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Commutative Algebra

In abstract algebra, commutative algebra studies
commutative rings, their ideals, and modules over such
rings. Both algebraic geometry and algebraic number
theory build on commutative algebra. Prominent
examples of commutative rings include polynomial rings
(covered here), rings of algebraic integers (see William
Stein/Robert Bradshaw’s talk), including the ordinary
integers Z, and p-adic integers (see David Roe’s talk).

http://en.wikipedia.org/wiki/Commutative_algebra

Specifically, we will cover multivariate polynomial rings over fields
and commutative rings here.

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Status Report: Commutative Algebra in SAGE 4/31


http://en.wikipedia.org/wiki/Commutative_algebra

Introduction Implementation So at Can We Do? Fullstop se Linear Algebra over

v(l) A Little Blt of Hlstory

My ToDo list of October 2006:
m way faster multivariate polynomial arithmetic
m ETuples: Pyrex — C.

m faster finite field arithmetic (e.g. Givaro) (nearly done)
m now we are SO much better than this

m fast sparse linear algebra — mostly (reduced) row echelon form
— over any field. (gOn, LinBox)

m for crypto: Efficient implementation of
Folxo, . .., xn—1]/(Fieldldeal) (PoLyBoRI)

m a useable but flexible (extensible) F4 implementation in SAGE

m Fs5 would be very cool. (yeah, right)
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Implementation

/() (Planed) Inheritance Tree

Rings:
CommutativeRing a commutative ring
MPolynomialRing_generic common operations
MPolynomialRing_polydict generic implementation
MPolynomialRing_libsingular polynomials
QuotientRing_libsingular quotient ring
MPolynomialRing_cocoa linking against CoCoALib

QuotientRing_generic common operations

PolynomialQuotientRing generic implementation
BooleanPolynomialRing PoLYBORI
Ideals:

Ideal_generic generic for any ring
MPolynomialldeal over multivariate polynomials
BooleanPolynomialldeal PorLyBoR1
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MPolynomial_generic

sage.rings.polynomial.multi_polynomial_element

straight forward Python/Cython implementation

polynomials represented as dictionaries of exponent vectors
and coefficients.

Consider for example the ring Q[x, y, z] and
f = 5% x%y3 + z* — 2. This boils down to
{{0:2,1:3}:5, {2:4}:1, {}:-2}

basics work over any field/ring

currently provides e.g. Z.

very slow
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MPolynomial_libsingular

sage.rings.polynomial.multi_polynomial_libsingular

SINGULARK  http://www.singular.uni-k1.de/

m implementation linking against SINGULAR directly on C level
m needed to convert SINGULAR to a shared library (changes
accepted upstream)
m provided base fields: F(p"), Q.
m fast basic arithmetic, fastest | am aware of over F(p).
sage: P.<x,y,z> = PolynomialRing(GF(32003),3)
sage: p= (x+y+z+ 1)°20; q =p + 1 # the Fateman fastmult benchmark

sage: r = pxq
Core2Duo 2.33Ghz, Linux; SAGE/Singular: 0.24s, MAGMA: 0.52s

m also provided via libSINGULAR: matrices over those
polynomial rings, some ideal operations.

m if there is stuff in SINGULAR that needs to be in SAGE
directly please speak up!

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Status Report: Commutative Algebra in SAGE 9/31


http://www.singular.uni-kl.de/

Implementation S t Ca ? N A over

/() lIbSINGULAR isn't as scary as many believe

sage.rings.polynomial.multi_polynomial_libsingular

cdef ModuleElement _add_c.impl( left, ModuleElement right):
Add left and right.
EXAMPLE:
sage: P.<x,y,z>=MPolynomialRing(QQ,3)
sage: 3/2xx + 1/2xy + 1
3/2%x + 1/2xy + 1

cdef MPolynomial_libsingular res

cdef poly *_l, *_r, x_p
cdef ring *_ring

_ring = (KMPolynomialRing_libsingular>left._parent). _ring
if(-ring != currRing): rChangeCurrRing(-ring)

_r

p-Copy(left._poly, _ring)
p-Copy((<MPolynomial_libsingular>right ). _poly, _ring)

_p= p-Add_q(-I, -r, _ring)
p-Normalize(-p, -ring)

return co.new_MP((<MPolynomialRing_libsingular>left._parent),_p)
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/() Incidently: SINGULAR's Q implementation

sage: n 3000000
sage: p ZZ(randint(0,2°n))/ZZ(randint(0,2°n))
sage: q = ZZ(randint(0,2°n))/ZZ(randint(0,2°n))

sage: %time _ = ptq
CPU times: user 2.15 s, sys: 0.00 s, total: 2.15 s
Wall time: 2.16

sage: %time _ = pxq
CPU times: user 3.72 s, sys: 0.00 s, total: 3.72 s
Wall time: 3.78

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: p = P(p); q = P(q)

sage: %time _ = p+q
CPU times: user 4.68 s, sys: 0.01 s, total: 4.69 s
Wall time: 4.69

sage: %time _ = pxq
CPU times: user 0.25 s, sys: 0.00 s, total: 0.25 s
Wall time: 0.25
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MPolynomial _cocoalib

CoCoALib is GPL'd now!

A http://cocoa.dima.unige.it/cocoalib/

m uses [Ap]CoCoALib as backend, see Michael Abshoff’s talk

m initial wrapper was written in April 2007 by Michael Abshoff
and me withing five hours

m never made it upstream
m will probably provide at least R and C as base fields.

m basic arithmetic seems slower than libSINGULAR for [,
(maybe due to calling overhead)

m many interesting things on todo list but much stuff not quite
there yet.
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BooleanPolynomial

http://www.itwm.fraunhofer.de/en/as__asprojects__PolyBoRi/PolyBoRi/

m Uses POLYBORI by Alexander Dreyer and Michael
Brickenstein as backend.

m PoLYBORI is a library for computations in
Falx1, .oy Xn) /(X2 + X150, X2 + Xn)

m applications: crypto, coding theory, ...

m representation of polynomials as zero suppressed decision
diagrams (ZDDs): very efficient for large polynomials

m Burcin Erocal is working on the integration, prototype
available but cannot distribute yet, because POLYBORI
author's didn't officially release yet (but will soon).
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Basic Arithmetic

It does matter!

m claim: basic arithmetic is way less important than e.g.
Grobner basis calculations. E.g. noone want so multiply large
multivariate polynomials. this is not true

m SAGE should be a system to protype algorithms and thus
basic arithmetic matters

m SAGE is very fast for multivariate polynomials over finite
fields, pretty good for Q and bad for the rest

m also, SAGE covers basic arithmetic to e.g. prototype Grobner
basis algorithms.

m See sage.rings.polynomial.toy_buchberger
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Buchberger's Algorithm

sage.rings.polynomial.toy_buchberger

Remember, that G is a Grobner basis, if LM((G)) == (LM(G)).
So, we try to find elements in (G) (and thus in LM((G))) which
are not in (LM(G)).

LM = lambda f: f.Im()
LT = lambda f: f.It()
spol = lambda f,g: LCM(LM(f),LM(g)) // LT(f) = f — LCM(LM(f),LM(g)) // LT(g) * g

def buchberger(F):

G
B

set (F)
set(filter (lambda (x,y): x!=y, [(gl,g2) for gl in G for g2 in GJ]))

while Bl=set ():
gl, g2 = select(B)
B.remove( (gl,g2) )

h = spol(gl,g2).reduce(G)

if h 1= 0:
B = B.union( [(g.,h) for g in G] )
G.add( h )

return Sequence(G)
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v(l) Grobner Bases

That was nice, however:

Katsura-7 over Q

sage: P = PolynomialRing (QQ,7, 'x")

sage: | = sage.rings.ideal.Katsura(P)

sage: time gb = |.groebner_basis('toy:buchberger2') # improved version
CPU times: user 256.36 s, sys: 0.36 s, total: 256.72 s

Wall time: 258.92

sage: | = sage.rings.ideal.Katsura(P)

sage: time gb = |.groebner_basis(’'libsingular:slimgb"')
CPU times: user 0.46 s, sys: 0.00 s, total: 0.46 s
Wall time: 0.46

Katsura-8 over Q

sage: P = PolynomialRing(QQ,8, 'x")

sage: | = sage.rings.ideal.Katsura(P)

sage: time gb = |.groebner_basis(’'libsingular:slimgb’)
CPU times: user 5.55 s, sys: 0.00 s, total: 5.56 s
Wall time: 5.57

sage: | = sage.rings.ideal.Katsura(P)

sage: time gb = |.groebner_basis( 'magma: GroebnerBasis ")
CPU times: user 1.00 s, sys: 0.03 s, total: 1.03 s
Wall time: 1.55
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POLYBORI/BooleanPolynomlaIng

claimed speed from the paper w.r.t to lex

arse Linear Algebra r

Example var. eq. PorLyBoRI SINGULAR
cte-5-3 190 354 | 3.04s 49MB 32s 69MB
ctc-8-3 298 561 48s 52MB 117s  154MB
ctc-15-3 550 1044 | 8.04s 69MB 748s  379MB
aes-10-1-1-4pp 170 184 0.14s 0.25s
aes-7-1-2-4pp 210 255 | 3.24s 50MB 18s
aes-10-1-2-4pp 283 318 6.7s 51MB 1080s 694 MB
Example var. eq. Magma Maple
ctc-5-3 190 354 83s 64 MB > 1800s
ctc-8-3 298 561 817s 335MB

ctc-15-3 550 1044 | > 3000s > 570MB
aes-10-1-1-4pp 170 184 0.92s 9.25MB > 1000s
aes-7-1-2-4pp 210 255 366s 211 MB
aes-10-1-2-4pp 288 318 978s 477 MB > 70h
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Local Orderings

x <1

If we use the negative degrevlex ordering for example, we are computing
in the localisation of the polynomial ring at the origin and this allows us
to compute multiplicities of zeroes there:

sage: A.<x,y> = PolynomialRing(QQ,2,order="degrevlex ')

sage: = Ildeal ([x"10 + x"9%y"2, y"8 — x"2xy"7])

sage: J = ldeal(l.groebner_basis())

sage: J._singular_().vdim()

83

sage: ldeal(J.radical().groebner_basis()).-singular_().vdim()
4

This computations tell us that these equations have 83 solutions but only
4 distinct ones. Since the origin is a common solution we may compute
the multiplicity by passing to the localisation:

sage: B.<x,y> = PolynomialRing(QQ,2,order="negdegrevlex ")

sage: 10 = Ideal ([B(f) for f in I|.gens()])

sage: JO = ldeal(10.groebner_basis())

sage: JO._singular_().vdim()
80

This means that the origin has multiplicity 80 and the other three roots
are simple (multiplicity one).
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. BIock/Prod uct Orderings

Let x = (x1,...,%,) and y = ()1, ..., ¥m) be two ordered sets of
variables, <1 a monomial ordering on K[x] and <2 a monomial
ordering on K[y]. The product ordering (or block ordering)

< :=(<1,<2) on K]x, y] is the following:

x?yP < xAyB o x? <1 x or (x? = x* and yP <5 yB).

sage: T = TermOrder('lex’, 3)
sage: T += TermOrder('degrevlex', 2)
sage: P.<a,b,c,d,e> = PolynomialRing(QQ, 5, order=T)
sage: print(P.repr_long())
Polynomial Ring

Base Ring : Rational Field

Size : 5 Variables
Block 0 : Ordering : lex

Names a, b, ¢
Block 1 : Ordering : degrevlex
Names cd, e
sage: a > d"2
True
sage: e > d"2
False
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Higher Level Operations on ldeals

|.associated_primes, |.complete_primary_decomposition,
l.integral_closure, l.intersection, I.dimension, l.is_maximal,
l.is_prime, l.is_principal, |.primary_decomposition, l.syzygy_module,
I.elimination_ideal ,l.is_trivial, l.radical, |.transformed_basis,
I.reduce, l.genus, l.minimal_associated_primes, |.reduced_basis,
|.basis_is_groebner, |l.groebner_basis, |.multiplicative_order,
|.groebner_fan
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SymbolicData

The SymbolicData project is set out to develop concepts
and tools for testing Computer Algebra Software (CAS)
and to collect relevant data from different areas of
Computer Algebra. Tools and data are designed to be
used both on a local site for special testing purposes and
to manage a central repository at www.symbolicdata.org.

sage: install_package('database_symbolic.data —20070206")

sage: SD = sage.databases.symbolic_data.SymbolicData()

sage: SD.
Display all 351 possibilities? (y or n)

sage: | = SD.Katsura_7

sage: |.gens()[0]

u0”2 4 2xul”2 + 2%u2”2 + 2%u3"2 4 2xu4"2 + 2%ub5"2 + 2*u6"2 4 2%xu7"2 — ul
sage: |.ring()

Polynomial Ring in u0O, ul, u2, u3, u4, ub, u6, u7 over Rational Field
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. Appllcatlons MQ

We call MQ the problem of finding the common roots of a set of
at most quadratic polynomials. Some research in symmetric
cryptanalysis recently devoted to expressing ciphers as MQ
problems and solving them. SAGE now has a class
MPolynomialSystem to support this.

sage: sr = mq.SR(2,1,1,4)

sage: F,s = sr.polynomial_system ()

sage: F

Polynomial System with 72 Polynomials in 36 Variables

sage: gb = F.groebner_basis ()
sage: A,v = F.coeff_matrix ()

sage: (Axv).list () = F.gens()
True
sage: gb[0]

k002 + (a"2 4 a)*k003 + (a"2 + a)

sage: sr = mq.SR(10,4,4,8,star=True) # AES

sage: F,s = sr.polynomial_system ()

sage: F

Polynomial System with 8576 Polynomials in 4288 Variables
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Desperately Needed

Missing Functionality

m decent basic arithmetic for multivariate polynomials over
commutative rings (Z, Zn)

m SINGULAR (unofficial, preliminary version available)
m CoCoALib: on todo list

m Grobner bases over commutative rings
m Macaulay2: optional SAGE package, can do it
m SINGULAR (eventually?)
m CoCoALib: on todo list

m new base fields for fast arithmetic: Q(«), R, C.

m Q(a): SINGULAR can do it
m ApCoCoALib: should be very good for R, C.
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v(l) QOutline

Fullstop: Sparse Linear Algebra over I,
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v(1)| Echelon Form of a Sparse Matrix over [,

One would expect that there are several implementations to
compute this, but:
MAGMA does not provide a command to do this, also: null
space is dense.

LinBox almost does it when computing the rank but kills
unneeded rows, to preserve memory. Also, they have
another algorithm which involves column swaps to
compute the rank

SAGE has a native implementation, which is surprisingly
good. “We use Gauss elimination, in a slightly
intelligent way, in that we clear each column using a
row with the minimum number of nonzero entries.”

gOn by John Cremona has an implementation. Gently
ripped out by Ralf Weinmann right now and
templated.
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V(1) Some Preliminary Timings for gOn
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Corner Case Algorithm

based on William Stein’s rational-echelon-via-solve

Compute r = rank(A). This is cheaper than Gaussian elimination
because we can use "Symbolic Reordering”;

Compute the pivot columns of the transpose Af of A via “Symbolic
Reordering”.

Let B be the submatrix of A consisting of the rows corresponding to
the pivot columns found in the previous step. Note that, aside from
zero rows at the bottom, B and A have the same reduced row
echelon form.

Compute the pivot columns of B.

Let C be the submatrix of B of pivot columns. Let D be the
complementary submatrix of B of all all non-pivot columns. Use a
solver (such as Wiedemann) to find the matrix X such that
CX =D . l.e., solve a bunch of linear systems of the form Cx = v,
where the columns of X are the solutions.

[@ Return the matrix /|| X where [ is the identity matrix of rank r.
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def echelon_form_via_solve(A):
r = A.rank() # Step 1: Compute the rank

if r = self.nrows():

else:
# Steps 2 and 3: Extract out a submatrix of full rank

= A.transpose (). pivots ()

P
B = A.matrix_from_rows (P)

# Step 4: Now we instead worry about computing the reduced row echelon form of B.
pivots = B.pivots ()

# Step 5: Apply solver

C = B. matrix_from_columns( pivots)
pivots. = set(pivots)
non_pivots = [i for i in range(B.ncols()) if not i in pivots_]

D = B. matrix_-from_columns(non_pivots)
X = C.solve_right (D, algorithm="LinBox:Blackbox")

R = self.parent()()
for i in range(len(pivots)): R[i, pivots[i]] =1
for i in range(X.nrows()):
for j in range(X.ncols()):
R[i,non_pivots[j]] = X[i,j]
return R
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) Complexity

Let A be a m x n matrix over F,. Furthermore, let r be A’s rank
and w the average number of nonzero entries per row. Then the
time complexity is:
m We compute the pivot columns twice, each costing
230 (m — k)ymin(w2, n — k).
m We solve for n — r vectors w.r.t. to a r X r matrix, each
costing r?*¢ field operations.
However, the main feature is that we don’'t need to write down the
intermediate matrices during Gaussian elimination.

If r is significantly bounded away from min(m, n) and the matrix is
not too sparse, this gives better results speed and memory wise
than structured Gaussian elimination.
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v(l) Questions?

Thank You!
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