr}}^{1}(C) \rightarrow H_{\mathrm{dr}}^{1}(U)
$$

Remarks

1. A similar projections exists in the rigid context: ω is a rigid form on a wide open $U \subset C$. The projection is the unique Frobenius equivariant splitting of

$$
H_{\mathrm{dr}}^{1}(C) \rightarrow H_{\mathrm{dr}}^{1}(U)
$$

2. The projection formula reduces the computation of the log to the computation of Coleman integrals.

Remarks

3. When computing $\langle\omega, \alpha\rangle_{g l}$ for α of the second kind only the Coleman integral of α needs to be computed.

Computation of Coleman inte-

 gralsComputation of Coleman integrals has been done by Gutnik and by Kedlaya Bradshaw for forms with residually Weierstrass singularities.

Computation of Coleman inte-

 gralsComputation of Coleman integrals has been done by Gutnik and by Kedlaya Bradshaw for forms with residually Weierstrass singularities.

More general forms require either more general reduction or some tricks using double indices again.

Sketch of the algorithm at p

Observation: may assume our divisors are anti-symmetric Start with antisymmetric y and z.

Sketch of the algorithm at p

Observation: may assume our divisors are anti-symmetric
Start with antisymmetric y and z.
First step: compute Coleman integral for a basis of de Rham cohomology α_{i} and a cup product matrix.

Sketch of the algorithm at p

Observation: may assume our divisors are anti-symmetric
Start with antisymmetric y and z.
First step: compute Coleman integral for a basis of de Rham cohomology α_{i} and a cup product matrix.
\Rightarrow can compute Ψ.
Note: no further Coleman integration required.

Second step

"Compute" ω_{y} - pick any ω with residue divisor y and compute its $\log =\Psi$.

Second step

"Compute" ω_{y} - pick any ω with residue divisor y and compute its $\log =\Psi$.
This allows to compute the holomorphic $\omega-\omega_{y}$.

Second step

"Compute" ω_{y} - pick any ω with residue divisor y and compute its $\log =\Psi$.
This allows to compute the holomorphic $\omega-\omega_{y}$.
Since its integral is known it suffices to compute $\int_{z} \omega$.

Third step

We want to compute $\int_{-P}^{P} \omega=2 F(P)$ with $F=F_{\omega}$ antisymmetric.

Third step

We want to compute $\int_{-P}^{P} \omega=2 F(P)$ with $F=F_{\omega}$ antisymmetric.
Mimic the computation of Coleman integrals

Third step

We want to compute $\int_{-P}^{P} \omega=2 F(P)$ with $F=F_{\omega}$ antisymmetric.
Mimic the computation of Coleman integrals

$$
\eta:=\phi \omega-p \omega
$$

Third step

We want to compute $\int_{-P}^{P} \omega=2 F(P)$ with $F=F_{\omega}$ antisymmetric.
Mimic the computation of Coleman integrals

$$
\eta:=\phi \omega-p \omega
$$

η is "of the second kind" - it has no residues on annuli

Third step

We want to compute $\int_{-P}^{P} \omega=2 F(P)$ with $F=F_{\omega}$ antisymmetric.
Mimic the computation of Coleman integrals
η := $\phi \omega-p \omega$
η is "of the second kind" - it has no residues on annuli
By the assumptions on F we have

$$
\sigma\left(F\left(\phi\left(\sigma^{-1}(P)\right)\right)\right)-p F(P)=\frac{1}{2} \int_{-P}^{P} \eta
$$

so suffices to compute RHS.

so suffices to compute RHS.

Let μ be a form whose residue divisor is
$(P)+(-P)$

so suffices to compute RHS.

Let μ be a form whose residue divisor is
$(P)+(-P)$

$$
\mathrm{RHS}=\sum \operatorname{Res} \mu \int \eta
$$

sum over singular points of μ.

Up to knowing $\Psi(\eta) \cup \Psi(\mu)$ this is the same as

$$
\sum \operatorname{Res} \eta \int \mu
$$

sum over the singularities of η.

Up to knowing $\Psi(\eta) \cup \Psi(\mu)$ this is the same as

$$
\sum \operatorname{Res} \eta \int \mu
$$

sum over the singularities of η.
This is better since η is "of second kind" so $\int \mu$ need not be a Coleman integral.

Up to knowing $\Psi(\eta) \cup \Psi(\mu)$ this is the same as

$$
\sum \operatorname{Res} \eta \int \mu
$$

sum over the singularities of η.
This is better since η is "of second kind" so $\int \mu$ need not be a Coleman integral.

Note: η has an essential singularity on the Weierstrass discs.

How to compute local heights

 away from p Surprize: not much previous work.How to compute local heights away from p
Surprize: not much previous work. Idea (which I hope works): Imitate Tate's construction of the canonical height.

How to compute local heights away from p
Surprize: not much previous work. Idea (which I hope works): Imitate Tate's construction of the canonical height.
$\langle y, z\rangle_{v}$ is approximated by $\{y, z\}_{v}=$ naive intersection pairing.

How to compute local heights away from p
Surprize: not much previous work. Idea (which I hope works): Imitate Tate's construction of the canonical height.
$\langle y, z\rangle_{v}$ is approximated by $\{y, z\}_{v}=$ naive intersection pairing.
error depends on degrees of y, z and on the reduction type of C.

Theory of hyperelliptic curves: effective $2^{n} y=y^{\prime}+(f)$, with y^{\prime} of small degree.

Theory of hyperelliptic curves: effective $2^{n} y=y^{\prime}+(f)$, with y^{\prime} of small degree.
So:

$$
2^{n}\langle y, z\rangle_{v}=\left\langle y^{\prime}, z\right\rangle_{v}+v(f(z)) \sim\left\{y^{\prime}, z\right\}_{v}+v(f(z))
$$

Theory of hyperelliptic curves: effective $2^{n} y=y^{\prime}+(f)$, with y^{\prime} of small degree.
So:

$$
2^{n}\langle y, z\rangle_{v}=\left\langle y^{\prime}, z\right\rangle_{v}+v(f(z)) \sim\left\{y^{\prime}, z\right\}_{v}+v(f(z))
$$

hence

$$
\langle y, z\rangle_{v} \sim 2^{-n}\left(\left\{y^{\prime}, z\right\}_{v}+v(f(z))\right)
$$

Theory of hyperelliptic curves: effective $2^{n} y=y^{\prime}+(f)$, with y^{\prime} of small degree.
So:

$$
2^{n}\langle y, z\rangle_{v}=\left\langle y^{\prime}, z\right\rangle_{v}+v(f(z)) \sim\left\{y^{\prime}, z\right\}_{v}+v(f(z))
$$

hence

$$
\langle y, z\rangle_{v} \sim 2^{-n}\left(\left\{y^{\prime}, z\right\}_{v}+v(f(z))\right)
$$

$\langle y, z\rangle_{v}$ has bounded denominators hence get answệr fọr a suffficiẹnṭly. large. n: .

$$
\begin{aligned}
2 y & =y_{1}+\left(f_{1}\right) \\
4 y & =2 y_{1}+\left(f_{1}^{2}\right)=y_{2}+\left(f_{2}\right)+\left(f_{1}^{2}\right) \\
2^{n} y & =y_{n}+\left(f_{n}\right)+\left(f_{n-1}^{2}\right)+\left(f_{1}^{2^{n-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
2 y & =y_{1}+\left(f_{1}\right) \\
4 y & =2 y_{1}+\left(f_{1}^{2}\right)=y_{2}+\left(f_{2}\right)+\left(f_{1}^{2}\right) \\
2^{n} y & =y_{n}+\left(f_{n}\right)+\left(f_{n-1}^{2}\right)+\left(f_{1}^{2 n-1}\right)
\end{aligned}
$$

so

$$
\langle y, z\rangle_{v} \sim 2^{-n}\left\{y^{\prime}, z\right\}_{v}+\sum v\left(f_{i}(z)\right) / 2^{i}
$$

Problem

Problem: Hard to determine what's the required n.

Problem

Problem: Hard to determine what's the required n.

Solution?: Use work of Kausz to bounded number of components in reduction in terms of valuation of discriminant: To $y^{2}=f$ associate the discriminant $D=\Delta(f)^{g} V^{8 g+4}$ where V is the covolume inside $H^{0}\left(\tilde{C}, \Omega^{1}\right)$ of the module generated by $x^{i} d x / y$. Then $v(D)$ bounds a weighted sum of the number of singular points of the minimal reg: . . ular modêl. ...

