
History
Improvements

Internals
Code Generation

Why SageX is not quite Pyrex

Robert Bradshaw

June 15, 2007

Bradshaw SageX

History
Improvements

Internals
Code Generation

What is Pyrex?

Pyrex lets you write code that mixes Python and C data types any
way you want, and compiles it into a C extension for Python.
— Greg Ewing (Author)

Bradshaw SageX

History
Improvements

Internals
Code Generation

What is Pyrex?

I Pseudo-Python to C compiler
I Language extensions for statically declaring types

I Potentially massive speedups
I Integration with external libraries

I Python memory management and Python object ↔ c data
type coercions done automatically.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Pyrex and SAGE

I Compiled language necessary for a serious CAS

I Pyrex provides a consistent interface

I Pyrex provides an easy migration path
I Python code easily becomes Pyrex code (even incrementally)
I Python developers easily become Pyrex developers

I Pyrex provides direct and natural access to both the Python
and C environments.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Pyrex and SAGE

I Compiled language necessary for a serious CAS

I Pyrex provides a consistent interface
I Pyrex provides an easy migration path

I Python code easily becomes Pyrex code (even incrementally)
I Python developers easily become Pyrex developers

I Pyrex provides direct and natural access to both the Python
and C environments.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Pyrex and SAGE

I Compiled language necessary for a serious CAS

I Pyrex provides a consistent interface
I Pyrex provides an easy migration path

I Python code easily becomes Pyrex code (even incrementally)
I Python developers easily become Pyrex developers

I Pyrex provides direct and natural access to both the Python
and C environments.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

Up until summer 2006, all Pyrex code lived in sage/ext

I Not modular

I Not maintainable

This was due to the inability of Pyrex to do cross-directory imports.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

Up until summer 2006, all Pyrex code lived in sage/ext

I Not modular

I Not maintainable

This was due to the inability of Pyrex to do cross-directory imports.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

Up until summer 2006, all Pyrex code lived in sage/ext

I Not modular

I Not maintainable

This was due to the inability of Pyrex to do cross-directory imports.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

Up until summer 2006, all Pyrex code lived in sage/ext

I Not modular

I Not maintainable

This was due to the inability of Pyrex to do cross-directory imports.

Bradshaw SageX

History
Improvements

Internals
Code Generation

sage/ext

June 15, 2006 cdefs.pxi integer.pxi polynomial pyx.pxi
coerce.pyx integer.pyx polynomial pyx.pyx
congroup pyx.pyx interrupt.c pymemcompat.h
dense matrix pyx.pxd interrupt.h rational.pxd
dense matrix pyx.pyx interrupt.pxi rational.pxi
element.pxd intmod pyx.pyx rational.pyx
element.pyx module.pxd ring.pxd
gens.pxd module.pyx ring.pyx
gens.pyx mpc.pyx sage object.pxd
gens py.py mpfr.pyx sage object.pyx
gmp.pxi mpn pylong.c search.pyx
gmpy.h mpn pylong.h sparse matrix pyx.pyx
group.pxd mpz pylong.c sparse poly.pxi
group.pyx mpz pylong.h sparse poly.pyx
heilbronn.pyx p1list.pxd
integer.pxd p1list.pyx

Bradshaw SageX

History
Improvements

Internals
Code Generation

sage/ext

Now? rational.pyx gsl coulomb.pxi gslonly.pxi matrix integer sparse.pxd padic capped relative element.pyx real double.pxd
arith.pxd gsl coupling.pxi hanke.pyx matrix integer sparse.pyx padic fixed mod element.pxd real double.pxi
arith.pxi gsl dawson.pxi heilbronn.pyx matrix mod2 dense.pxd padic fixed mod element.pyx real double.pyx
arith.pyx gsl debye.pxi init.pxi matrix mod2 dense.pyx padic generic element.pxd real double vector.pxd
arith gmp.pxd gsl diff.pxi integer.pxd matrix modn dense.pxd padic generic element.pxi real double vector.pyx
arith gmp.pxi gsl dilog.pxi integer.pxi matrix modn dense.pyx padic generic element.pyx real mpfi.pxd
arith gmp.pyx gsl eigen.pxi integer.pyx matrix modn sparse.pxd parent.pxd real mpfi.pyx
bernoulli mod p.pyx gsl elementary.pxi integer mod.pxd matrix modn sparse.pyx parent.pyx real mpfr.pxd
binary search.pxi gsl ellint.pxi integer mod.pyx matrix padic capped relative dense.pxd parent base.pxd real mpfr.pyx
callback.pyx gsl elljac.pxi integer ring.pxd matrix padic capped relative dense.pyx parent base.pyx real rqdf.pxd
cdefs.pxi gsl erf.pxi integer ring.pyx matrix rational dense.pxd parent gens.pxd real rqdf.pyx
coerce.pxd gsl errno.pxi integration.pyx matrix rational dense.pyx parent gens.pyx reset.pyx
coerce.pxi gsl exp.pxi interactive constructors c.pyx matrix rational sparse.pxd pari err.pxi right cosets.pyx
coerce.pyx gsl expint.pxi interpolation.pxd matrix rational sparse.pyx polydict.pyx ring.pxd
complex double.pxd gsl fermi dirac.pxi interpolation.pyx matrix real double dense.pxd polynomial compiled.pxd ring.pyx
complex double.pyx gsl fft.pxi interrupt.pxi matrix real double dense.pyx polynomial compiled.pyx sage object.pxd
complex double vector.pxd gsl fit.pxi laurent series ring element.pxd matrix sparse.pxd polynomial element.pxd sage object.pyx
complex double vector.pyx gsl gamma.pxi laurent series ring element.pyx matrix sparse.pyx polynomial element.pyx sagex c.pyx
complex number.pxd gsl gegenbauer.pxi linbox.pxd matrix window.pxd polynomial pyx.pyx sagex ds.pxd
complex number.pyx gsl histogram.pxi linbox.pyx matrix window.pyx pow computer.pxd sagex ds.pyx
congroup pyx.c gsl hyperg.pxi local generic element.pxd matrix window modn dense.pxd pow computer.pyx search.pyx
congroup pyx.pyx gsl integration.pxi local generic element.pyx matrix window modn dense.pyx power series ring element.pxd setlvalue.pxi
decl.pxi gsl interp.pxi math.pxi memory.pyx power series ring element.pyx sig.pyx
dwt.pxd gsl laguerre.pxi matrix.pxd misc.pxi probability distribution.pxd singular-cdefs.pxi
dwt.pyx gsl lambert.pxi matrix.pyx misc.pyx probability distribution.pyx singular.pxd
ec.pyx gsl legendre.pxi matrix0.pxd module.pxd pthread.pxi singular.pxi
element.pxd gsl linalg.pxi matrix0.pyx module.pyx python.pxi singular.pyx
element.pyx gsl log.pxi matrix1.pxd mpc.pyx python bool.pxi solve.pyx
expnums.pyx gsl math.pxi matrix1.pyx mpfi.pxi python complex.pxi sparse poly.pyx
fft.pxd gsl matrix.pxi matrix2.pxd mpfr.pxi python dict.pxi stdio.pxi
fft.pyx gsl matrix complex.pxi matrix2.pyx multi modular.pxd python exc.pxi stdsage.pxi
finite field givaro.pxd gsl min.pxi matrix RR dense.pyx multi modular.pyx python float.pxi strassen.pyx
finite field givaro.pyx gsl mode.pxi matrix complex double dense.pxd multi polynomial.pxd python function.pxi template.pxd
free module element.pxd gsl monte.pxi matrix complex double dense.pyx multi polynomial.pyx python instance.pxi template.pyx
free module element.pyx gsl ntuple.pxi matrix cyclo dense.pxd multi polynomial libsingular.pxd python int.pxi test.pxd
frobenius.pyx gsl odeiv.pxi matrix cyclo dense.pyx multi polynomial libsingular.pyx python iterator.pxi test.pyx
gen.pxd gsl permutation.pxi matrix cyclo sparse.pxd multi polynomial ring generic.pxd python list.pxi to gen.pxi
gen.pxi gsl poly.pxi matrix cyclo sparse.pyx multi polynomial ring generic.pyx python long.pxi var.pyx
gen.pyx gsl pow int.pxi matrix dense.pxd mutability.pxd python mapping.pxi vector integer dense.pxd
gmp.pxi gsl psi.pxi matrix dense.pyx mutability.pyx python mem.pxi vector integer dense.pyx
graph fast.pyx gsl qrng.pxi matrix domain dense.pxd mwrank.pyx python method.pxi vector integer sparse c.pxi
group.pxd gsl random.pxi matrix domain dense.pyx ntl.pxd python module.pxi vector integer sparse h.pxi
group.pyx gsl rng.pxi matrix domain sparse.pxd ntl.pxi python number.pxi vector modn dense.pxd
gsl.pxi gsl roots.pxi matrix domain sparse.pyx ntl.pyx python object.pxi vector modn dense.pyx
gsl airy.pxi gsl sf result.pxi matrix field dense.pyx number field element.pxd python parse.pxi vector modn sparse c.pxi
gsl array.pxd gsl sort.pxi matrix field sparse.pxd number field element.pyx python ref.pxi vector modn sparse h.pxi
gsl array.pyx gsl statistics.pxi matrix field sparse.pyx ode.pxd python sequence.pxi vector rational dense.pxd
gsl bessel.pxi gsl sum.pxi matrix generic dense.pxd ode.pyx python set.pxi vector rational dense.pyx
gsl blas.pxi gsl synchrotron.pxi matrix generic dense.pyx p1list.pxd python string.pxi vector rational sparse.pyx
gsl blas types.pxi gsl transport.pxi matrix generic sparse.pxd p1list.pyx python tuple.pxi vector rational sparse c.pxi
gsl block.pxi gsl trig.pxi matrix generic sparse.pyx padic base generic element.pxd python type.pxi vector rational sparse h.pxi
gsl chebyshev.pxi gsl vector.pxi matrix integer 2x2.pxd padic base generic element.pyx random.pxi
gsl clausen.pxi gsl vector complex.pxi matrix integer 2x2.pyx padic capped absolute element.pxd rational.pxd
gsl combination.pxi gsl wavelet.pxi matrix integer dense.pxd padic capped absolute element.pyx rational.pxi
gsl complex.pxi gsl zeta.pxi matrix integer dense.pyx padic capped relative element.pxd

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

William Stein and Martin Albrecht wrote a straightforward patch
to fix this issue.

I Patch not accepted upstream as Greg Ewing does not
consider this a bug.

I Other valuable (to us) patches not accepted. E.g.
introspection.

Eventually we came to the conclusion that we would have to
maintain our own branch. Hopefully, someday, they will merge
again.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

William Stein and Martin Albrecht wrote a straightforward patch
to fix this issue.

I Patch not accepted upstream as Greg Ewing does not
consider this a bug.

I Other valuable (to us) patches not accepted. E.g.
introspection.

Eventually we came to the conclusion that we would have to
maintain our own branch. Hopefully, someday, they will merge
again.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

William Stein and Martin Albrecht wrote a straightforward patch
to fix this issue.

I Patch not accepted upstream as Greg Ewing does not
consider this a bug.

I Other valuable (to us) patches not accepted. E.g.
introspection.

Eventually we came to the conclusion that we would have to
maintain our own branch. Hopefully, someday, they will merge
again.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Why SageX?

William Stein and Martin Albrecht wrote a straightforward patch
to fix this issue.

I Patch not accepted upstream as Greg Ewing does not
consider this a bug.

I Other valuable (to us) patches not accepted. E.g.
introspection.

Eventually we came to the conclusion that we would have to
maintain our own branch. Hopefully, someday, they will merge
again.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements

I List Comprehension

I In-place arithmetic

I Conditional expressions

I Useful sizeof

I inline modifier for c functions

I Assignment on declaration

I for ... from ... by ...

I bint (boolean int) type

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - List Comprehension

New node type ListComprehensionAppendNode. Use the
existing for/if nodes. Modify the parser accordingly. Note that
appending to lists is fast (from c) as lists do predictive allocation.

L = []
for x in A:

if x.is square()

L.append(2*x) # attribute lookup and method call

L = [2*x for x in A if x.is square()]

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - In-place operation

For example

x += 1 or L[f(x)+y] += g(x)

This is a bit tricky because f(x)+y must not be evaluated twice as
it might have side effects. We must evaluate first but postpone
any cleanup of the index until the very end.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

I In c, ints are used for truth values

I when coercing into Python, they become python ints rather
than True/False, so explicit coercion is needed

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

I In c, ints are used for truth values

I when coercing into Python, they become python ints rather
than True/False, so explicit coercion is needed

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

bool(x == y)

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

pyx 1 = Pyx GetName(pyx b, pyx n bool); if (! pyx 1)
pyx filename = pyx f[0]; pyx lineno = 3; goto pyx L1;
pyx 2 = PyInt FromLong((pyx v 4bool x ==
pyx v 4bool y)); if (! pyx 2) pyx filename = pyx f[0];
pyx lineno = 3; goto pyx L1;
pyx 3 = PyTuple New(1); if (! pyx 3) pyx filename =
pyx f[0]; pyx lineno = 3; goto pyx L1;

PyTuple SET ITEM(pyx 3, 0, pyx 2);
pyx 2 = 0;
pyx 2 = PyObject CallObject(pyx 1, pyx 3); if (! pyx 2)
pyx filename = pyx f[0]; pyx lineno = 3; goto pyx L1;

Py DECREF(pyx 1); pyx 1 = 0;
Py DECREF(pyx 3); pyx 3 = 0;

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

I c ints often represent truth values

I when coercing into Python, they become python ints rather
than True/False, so explicit coercion is needed

I For storing truth values in SageX, use the bint type, which is
a c int but will get coerced to (and from!) Python as a
boolean.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Enhancements - bint type

pyx 1 = Pyx PyBool FromLong((pyx v 4bool x ==

pyx v 4bool y)); if (! pyx 1) pyx filename = pyx f[0];

pyx lineno = 3; goto pyx L1;

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations

I Loops

I Indexing

I Builtin methods

I other builtin objects

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Loops

I Pyrex implements for x in A using an iterator.

I If A is a list, one can loop over its elements as a PyObject**
I PyList CheckExact called at runtime to see if one can use

the faster method.
I Common enough, and enough of a gain, to be worth the

overhead.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Loops

I Pyrex implements for x in A using an iterator.

I If A is a list, one can loop over its elements as a PyObject**

I PyList CheckExact called at runtime to see if one can use
the faster method.

I Common enough, and enough of a gain, to be worth the
overhead.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Loops

I Pyrex implements for x in A using an iterator.

I If A is a list, one can loop over its elements as a PyObject**
I PyList CheckExact called at runtime to see if one can use

the faster method.

I Common enough, and enough of a gain, to be worth the
overhead.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Loops

I Pyrex implements for x in A using an iterator.

I If A is a list, one can loop over its elements as a PyObject**
I PyList CheckExact called at runtime to see if one can use

the faster method.
I Common enough, and enough of a gain, to be worth the

overhead.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Loops

sage: time loop(A, 1000)
CPU time: 0.58 s, Wall time: 0.60 s
sage: time loop iter(A, 1000)
CPU time: 1.33 s, Wall time: 1.36 s

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Indexing

I Pyrex indexes L[i] using the getitem method.

I If A is a list or tuple and i an int one can access its members
directly.

I Again, check at runtime to see if one can use the faster
method.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Indexing

I Pyrex indexes L[i] using the getitem method.

I If A is a list or tuple and i an int one can access its members
directly.

I Again, check at runtime to see if one can use the faster
method.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Indexing

I Pyrex indexes L[i] using the getitem method.

I If A is a list or tuple and i an int one can access its members
directly.

I Again, check at runtime to see if one can use the faster
method.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Indexing

sage: time index c int(A, 1000)
CPU time: 0.76 s, Wall time: 0.77 s
sage: time index py int(A, 1000)
CPU time: 5.34 s, Wall time: 5.39 s

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Builtin methods

I Many methods, such as len, hash, isinstance have fast
Python/C API equivalents.

I All we have to do is populate the original namespace with the
Python/C API equivalents.

I cdef extern len ”PyObject Size” (object o)

I But int(), for example, is not really a function (it is a class)
so we’d have to look at the context at least.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Builtin methods

I Many methods, such as len, hash, isinstance have fast
Python/C API equivalents.

I All we have to do is populate the original namespace with the
Python/C API equivalents.

I cdef extern len ”PyObject Size” (object o)

I But int(), for example, is not really a function (it is a class)
so we’d have to look at the context at least.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Builtin methods

I Many methods, such as len, hash, isinstance have fast
Python/C API equivalents.

I All we have to do is populate the original namespace with the
Python/C API equivalents.

I cdef extern len ”PyObject Size” (object o)

I But int(), for example, is not really a function (it is a class)
so we’d have to look at the context at least.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Builtin methods

I Many methods, such as len, hash, isinstance have fast
Python/C API equivalents.

I All we have to do is populate the original namespace with the
Python/C API equivalents.

I cdef extern len ”PyObject Size” (object o)

I But int(), for example, is not really a function (it is a class)
so we’d have to look at the context at least.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - Indexing

sage: time len c(A, 10^7)
CPU time: 0.09 s, Wall time: 0.10 s
sage: time len py(A, 10^7)
CPU time: 0.98 s, Wall time: 0.99 s

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - other builtin objects

I We can still greatly increase the speed of stuff like the global
class int.

I Pyrex performs a module lookup on the builtin module
every time the object is used.

I Dynamic lookups are what makes Python slow...

I SageX caches ever builtin lookup at module load time, and
stores it in a global c variable.

I In the same code, it makes sure it is a valid object in
builtin or it throws...

undeclared name not builtin: blah

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - other builtin objects

I We can still greatly increase the speed of stuff like the global
class int.

I Pyrex performs a module lookup on the builtin module
every time the object is used.

I Dynamic lookups are what makes Python slow...

I SageX caches ever builtin lookup at module load time, and
stores it in a global c variable.

I In the same code, it makes sure it is a valid object in
builtin or it throws...

undeclared name not builtin: blah

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - other builtin objects

I We can still greatly increase the speed of stuff like the global
class int.

I Pyrex performs a module lookup on the builtin module
every time the object is used.

I Dynamic lookups are what makes Python slow...

I SageX caches ever builtin lookup at module load time, and
stores it in a global c variable.

I In the same code, it makes sure it is a valid object in
builtin or it throws...

undeclared name not builtin: blah

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - other builtin objects

I We can still greatly increase the speed of stuff like the global
class int.

I Pyrex performs a module lookup on the builtin module
every time the object is used.

I Dynamic lookups are what makes Python slow...

I SageX caches ever builtin lookup at module load time, and
stores it in a global c variable.

I In the same code, it makes sure it is a valid object in
builtin or it throws...

undeclared name not builtin: blah

Bradshaw SageX

History
Improvements

Internals
Code Generation

Global Optimizations - other builtin objects

I We can still greatly increase the speed of stuff like the global
class int.

I Pyrex performs a module lookup on the builtin module
every time the object is used.

I Dynamic lookups are what makes Python slow...

I SageX caches ever builtin lookup at module load time, and
stores it in a global c variable.

I In the same code, it makes sure it is a valid object in
builtin or it throws...

undeclared name not builtin: blah

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization

I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Future Work

I Merge Pyrex 0.9.5.1a changes

I Generators

I Functional closures

I cdef function type narrowing

I explicit coercions

I Non-refcounted extension types

I Further optimization
I (Almost) anything else that doesn’t work “out of the box.”

I SageX should (almost) be a superset of the Python language.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Overview

I Scanning.py tokenizes stream according to data in Lexicon.py

I Parsing.py builds a Node tree from the tokens
I Python grammar

if stmt ::= "if" expression ":" suite
. ("elif" expression ":" suite)*
. ["else" ":" suite]

I Corresponding function
def p if statement(s):

...

I Tree generates code.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Overview

I Scanning.py tokenizes stream according to data in Lexicon.py
I Parsing.py builds a Node tree from the tokens

I Python grammar
if stmt ::= "if" expression ":" suite
. ("elif" expression ":" suite)*
. ["else" ":" suite]

I Corresponding function
def p if statement(s):

...

I Tree generates code.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Overview

I Scanning.py tokenizes stream according to data in Lexicon.py
I Parsing.py builds a Node tree from the tokens

I Python grammar
if stmt ::= "if" expression ":" suite
. ("elif" expression ":" suite)*
. ["else" ":" suite]

I Corresponding function
def p if statement(s):

...

I Tree generates code.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Overview

I Scanning.py tokenizes stream according to data in Lexicon.py
I Parsing.py builds a Node tree from the tokens

I Python grammar
if stmt ::= "if" expression ":" suite
. ("elif" expression ":" suite)*
. ["else" ":" suite]

I Corresponding function
def p if statement(s):

...

I Tree generates code.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Overview

I Scanning.py tokenizes stream according to data in Lexicon.py
I Parsing.py builds a Node tree from the tokens

I Python grammar
if stmt ::= "if" expression ":" suite
. ("elif" expression ":" suite)*
. ["else" ":" suite]

I Corresponding function
def p if statement(s):

...

I Tree generates code.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Other files

I Symtab.py keeps track of scopes, variable allocations, and
declarations.

I Code.py has lots of utilities for actually writing the c code.

I TypeSlots.py, PyrexTypes.py, Naming.py contain definitions.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Other files

I Symtab.py keeps track of scopes, variable allocations, and
declarations.

I Code.py has lots of utilities for actually writing the c code.

I TypeSlots.py, PyrexTypes.py, Naming.py contain definitions.

Bradshaw SageX

History
Improvements

Internals
Code Generation

Other files

I Symtab.py keeps track of scopes, variable allocations, and
declarations.

I Code.py has lots of utilities for actually writing the c code.

I TypeSlots.py, PyrexTypes.py, Naming.py contain definitions.

Bradshaw SageX

History
Improvements

Internals
Code Generation

C Code Generation

I Each node knows how to generate its c code

I Three main passes, called recursively
I Analyse Declarations (what is being defined)
I Analyse Expressions (determine types, fill in coercion nodes,

determine needed temporary variables)
I Generate Code (e.g. generate sub-expression code, do my

stuff, dispose of sub-expression values)

Bradshaw SageX

History
Improvements

Internals
Code Generation

C Code Generation

I Each node knows how to generate its c code
I Three main passes, called recursively

I Analyse Declarations (what is being defined)
I Analyse Expressions (determine types, fill in coercion nodes,

determine needed temporary variables)
I Generate Code (e.g. generate sub-expression code, do my

stuff, dispose of sub-expression values)

Bradshaw SageX

History
Improvements

Internals
Code Generation

C Code Generation

I Each node knows how to generate its c code
I Three main passes, called recursively

I Analyse Declarations (what is being defined)

I Analyse Expressions (determine types, fill in coercion nodes,
determine needed temporary variables)

I Generate Code (e.g. generate sub-expression code, do my
stuff, dispose of sub-expression values)

Bradshaw SageX

History
Improvements

Internals
Code Generation

C Code Generation

I Each node knows how to generate its c code
I Three main passes, called recursively

I Analyse Declarations (what is being defined)
I Analyse Expressions (determine types, fill in coercion nodes,

determine needed temporary variables)

I Generate Code (e.g. generate sub-expression code, do my
stuff, dispose of sub-expression values)

Bradshaw SageX

History
Improvements

Internals
Code Generation

C Code Generation

I Each node knows how to generate its c code
I Three main passes, called recursively

I Analyse Declarations (what is being defined)
I Analyse Expressions (determine types, fill in coercion nodes,

determine needed temporary variables)
I Generate Code (e.g. generate sub-expression code, do my

stuff, dispose of sub-expression values)

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3
sage: print f.code(c.double)

double f(double x) {
return (x+2)*x+3;

}

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3
sage: print f.code(python)

def f(x):
return (x+2)*x+3

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3
sage: print f.code(c.gmp.mpz t)

void f(mpz t rop, mpz t x) {
mpz add si(rop, x, 2);
mpz mul(rop, rop, x);
mpz add si(rop, x, 3);

}

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3
sage: print f.code(lisp)

(lambda (x)
(+ (* (+ x 2) x) 3))

Bradshaw SageX

History
Improvements

Internals
Code Generation

Code Generation in SAGE?

sage: f = x^2 + 2*x + 3
sage: print f.code(sage.Integer)

cdef Integer f(Integer x) {
cdef Integer r = PY NEW(Integer)
mpz add si(r.value, x.value, 2)
mpz mul(r.value, r.value, x.value)
mpz add si(r.value, x.value, 3)
return r

Bradshaw SageX

	History
	Improvements
	Internals
	Code Generation

