
FLINT and Fast Polynomial Arithmetic

David Harvey

June 13, 2007

David Harvey FLINT

What is FLINT?

I FLINT = “Fast Library for Number Theory”

I www.flintlib.org

I A new C library written by William Hart (Warwick) and
myself, probably more contributors soon

I GPL

I Version 1.0 not yet released

David Harvey FLINT

Components of FLINT

I Bill’s quadratic sieve (integer factorisation)

I Dense polynomial arithmetic in Z[x]

I’m only discussing the polynomial arithmetic today.

David Harvey FLINT

Relationship to SAGE

I The quadratic sieve is already in SAGE.

I I hope that the polynomial arithmetic will eventually be used
in SAGE as the native Z[x] code, when it’s mature enough.

David Harvey FLINT

Why a new library?

What’s wrong with Z[x] arithmetic in NTL? PARI? LiDIA?

I PARI: no asymptotically fast polynomial arithmetic. Best
algorithm for multiplication is Karatsuba.

I LiDIA: multiplication in Z[x] is the naive algorithm only.
Arithmetic in Fq[x] is essentially a port of NTL.

I NTL: good asymptotic performance (mostly). Extremely
non-threadsafe (conscious design decision). Does not fully
utilise 64-bit processors.

I Speed...... more on that later :-)

David Harvey FLINT

Case study: the q-expansion of ∆

“One of my favorite NTL-based computations is
computing the q-expansion of the delta function.”

— William Stein (sage-devel, 13th May 2007)

David Harvey FLINT

What is ∆?

∆ is a modular form of weight 12, essentially the discriminant of
an elliptic curve. Has a q-series expansion:

∆(q) = q − 24q2 + 252q3 − 1472q4 + · · ·
+ 262191418612588689102548992000000q1000000 + · · ·

Our goal is to compute the coefficients of ∆(q).

David Harvey FLINT

Computing ∆(q) in SAGE

SAGE already knows how to compute this (code by William Stein):

sage : d e l t a q e x p (10)
q − 24∗qˆ2 + 252∗qˆ3 − 1472∗qˆ4 + 4830∗qˆ5
− 6048∗qˆ6 − 16744∗qˆ7 + 84480∗qˆ8 − 113643∗qˆ9
+ O(qˆ10)

David Harvey FLINT

What algorithm does SAGE use?

Let

F (q) =
∞∑

n=0

(−1)n(2n + 1)qn(n+1)/2

= 1− 3q + 5q3 − 7q6 + 9q10 − 11q15 + · · · .

Then
∆(q) = q F (q)8.

David Harvey FLINT

What algorithm does SAGE use?

So to compute N terms of ∆(q), the algorithm is:

I Write down F (q) = 1− 3q + 5q3 − 7q6 + · · · up to O(qN).

I Square it.

I Truncate it to O(qN).

I Square it.

I Truncate it to O(qN).

I Square it.

I Truncate it to O(qN).

I Multiply by q.

I Result is ∆(q) = q F (q)8 up to O(qN+1).

(The first squaring step is best done ‘naively’ since F (q) has only
O(
√

N) nonzero terms up to O(qN).)

David Harvey FLINT

Implementation in SAGE

Here is the (simplified) code for delta qexp():

def d e l t a q e x p (N=10):
make l i s t o f i nd e x / v a l u e p a i r s f o r F(q)
s top = i n t ((−1+math . s q r t (1+8∗N)) / 2 . 0)
v a l u e s = [(n∗(n+1)//2 , (−1)∗∗n ∗ (2∗n+1)) f o r n i n range (s top +1)]

compute F(q)ˆ2
v = [0] ∗ N
f o r (i1 , v1) i n v a l u e s :

f o r (i2 , v2) i n v a l u e s :
t r y :

v [i 1 + i 2] += v1 ∗ v2
except I n d e xE r r o r :

break

use NTL to compute the r ema in i ng f o u r t h power
f = n t l . ZZX(v)
f = f ∗ f
f = f . t r u n c a t e (N)
f = f ∗ f
f = f . t r u n c a t e (N)
f = n t l . ZZX ([0 , 1]) ∗ f # mu l t i p l y by q

conv e r t to power s e r i e s r i n g
R = ZZ [[’ q ’]]
f = R(f . t r u n c a t e (N) , N, check=Fa l s e)
r e t u r n f

David Harvey FLINT

Implementation in SAGE

Typical running time on sage.math:

sage : t ime f = d e l t a q e x p (10ˆ6)
CPU t imes : u s e r 21 .60 s , s y s : 0 .97 s , t o t a l : 22 .57 s
Wal l t ime : 22 .57

But there’s python overhead, conversion overhead, truncations
involve unnecessary copies, etc. If we measure just the NTL
polynomial multiplication time, we get:

I At best 5.6s for the second multiplication.

I At best 9.1s for the third multiplication.

I Therefore at least 14.7s spent inside NTL.

David Harvey FLINT

Implementation in Magma

Here is a Magma implementation (not as colourful unfortunately):

N := 200000;
ZZ := I n t e g e r s () ;
R<x> := Po lynomia lR ing (ZZ) ;

// Compute c o e f f i c i e n t s o f F(q)
s top := C e i l i n g ((−1 + Sqr t (1+8∗N)) / 2) ;
v a l u e s := [ZZ!0 : i i n [0 . . N−1]] ;
f o r i := 0 to s top do

r := ZZ ! (i ∗(i +1)/2) ; v := (−1)ˆ i ∗ (2∗ i +1);
f o r j := 0 to s top do

s := ZZ ! (j ∗(j +1)/2) ; w := (−1)ˆ j ∗ (2∗ j +1);
i f r + s l t N then

v a l u e s [r+s+1] := v a l u e s [r+s+1] + v∗w;
end i f ;

end f o r ;
end f o r ;

F := R! v a l u e s ;

// Now compute the t r un c a t e d f o u r t h power
t ime F := F ∗ F ;
F := R ! [C o e f f i c i e n t (F , i) : i i n [0 . . N−1]] ;
t ime F := F ∗ F ;
F := R ! [C o e f f i c i e n t (F , i) : i i n [0 . . N−1]] ;

p r i n t C o e f f i c i e n t (F , N−1);
q u i t ;

David Harvey FLINT

Implementation in Magma

Running time for N = 200000 (Magma V2.13-5):

I At best 5.6s for the second multiplication.

I At best 9.5s for the third multiplication.

So NTL is already winning even though we’re only computing one
fifth of the terms.

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

Huh? What’s going on?

I thought Magma was supposed to be wicked fast!

Surely Magma is not being trounced by a piece of free software??

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

Actually, Magma can multiply polynomials in Z[x] much more
quickly, as long as you’re not trying to square the polynomial:

> R<x> := Po lynomia lR ing (I n t e g e r s ()) ;
> f := R ! [Random(2ˆ49) : i i n [0 . . 2 0 0 0 0 0]] ;
> g := R ! [Random(2ˆ49) : i i n [0 . . 2 0 0 0 0 0]] ;
> t ime h := f ∗ g ;
Time : 0 .970
> t ime h := f ∗ f ;
Time : 9 .000

(The 0.97s is about twice as fast as NTL.)

So perhaps we can trick Magma into squaring our polynomials
more quickly, by pretending that they are distinct.

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

No such luck. Magma has great difficulty multiplying polynomials
with signed coefficients:

> R<x> := Po lynomia lR ing (I n t e g e r s ()) ;
> f := R ! [Random(2ˆ49) − 2ˆ48 : i i n [0 . . 2 0 0 0 0 0]] ;
> g := R ! [Random(2ˆ49) − 2ˆ48 : i i n [0 . . 2 0 0 0 0 0]] ;
> h := f ∗ g ;

[I n t e r r u p t tw i c e i n h a l f a second ; e x i t i n g]

Tota l t ime : 42 .270 seconds ,
Tota l memory usage : 49192.68 MB

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

But Magma is quite capable of squaring a polynomial with signed
coefficients:

> R<x> := Po lynomia lR ing (I n t e g e r s ()) ;
> f := R ! [Random(2ˆ49) − 2ˆ48 : i i n [0 . . 2 0 0 0 0 0]] ;
> t ime h := f ∗ f ;
Time : 9 .240

It’s just a whole lot slower than multiplying distinct polynomials
with non-negative coefficients.

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

William Hart reported these weirdnesses to the Magma folks, and
Allan Steel replied that the bugs are now fixed.

While we wait for the patch to come through (“magma -upgrade”
appears to be broken)....

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

To make a reasonably fair comparison, instead of trying to
compute ∆(q), let’s use Magma to compute the non-modular-form

∇(q) = q(1 + 3q + 5q3 + 7q6 + 9q10 + 11q15 + · · ·)8.

This is the same formula, without the minus signs.

(And remember, we have to trick Magma into multiplying, not
squaring!)

David Harvey FLINT

Fascinating facts about Magma’s polynomial arithmetic

Here are the results for N = 106:

I At best 3.8s for the second multiplication.

I At best 7.6s for the third multiplication.

I Total is at least 11.4s.

Recall that NTL took at least 14.7s. (And NTL was doing slightly
less work, since the coefficients were slightly smaller, and it could
take advantage of the squaring.)

For problems of this type, squaring is asymptotically at best 1/3
faster than multiplying. So when Magma is repaired, we might
optimistically project a running time of 7s.

David Harvey FLINT

Implementation in FLINT

WARNING: the FLINT interface suggested by the following code is

I preliminary;

I not yet fully implemented;

I not yet adequately documented;

I not yet thoroughly tested; and

I subject to change.

David Harvey FLINT

Implementation in FLINT (page 1/2)

#inc l u d e <s t d i o . h>
#inc l u d e <gmp . h>
#inc l u d e <math . h>
#inc l u d e ” f l i n t . h”
#inc l u d e ” fmpz po l y . h”

i n t main (i n t argc , char∗ a rgv [])
{

// number o f te rms to compute
l ong N = a t o i (a rgv [1]) ;

// compute c o e f f i c i e n t s o f F(q)ˆ2
l ong∗ v a l u e s = ma l l o c (s i z e o f (l ong) ∗ N) ;
f o r (l ong i = 0 ; i < N; i++)

v a l u e s [i] = 0 ;

l ong s top = (l ong) c e i l ((−1.0 + s q r t (1 . 0 + 8.0∗N)) / 2 . 0) ;
f o r (l ong i = 0 ; i <= stop ; i++)
{

l ong i ndex1 = i ∗(i +1)/2;
l ong va l u e1 = (i & 1) ? (−2∗ i−1) : (2∗ i +1);
f o r (l ong j = 0 ; j <= stop ; j++)
{

l ong i ndex2 = j ∗(j +1)/2;
i f (i ndex1 + index2 >= N)

break ;
l ong va l u e2 = (j & 1) ? (−2∗ j−1) : (2∗ j +1);
v a l u e s [i ndex1 + index2] += va l u e1 ∗ va l u e2 ;

}
}

David Harvey FLINT

Implementation in FLINT (page 2/2)

// Crea te some po l ynom i a l o b j e c t s
fmpz po l y t F2 , F4 , F8 ;
f m p z p o l y i n i t (F2) ;
f m p z p o l y i n i t (F4) ;
f m p z p o l y i n i t (F8) ;

// I n i t i a l i s e F2 wi th c o e f f i c i e n t s o f F(q)ˆ2
fmp z po l y e n s u r e s p a c e (F2 , N) ;
f o r (l ong i = 0 ; i < N; i++)

f m p z p o l y s e t c o e f f s i (F2 , i , v a l u e s [i]) ;
f r e e (v a l u e s) ;

// compute F(q)ˆ8 , t r un c a t e d to l e n g t h N
fmpz po l y mu l (F4 , F2 , F2) ;
fmp z po l y t r u n c a t e (F4 , N) ;
fmpz po l y mu l (F8 , F4 , F4) ;
fmp z po l y t r u n c a t e (F8 , N) ;

// p r i n t out l a s t c o e f f i c i e n t
mpz t x ;
mp z i n i t (x) ;
fmp z po l y g e t c o e f f mp z (x , F8 , N−1);
gmp p r i n t f (” c o e f f i c i e n t o f qˆ%d i s %Zd\n” , N, x) ;

// c l e a n up
mpz c l e a r (x) ;
fmp z p o l y c l e a r (F8) ;
fmp z p o l y c l e a r (F4) ;
fmp z p o l y c l e a r (F2) ;
r e t u r n 0 ;

}

David Harvey FLINT

Live demo

>> insert live demo here <<

(download, build, and run)

David Harvey FLINT

Summary of running times

I NTL: 14.7s

I Magma: 7s (optimistic post-bug-removal estimate)

I FLINT: 5.2s

I also tried N = 5 · 107 in SAGE/NTL. After three minutes, it
reports

Polynomial too big for FFT

(This could be fixed, but NTL would need to be recompiled.)

FLINT does this N in about 7 minutes and 13GB RAM. Coefficient
of qN is −2046696655700740731258654164742144000000000.

David Harvey FLINT

Code walkthrough

FLINT is organised as a collection of modules. One needs to
import the main flint.h header, as well as any required modules.
Our example used only the fmpz poly module.

#inc lude ” f l i n t . h”
#inc lude ” fmpz po l y . h”

David Harvey FLINT

Code walkthrough

FLINT has two completely separate data types for representing
polynomials in Z[x].

I mpz poly t is essentially an array of mpz t’s. (This is similar to
NTL’s ZZX polynomial type, but NTL uses ZZ instead of
mpz t.)

I fmpz poly t stores the coefficients as raw data in a single
contiguous block. Each coefficient takes up the same amount
of space.

As far as possible, the interfaces for the two formats are consistent,
and conversions between them are provided.

David Harvey FLINT

Code walkthrough

fmpz poly t is much more efficient, if you are working with dense
polynomials whose coefficients are all about the same size.
Especially when the coefficients are relatively small, it avoids a
tremendous amount of memory management overhead.

mpz poly t is better suited if the coefficients have very different
sizes. Also, GMP’s mpz-layer functions can be used directly on the
coefficients, which might be convenient in some contexts.

David Harvey FLINT

Code walkthrough

Each coefficient in a fmpz poly t is stored in a FLINT
multiple-precision integer format called fmpz t.

An fmpz t is not a struct; it’s just a typedef for a pointer to
memory. Basically it’s an “mpz t without memory management”:

I The first limb (word) is a control limb. The integer is
positive/negative/zero according to whether the control limb
is positive/negative/zero. The absolute value of the control
limb is the number of limbs used to store the value.

I The absolute value of the integer itself follows directly in
memory, in GMP’s mpn format.

David Harvey FLINT

Code walkthrough

The fmpz module will provide arithmetic on this format. The user
is of course responsible for memory management.

Obviously it’s more difficult for a user to work with this format
than with mpz t.

But it’s much more efficient than mpz t for building other data
structures (such as polynomials), if you want more control over
memory management.

David Harvey FLINT

Code walkthrough

The fmpz poly init () function must be called prior to using a
polynomial object:

fmpz po l y t F2 , F4 , F8 ;
f m p z p o l y i n i t (F2) ;
f m p z p o l y i n i t (F4) ;
f m p z p o l y i n i t (F8) ;

The fmpz poly clear () function must be called when the polynomial
is no longer needed:

fmp z p o l y c l e a r (F8) ;
fmp z p o l y c l e a r (F4) ;
fmp z p o l y c l e a r (F2) ;

We use some tricks we learned from GMP to enable
pass-by-reference semantics in C.

David Harvey FLINT

Code walkthrough

In this block we copy the coefficients of F (q)2 into F2:

fmp z po l y e n s u r e s p a c e (F2 , N) ;
f o r (long i = 0 ; i < N; i++)

f m p z p o l y s e t c o e f f s i (F2 , i , v a l u e s [i]) ;

The call to fmpz poly ensure space() ensures that enough space is
allocated in advance. If it was left out, the code would still work,
but the loop would occasionally need to reallocate.

The function fmpz poly set coeff si () sets a given coefficient to the
given signed integer. Generally we try to use function naming
conventions that would be familiar to a GMP programmer (such as
the ‘si’ suffix).

David Harvey FLINT

Code walkthrough

Note that fmpz poly set coeff si () performs bounds checking and
automatic reallocation. If this is unacceptable overhead, one can
use instead fmpz poly set coeff si (), which performs no bounds
checking.

Many FLINT functions have a ‘managed’ and an ‘unmanaged’
version like this. The ‘managed’ ones take care of everything (in
particular memory management) so that the user doesn’t need to
think.

The ‘unmanaged’ ones require more vigilance by the programmer,
but will be more efficient. They are intended to be fully
documented and user-accessible. They are generally not intended
to be private.

David Harvey FLINT

Code walkthrough

The following code multiplies F2 by itself, puts the result in F4,
and then truncates F4 to length N:

fmpz po l y mu l (F4 , F2 , F2) ;
fmp z po l y t r u n c a t e (F4 , N) ;

FLINT automatically selects an appropriate multiplication
algorithm based on the degree and coefficient sizes of the input
polynomials, and takes advantage of the two input polynomials
being identical.

The polynomial multiplication code is currently about 5000 lines,
and climbing.

David Harvey FLINT

Code walkthrough

Finally, the following block extracts the last coefficient of F8 as an
mpz t object, and uses GMP to print it out:

mpz t x ;
mp z i n i t (x) ;
fmp z po l y g e t c o e f f mp z (x , F8 , N−1);
gmp p r i n t f (” c o e f f i c i e n t o f qˆ%d i s %Zd\n” , N, x) ;
mpz c l e a r (x) ;

David Harvey FLINT

