Computing Ext algebras with Sage

An F_5 algorithm for path algebra quotients

Simon King DFG project KI 861/2–1

 18^{th} June, 2013

A B > A B >

A D

Basic algebras Ext algebras A *non-commutative* Faugère F₅ algorithm

Outline

- 2 Ext algebras
 - Ext groups
 - Yoneda product
 - Highly non-commutative algebras in Sage
- 3 A non-commutative Faugère F₅ algorithm
 - Signed standard bases
 - The F₅ criterion
 - Get Loewy layers from the F₅ signature

Q: Finite quiver (directed graph; loops and cycles allowed)

• Vertices $v_1, ..., v_q$, arrows $\alpha_1, ..., \alpha_r$

伺 ト く ヨ ト く ヨ ト

- Q: Finite quiver (directed graph; loops and cycles allowed)
 - Vertices $v_1, ..., v_q$, arrows $\alpha_1, ..., \alpha_r$

Path algebra $\mathcal{A} = kQ$ (k a field)

- k-basis: All directed paths (lists of arrows) in Q
- Multiplication ↔ concatenation and distributivity Product is zero if paths don't match!

• Radical:
$$\mathsf{Rad}(\mathcal{A}) = \langle \alpha_1, ..., \alpha_r \rangle$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Q: Finite quiver (directed graph; loops and cycles allowed)
 - Vertices $v_1, ..., v_q$, arrows $\alpha_1, ..., \alpha_r$

Path algebra $\mathcal{A} = kQ$ (k a field)

- k-basis: All directed paths (lists of arrows) in Q
- Multiplication ↔ concatenation and distributivity Product is zero if paths don't match!
- Radical: $Rad(\mathcal{A}) = \langle \alpha_1, ..., \alpha_r \rangle$

Basic algebras

• An ideal $I \leq A$ is admissible $\iff \exists N \in \mathbb{N} : \operatorname{Rad}(A)^N \subset I \subset \operatorname{Rad}(A)^2$

- Q: Finite quiver (directed graph; loops and cycles allowed)
 - Vertices $v_1, ..., v_q$, arrows $\alpha_1, ..., \alpha_r$

Path algebra $\mathcal{A} = kQ$ (k a field)

- k-basis: All directed paths (lists of arrows) in Q
- Multiplication ↔ concatenation and distributivity Product is zero if paths don't match!
- Radical: $Rad(\mathcal{A}) = \langle \alpha_1, ..., \alpha_r \rangle$

Basic algebras

- An ideal $I \leq \mathcal{A}$ is admissible $\iff \exists N \in \mathbb{N} : \operatorname{Rad}(\mathcal{A})^N \subset I \subset \operatorname{Rad}(\mathcal{A})^2$
- $\mathcal{B} = \mathcal{A}/I$ (*I* admissible. $v_i, \alpha_j \in \mathcal{B}$) is called *basic algebra*.
- Radical Rad $(\mathcal{B}) = J_{\mathcal{B}} = \langle \alpha_1, ..., \alpha_r \rangle \leq \mathcal{B}$

Basic algebras Ext algebras A *non-commutative* Faugère F₅ algorithm

Nice properties of basic algebras

Why to consider basic algebras?

G a finite group, $k = \overline{k}$ of characteristic $p \mid |G| \Longrightarrow kG$ is *Morita* equivalent to a basic algebra.

 ${\leadsto}Study$ representation theory, cohomology etc. via basic algebras

Basic algebras Ext algebras A *non-commutative* Faugère F₅ algorithm

Nice properties of basic algebras

Why to consider basic algebras?

G a finite group, $k = \overline{k}$ of characteristic $p \mid |G| \Longrightarrow kG$ is *Morita* equivalent to a basic algebra.

 ${\leadsto}Study$ representation theory, cohomology etc. via basic algebras

Simple and projective modules

• Simple modules: $S_i := v_i \mathcal{B} / v_i J_{\mathcal{B}}$. Dimension one!

Nice properties of basic algebras

Why to consider basic algebras?

G a finite group, $k = \overline{k}$ of characteristic $p \mid |G| \Longrightarrow kG$ is *Morita equivalent* to a basic algebra.

 ${\leadsto}Study$ representation theory, cohomology etc. via basic algebras

Simple and projective modules

- Simple modules: $S_i := v_i \mathcal{B} / v_i J_{\mathcal{B}}$. Dimension one!
- Projective covers: $\mathcal{P}_i := v_i \mathcal{B} \twoheadrightarrow S_i \to 0.$

Recall: Projective modules are direct summands of free modules. The \mathcal{P}_i are the *projective indecomposable* modules (PIMs) of \mathcal{B} .

・ロト ・同ト ・ヨト ・ヨト

Nice properties of basic algebras

Why to consider basic algebras?

G a finite group, $k = \overline{k}$ of characteristic $p \mid |G| \Longrightarrow kG$ is *Morita equivalent* to a basic algebra.

 ${\leadsto}Study$ representation theory, cohomology etc. via basic algebras

Simple and projective modules

- Simple modules: $S_i := v_i \mathcal{B} / v_i J_{\mathcal{B}}$. Dimension one!
- Projective covers: $\mathcal{P}_i := v_i \mathcal{B} \twoheadrightarrow S_i \to 0$.

Recall: Projective modules are direct summands of free modules. The \mathcal{P}_i are the *projective indecomposable* modules (PIMs) of \mathcal{B} .

In Sage?

Trac ticket #12630

Jim Stark: Python code for acyclic quivers/algebras/modules. SD 49: Refactor code, add categories/coercion. Later: Cythonize

M, N right- \mathcal{B} modules. Rad $(M) = M \cdot J_{\mathcal{B}}$ for basic algebras!

Projective resolution of M

$$\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \to 0, \text{ such that}$$

•
$$P_0, P_1, ...$$
 projective $\mathcal B$ modules

•
$$\ker(\epsilon) = \operatorname{im}(d_1)$$
 and $\ker(d_i) = \operatorname{im}(d_{i+1})$ for $i = 1, 2, ...$

M, N right- \mathcal{B} modules. Rad $(M) = M \cdot J_{\mathcal{B}}$ for basic algebras!

Projective resolution of M

$$\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \to 0, \text{ such that}$$

- $P_0, P_1, ...$ projective \mathcal{B} modules
- ker $(\epsilon) = \operatorname{im}(d_1)$ and ker $(d_i) = \operatorname{im}(d_{i+1})$ for i = 1, 2, ...

Resolution is minimal \iff im $(d_i) \subseteq \operatorname{Rad}(P_{i-1})$ for i = 1, 2, ...

<ロ> <同> <同> < 同> < 同>

M, N right- \mathcal{B} modules. Rad $(M) = M \cdot J_{\mathcal{B}}$ for basic algebras!

Projective resolution of M

$$\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \to 0, \text{ such that}$$

•
$$\operatorname{ker}(\epsilon) = \operatorname{im}(d_1)$$
 and $\operatorname{ker}(d_i) = \operatorname{im}(d_{i+1})$ for $i = 1, 2, ...$

Resolution is minimal \iff im $(d_i) \subseteq \operatorname{Rad}(P_{i-1})$ for i = 1, 2, ...

Ext group $\operatorname{Ext}^n_{\mathcal{B}}(M, N)$

$$:= \left\{ P_n \stackrel{f}{\longrightarrow} N \mid f|_{\mathsf{im}(d_{n+1})} = 0 \right\} / \left\{ f = g \circ d_n \mid \exists g : P_{n-1} \to N \right\}$$

M, N right- \mathcal{B} modules. Rad $(M) = M \cdot J_{\mathcal{B}}$ for basic algebras!

Projective resolution of M

$$\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \to 0, \text{ such that}$$

• $P_0, P_1, ...$ projective $\mathcal B$ modules

•
$$\operatorname{ker}(\epsilon) = \operatorname{im}(d_1)$$
 and $\operatorname{ker}(d_i) = \operatorname{im}(d_{i+1})$ for $i = 1, 2, ...$

Resolution is minimal \iff im $(d_i) \subseteq \operatorname{Rad}(P_{i-1})$ for i = 1, 2, ...

Ext group $\operatorname{Ext}^n_{\mathcal{B}}(M, N)$

$$:= \left\{ P_n \stackrel{f}{\longrightarrow} N \mid f|_{\mathsf{im}(d_{n+1})} = 0 \right\} / \left\{ f = g \circ d_n \mid \exists g : P_{n-1} \to N \right\}$$

If resolution minimal and N simple:

 $\operatorname{Ext}_{\mathcal{B}}^{n}(M, N) = \operatorname{Hom}_{\mathcal{B}}(P_{n}, N),$ since the image of the radical in a simple module is zero. Basic algebras **Ext algebras** A *non-commutative* Faugère F₅ algorithm

Ext groups Yoneda product Highly non-commutative algebras in Sage

Ext algebras: The Yoneda product

Let $Q_* \xrightarrow{\eta} N \to 0$ be a minimal projective resolution, N simple.

Lifting $f \in \operatorname{Ext}^n_{\mathcal{B}}(M, N)$ to a chain map

<ロト <部 > < 注 > < 注 >

Basic algebras Ext algebras non-commutative Faugère F5 algorithm

Ext groups Yoneda product Highly non-commutative algebras in Sage

Ext algebras: The Yoneda product

Let $Q_* \xrightarrow{\eta} N \to 0$ be a minimal projective resolution, N simple.

Lifting $f \in \operatorname{Ext}^n_{\mathcal{B}}(M, N)$ to a chain map

Multiplying f with $g \in \operatorname{Ext}_{\mathcal{B}}^{r}(N, L)$, L simple module

$$g \cdot f$$
 is given by $P_{n+r} \stackrel{f_r}{\longrightarrow} Q_r \stackrel{g}{\longrightarrow} L \in \operatorname{Ext}_{\mathcal{B}}^{n+r}(M,L)$

Ext algebra $\operatorname{Ext}^*(\mathcal{B}) = \bigoplus_{i,j=1}^q \bigoplus_{n=0}^\infty \operatorname{Ext}^n_{\mathcal{B}}(S_i, S_j)$

Associative and graded, but very much non-commutative

Simon King, FSU Jena

Ext algebras and F_5 algorithm for basic algebras

Ext*(B) is a graded associative algebra
 → can represent it as quotient of a free associative algebra modulo weighted homogeneous relations

- 4 回 ト 4 ヨト 4 ヨト

- Ext*(B) is a graded associative algebra
 → can represent it as quotient of a free associative algebra modulo weighted homogeneous relations
- Idea of LETTERPLACE (Levandovskyy–LaScala): Represent degree-≤ d part of a free algebra in a large commutative ring, whose size grows with d.

- 4 回 ト 4 ヨト 4 ヨト

- Ext*(B) is a graded associative algebra
 → can represent it as quotient of a free associative algebra modulo weighted homogeneous relations
- Idea of LETTERPLACE (Levandovskyy–LaScala): Represent degree-≤ d part of a free algebra in a large commutative ring, whose size grows with d.
- Singular's LETTERPLACE can only deal with *homogeneous* elements and a fixed degree bound.
- Sage's LETTERPLACE wrapper (in Sage-5.5) has *adaptive* degree bound and can use positive integral degree weights

イロト イポト イラト イラト

- Ext*(B) is a graded associative algebra
 → can represent it as quotient of a free associative algebra modulo weighted homogeneous relations
- Idea of LETTERPLACE (Levandovskyy–LaScala): Represent degree-≤ d part of a free algebra in a large commutative ring, whose size grows with d.
- Singular's LETTERPLACE can only deal with *homogeneous* elements and a fixed degree bound.
- Sage's LETTERPLACE wrapper (in Sage-5.5) has *adaptive* degree bound and can use positive integral degree weights
- Bad: Polynomial rings were kept alive in memory. Needed:
 - Weak cache for UniqueRepresentation and coercion maps → Trac tickets #715, #11521, #12215, #12313, #14159, ...

・ロト ・同ト ・ヨト ・ヨト

- Ext*(B) is a graded associative algebra
 → can represent it as quotient of a free associative algebra modulo weighted homogeneous relations
- Idea of LETTERPLACE (Levandovskyy–LaScala): Represent degree-≤ d part of a free algebra in a large commutative ring, whose size grows with d.
- Singular's LETTERPLACE can only deal with *homogeneous* elements and a fixed degree bound.
- Sage's LETTERPLACE wrapper (in Sage-5.5) has *adaptive* degree bound and can use positive integral degree weights
- Bad: Polynomial rings were kept alive in memory. Needed:
 - Weak cache for UniqueRepresentation and coercion maps → Trac tickets #715, #11521, #12215, #12313, #14159, ...
 - fix of a memory corruption in Singular
 - fix of a bug in Cython related with weak references

Recall: Computing Syzygies with standard bases

• Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.

Recall: Computing Syzygies with standard bases

- Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.
- Represent P_n, P_{n-1} as sub-modules of $\mathcal{A}^s, \mathcal{A}^t$, modulo G_0 .
- For $\mathfrak{x}_1, ..., \mathfrak{x}_s$ generators for P_n , let $p_i \in \mathcal{A}^t$ represent $d_n(\mathfrak{x}_i)$.

Recall: Computing Syzygies with standard bases

- Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.
- Represent P_n, P_{n-1} as sub-modules of $\mathcal{A}^s, \mathcal{A}^t$, modulo G_0 .
- For $\mathfrak{x}_1, ..., \mathfrak{x}_s$ generators for P_n , let $p_i \in \mathcal{A}^t$ represent $d_n(\mathfrak{x}_i)$.
- Let $M \subset \mathcal{A}^t \oplus \mathcal{A}^s$ be generated by $\{p_i \mathfrak{x}_i | i = 1, ..., s\}$
- G standard basis of M for elimination order → Elements of G vanishing in the first block yield generators of ker(d_n).

Recall: Computing Syzygies with standard bases

- Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.
- Represent P_n, P_{n-1} as sub-modules of $\mathcal{A}^s, \mathcal{A}^t$, modulo G_0 .
- For $\mathfrak{x}_1, ..., \mathfrak{x}_s$ generators for P_n , let $p_i \in \mathcal{A}^t$ represent $d_n(\mathfrak{x}_i)$.
- Let $M \subset \mathcal{A}^t \oplus \mathcal{A}^s$ be generated by $\{p_i \mathfrak{x}_i | i = 1, ..., s\}$
- G standard basis of M for elimination order → Elements of G vanishing in the first block yield generators of ker(d_n).

How to get a *minimal* generating set of $ker(d_n)$?

• E. Green, Solberg, Zacharia: Minimization as a second step

Recall: Computing Syzygies with standard bases

- Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.
- Represent P_n, P_{n-1} as sub-modules of $\mathcal{A}^s, \mathcal{A}^t$, modulo G_0 .
- For $\mathfrak{x}_1, ..., \mathfrak{x}_s$ generators for P_n , let $p_i \in \mathcal{A}^t$ represent $d_n(\mathfrak{x}_i)$.
- Let $M \subset \mathcal{A}^t \oplus \mathcal{A}^s$ be generated by $\{p_i \mathfrak{x}_i | i = 1, ..., s\}$
- G standard basis of M for elimination order → Elements of G vanishing in the first block yield generators of ker(d_n).

How to get a *minimal* generating set of $ker(d_n)$?

- E. Green, Solberg, Zacharia: Minimization as a second step
- Carlson: Linear algebra is faster!

Recall: Computing Syzygies with standard bases

- Let G_0 be a standard basis for I, hence, $\mathcal{B} = \mathcal{A}/\langle G_0 \rangle$.
- Represent P_n, P_{n-1} as sub-modules of $\mathcal{A}^s, \mathcal{A}^t$, modulo G_0 .
- For $\mathfrak{x}_1, ..., \mathfrak{x}_s$ generators for P_n , let $p_i \in \mathcal{A}^t$ represent $d_n(\mathfrak{x}_i)$.
- Let $M \subset \mathcal{A}^t \oplus \mathcal{A}^s$ be generated by $\{p_i \mathfrak{x}_i | i = 1, ..., s\}$
- G standard basis of M for elimination order → Elements of G vanishing in the first block yield generators of ker(d_n).

How to get a *minimal* generating set of $ker(d_n)$?

- E. Green, Solberg, Zacharia: Minimization as a second step
- Carlson: Linear algebra is faster!
- D. Green: "Heady Buchberger algorithm" This is currently fastest, see p_group_cohomology.

Basic setup for Faugère F_5

Algebra:

- $\mathsf{Mon}(\mathcal{A}) \leftrightarrow \mathsf{paths}$, with *admissible* monomial ordering.
- $\psi : \mathcal{A} \twoheadrightarrow \mathcal{B} = \mathcal{A}/I$, Mon $(\mathcal{B}) = \{\psi(\tilde{\mathfrak{m}}) : \tilde{\mathfrak{m}} \text{ standard monomial, i.e., } \mathfrak{m} \notin \mathsf{lead}(I)\}$
- $\lambda : Mon(\mathcal{B}) \to Mon(\mathcal{A}) lift,$ $\lambda(\mathfrak{m}) = \mathfrak{m}$ unique standard monomial with $\psi(\lambda(\mathfrak{m})) = \mathfrak{m}$

Basic setup for Faugère F_5

Algebra:

- $\mathsf{Mon}(\mathcal{A}) \leftrightarrow \mathsf{paths}$, with *admissible* monomial ordering.
- ψ : A → B = A/I, Mon(B) = {ψ(m) : m standard monomial, i.e., m ∉ lead(I)}
- $\lambda : Mon(\mathcal{B}) \to Mon(\mathcal{A}) lift,$ $\lambda(\mathfrak{m}) = \mathfrak{m}$ unique standard monomial with $\psi(\lambda(\mathfrak{m})) = \mathfrak{m}$
- For $\mathfrak{m}, \mathfrak{c}, \mathfrak{n} \in Mon(\mathcal{B})$: $\mathfrak{m}|_{\mathfrak{c}}\mathfrak{n} \iff \lambda(\mathfrak{n}) = \lambda(\mathfrak{m}) \cdot \lambda(\mathfrak{c})$ In this case, \mathfrak{c} is called a *small cofactor* of \mathfrak{m} .

Basic setup for Faugère F_5

Algebra:

- $\mathsf{Mon}(\mathcal{A}) \leftrightarrow \mathsf{paths}$, with *admissible* monomial ordering.
- ψ : A → B = A/I, Mon(B) = {ψ(𝔅) : 𝔅 standard monomial, i.e., 𝔅 ∉ lead(I)}
- $\lambda : Mon(\mathcal{B}) \to Mon(\mathcal{A}) lift,$ $\lambda(\mathfrak{m}) = \mathfrak{m}$ unique standard monomial with $\psi(\lambda(\mathfrak{m})) = \mathfrak{m}$
- For m, c, n ∈ Mon(B): m|_cn ⇔ λ(n) = λ(m) · λ(c) In this case, c is called a *small cofactor* of m.

Modules:

• $F = \mathcal{B}^{\oplus r} \supset M = \langle \hat{g}_1, ..., \hat{g}_m \rangle_{\mathcal{B}}$, right– \mathcal{A} –module via ψ

Basic algebras Ext algebras A *non-commutative* Faugère F₅ algorithm Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Signed standard bases

• $x = (u(x), \sigma(x)) \in M \times Mon(E)$ is a signed element of M $x \in_s M :\iff \exists \tilde{x} \in E : ev(\tilde{x}) = u(x)$ and $Im(\tilde{x}) = \sigma(x)$. Similarly $G \subset_s M$

Basic algebras Ext algebras A *non-commutative* Faugère F₅ algorithm Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Signed standard bases

- $x = (u(x), \sigma(x)) \in M \times Mon(E)$ is a signed element of M $x \in_s M :\iff \exists \tilde{x} \in E : ev(\tilde{x}) = u(x)$ and $Im(\tilde{x}) = \sigma(x)$. Similarly $G \subset_s M$
- $g \in_{s} M$ reductor of $x \in_{s} M$: $\iff \operatorname{Im}(\operatorname{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\operatorname{u}(x)), \ \sigma(g) \cdot \lambda(\mathfrak{c}) < \sigma(x)$
- $x \in_s M$ irreducible : \iff it has no reductor in M

Signed standard bases

- $x = (u(x), \sigma(x)) \in M \times Mon(E)$ is a signed element of M $x \in_s M :\iff \exists \tilde{x} \in E : ev(\tilde{x}) = u(x)$ and $Im(\tilde{x}) = \sigma(x)$. Similarly $G \subset_s M$
- $g \in_{s} M$ reductor of $x \in_{s} M$: $\iff \operatorname{Im}(\mathfrak{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\mathfrak{u}(x)), \ \sigma(g) \cdot \lambda(\mathfrak{c}) < \sigma(x)$
- $x \in_s M$ irreducible : \iff it has no reductor in M
- Elementary reduction

$$x\searrow \left(\mathsf{u}(x)-rac{\mathsf{lc}(\mathsf{u}(x))}{\mathsf{lc}(\mathsf{u}(g))}\,\mathsf{u}(g)\cdot\mathfrak{c},\sigma(x)
ight)\in_{s}M$$

・ロト ・同ト ・ヨト ・ヨト

Signed standard bases

- $x = (u(x), \sigma(x)) \in M \times Mon(E)$ is a signed element of M $x \in_s M :\iff \exists \tilde{x} \in E : ev(\tilde{x}) = u(x)$ and $Im(\tilde{x}) = \sigma(x)$. Similarly $G \subset_s M$
- $g \in_{s} M$ reductor of $x \in_{s} M$: $\iff \operatorname{Im}(\mathfrak{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\mathfrak{u}(x)), \ \sigma(g) \cdot \lambda(\mathfrak{c}) < \sigma(x)$
- $x \in_s M$ irreducible : \iff it has no reductor in M
- Elementary reduction

$$x\searrow \left(\mathsf{u}(x)-rac{\mathsf{lc}(\mathsf{u}(x))}{\mathsf{lc}(\mathsf{u}(g))}\,\mathsf{u}(g)\cdot\mathfrak{c},\sigma(x)
ight)\in_{\mathfrak{s}}M$$

• NF(x; G) $\in_s M$: Iterate elementary reductions wrt. G. $\sigma(NF(x; G)) = \sigma(x)$, and NF(x; G) has no reductor in G.

・ロト ・同ト ・ヨト ・ヨト

Signed standard bases

- $x = (u(x), \sigma(x)) \in M \times Mon(E)$ is a signed element of M $x \in_s M :\iff \exists \tilde{x} \in E : ev(\tilde{x}) = u(x)$ and $Im(\tilde{x}) = \sigma(x)$. Similarly $G \subset_s M$
- $g \in_{s} M$ reductor of $x \in_{s} M$: $\iff \operatorname{Im}(\mathfrak{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\mathfrak{u}(x)), \ \sigma(g) \cdot \lambda(\mathfrak{c}) < \sigma(x)$
- $x \in_s M$ irreducible : \iff it has no reductor in M
- Elementary reduction

$$x\searrow \left(\mathsf{u}(x)-rac{\mathsf{lc}(\mathsf{u}(x))}{\mathsf{lc}(\mathsf{u}(g))}\,\mathsf{u}(g)\cdot\mathfrak{c},\sigma(x)
ight)\in_{s}M$$

• NF(x; G) $\in_s M$: Iterate elementary reductions wrt. G. $\sigma(NF(x; G)) = \sigma(x)$, and NF(x; G) has no reductor in G.

Def: Signed standard basis $G \subset_s M$ of M

: \iff for all irreducible $x \in_{s} M \setminus \{0\}$ there is $g \in G$ with $\operatorname{Im}(g)|_{\mathfrak{c}} \operatorname{Im}(x), \ \sigma(g) \cdot \lambda(\mathfrak{c}) \leq \sigma(x)$ (actually: "=")

Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Computing signed standard bases

Let $g \in G \subset_{s} M$, $\mathfrak{c} \in Mon(\mathcal{B})$, $L \subset lead(ker(ev))$

Critical pairs with cofactor c: Getting new leading monomials

Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Computing signed standard bases

Let $g \in G \subset_{s} M$, $\mathfrak{c} \in Mon(\mathcal{B})$, $L \subset lead(ker(ev))$

Critical pairs with cofactor c: Getting new leading monomials

Type T: ("toppling" in D. Green's work)

- c is not small cofactor of Im(u(g)), but all proper divisors are.
- L-normal pair \iff g irreducible wrt. G, and $\sigma(g) \cdot \lambda(\mathfrak{c}) \notin L$
- S-polynomial $\mathcal{S} := (\mathfrak{u}(g) \cdot \mathfrak{c}, \ \sigma(g) \cdot \lambda(\mathfrak{c})) \in_s M$

< 日 > < 同 > < 三 > < 三 >

Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Computing signed standard bases

Let
$$g \in G \subset_{s} M$$
, $\mathfrak{c} \in Mon(\mathcal{B})$, $L \subset lead(ker(ev))$

Critical pairs with cofactor c: Getting new leading monomials

Type T: ("toppling" in D. Green's work)

- c is not small cofactor of Im(u(g)), but all proper divisors are.
- L-normal pair \iff g irreducible wrt. G, and $\sigma(g) \cdot \lambda(\mathfrak{c}) \notin L$
- S-polynomial $S := (u(g) \cdot \mathfrak{c}, \sigma(g) \cdot \lambda(\mathfrak{c})) \in_s M$

<u>Type S</u>: ("S-polynomial" in the unsigned world) • $\exists g' \in G : \operatorname{Im}(\mathfrak{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\mathfrak{u}(g')) \text{ and } \sigma(g') < \sigma(g) \cdot \lambda(\mathfrak{c})$ • *L-normal pair* $\iff g, g' \text{ irred. wrt. } G, \text{ and } \sigma(g) \cdot \lambda(\mathfrak{c}) \notin L$ • *S-polynomial* $S := \left(\mathfrak{u}(g) \cdot \mathfrak{c} - \frac{\operatorname{lc}(g')}{\operatorname{lc}(g)}g', \sigma(g) \cdot \lambda(\mathfrak{c})\right) \in_{\mathfrak{s}} M$

イロト イポト イヨト イヨト

Signed standard bases The F_5 criterion Get Loewy layers from the F_5 signature

Computing signed standard bases

Let
$$g \in G \subset_{s} M$$
, $\mathfrak{c} \in Mon(\mathcal{B})$, $L \subset lead(ker(ev))$

Critical pairs with cofactor c: Getting new leading monomials

Type T: ("toppling" in D. Green's work)

- c is not small cofactor of Im(u(g)), but all proper divisors are.
- L-normal pair \iff g irreducible wrt. G, and $\sigma(g) \cdot \lambda(\mathfrak{c}) \notin L$
- S-polynomial $S := (u(g) \cdot \mathfrak{c}, \sigma(g) \cdot \lambda(\mathfrak{c})) \in_s M$

<u>Type S</u>: ("S-polynomial" in the unsigned world) • $\exists g' \in G : \operatorname{Im}(\mathfrak{u}(g))|_{\mathfrak{c}} \operatorname{Im}(\mathfrak{u}(g')) \text{ and } \sigma(g') < \sigma(g) \cdot \lambda(\mathfrak{c})$ • L-normal pair $\iff g, g' \text{ irred. wrt. } G, \text{ and } \sigma(g) \cdot \lambda(\mathfrak{c}) \notin L$

• S-polynomial
$$\mathcal{S} := \left(\mathsf{u}(g) \cdot \mathfrak{c} - \frac{\mathsf{lc}(g')}{\mathsf{lc}(g)} g', \ \sigma(g) \cdot \lambda(\mathfrak{c}) \right) \in_{s} M$$

Not *L*-normal \Rightarrow there is a "smaller" construction for u(S)!

 Basic algebras
 Signed standard bases

 Ext algebras
 The F5 criterion

 A non-commutative Faugère F5 algorithm
 Get Loewy layers from the F5 signature

The F₅ criterion—including Faugère's "rewritten criterion"

• Let $L \subset \text{lead}(\text{ker}(\text{ev}))$, let $G \subset_s M \setminus \{0\}$ be interreduced

 Basic algebras
 Signed standard bases

 Ext algebras
 The F5 criterion

 A non-commutative Faugère F5 algorithm
 Get Loewy layers from the F5 signature

The F₅ criterion—including Faugère's "rewritten criterion"

- Let $L \subset \text{lead}(\text{ker}(\text{ev}))$, let $G \subset_s M \setminus \{0\}$ be interreduced
- Assume $\forall i \text{ with } \mathfrak{e}_i \notin \mathsf{lead}(\mathsf{ker}(\mathsf{ev})) \exists g \in G \text{ with } \sigma(g) = \mathfrak{e}_i$

- 4 回 ト 4 ヨト 4 ヨト

The F₅ criterion—including Faugère's "rewritten criterion"

- Let $L \subset \text{lead}(\text{ker}(\text{ev}))$, let $G \subset_s M \setminus \{0\}$ be interreduced
- Assume $\forall i \text{ with } \mathfrak{e}_i \notin \mathsf{lead}(\mathsf{ker}(\mathsf{ev})) \exists g \in G \text{ with } \sigma(g) = \mathfrak{e}_i$

The F₅ criterion holds for an S-polynomial ${\cal S}$

 $:\iff \exists g\in G \text{ and a small cofactor } \mathfrak{c}\in\mathsf{Mon}(\mathcal{B}) \text{ of } \mathsf{Im}(\mathsf{u}(g)) \text{ with }$

•
$$\sigma(g)\cdot\lambda(\mathfrak{c})=\sigma(\mathcal{S})$$
, and

• $(u(g) \cdot \mathfrak{c}, \sigma(S)) \in_{s} M$ has no reductor in G.

The F₅ criterion—including Faugère's "rewritten criterion"

- Let $L \subset \mathsf{lead}(\mathsf{ker}(\mathsf{ev}))$, let $G \subset_s M \setminus \{0\}$ be interreduced
- Assume $\forall i \text{ with } \mathfrak{e}_i \notin \mathsf{lead}(\mathsf{ker}(\mathsf{ev})) \exists g \in G \text{ with } \sigma(g) = \mathfrak{e}_i$

The F₅ criterion holds for an S-polynomial S

 $:\iff \exists g\in G \text{ and a small cofactor } \mathfrak{c}\in\mathsf{Mon}(\mathcal{B}) \text{ of } \mathsf{Im}(\mathsf{u}(g)) \text{ with }$

•
$$\sigma(g)\cdot\lambda(\mathfrak{c})=\sigma(\mathcal{S})$$
, and

• $(u(g) \cdot \mathfrak{c}, \sigma(S)) \in_{s} M$ has no reductor in G.

Remark

If not $\operatorname{Im}(\operatorname{u}(g))|_{c} \operatorname{Im}(\operatorname{u}(S))$, then $\operatorname{Im}(\operatorname{u}(S))$ can be obtained by a different construction that is *smaller* than $\sigma(S)$.

The F₅ criterion—including Faugère's "rewritten criterion"

- Let $L \subset \mathsf{lead}(\mathsf{ker}(\mathsf{ev}))$, let $G \subset_s M \setminus \{0\}$ be interreduced
- Assume $\forall i \text{ with } \mathfrak{e}_i \notin \mathsf{lead}(\mathsf{ker}(\mathsf{ev})) \exists g \in G \text{ with } \sigma(g) = \mathfrak{e}_i$

The F₅ criterion holds for an S-polynomial S

 $:\iff \exists g\in G \text{ and a small cofactor } \mathfrak{c}\in\mathsf{Mon}(\mathcal{B}) \text{ of } \mathsf{Im}(\mathsf{u}(g)) \text{ with }$

•
$$\sigma(g)\cdot\lambda(\mathfrak{c})=\sigma(\mathcal{S})$$
, and

• $(u(g) \cdot \mathfrak{c}, \sigma(S)) \in_s M$ has no reductor in G.

Remark

If not $\operatorname{Im}(\operatorname{u}(g))|_{c} \operatorname{Im}(\operatorname{u}(S))$, then $\operatorname{Im}(\operatorname{u}(S))$ can be obtained by a different construction that is *smaller* than $\sigma(S)$.

Theorem

G is a signed standard basis of $M \iff$

 F_5 criterion holds for S-polynomials of all L-normal critical pairs.

Simon King, FSU Jena

Ext algebras and F_5 algorithm for basic algebras

 Basic algebras
 Signed standard bases

 Ext algebras
 The F5 criterion

 A non-commutative Faugère F5 algorithm
 Get Loewy layers from the F5 signature

 F_5 algorithm variant by Arri–Perry: Learn from mistakes

 L₀ := {e_i · m: i = 1, ..., m, m ∈ lead(I)} ⊂ lead(ker(ev)) trivial Syzygies

• For
$$x \in_{s} M$$
, $G \subset_{s} M$: $u(NF(x; G)) = 0$
 $\implies \exists y \in_{s} M : u(y) = u(x) \text{ and } \sigma(y) < \sigma(x)$
 $\implies \sigma(x) \in \mathsf{lead}(\mathsf{ker}(\mathsf{ev}))$

(日) (同) (三) (三)

 F_5 algorithm variant by Arri–Perry: Learn from mistakes

• For
$$x \in_{s} M$$
, $G \subset_{s} M$: $u(NF(x; G)) = 0$
 $\implies \exists y \in_{s} M : u(y) = u(x) \text{ and } \sigma(y) < \sigma(x)$
 $\implies \sigma(x) \in \mathsf{lead}(\mathsf{ker}(\mathsf{ev}))$

F₅ algorithm

Start: Set
$$G \leftarrow \{\hat{g}_1, ..., \hat{g}_r\}$$
, $L \leftarrow L_0$

WHILE \exists *L*-normal critical pair with S-polynomial S violating F_5 :

$$\begin{aligned} x \leftarrow \mathrm{NF}(\mathcal{S}; G) \\ \mathrm{IF} \ \mathsf{u}(x) &= 0: \ L \leftarrow L \cup (\sigma(x) \cdot \mathsf{Mon}(\mathcal{P})) \\ \mathrm{ELSE:} \ G \leftarrow \mathsf{interred}(G \cup \{x\}) \ \mathsf{(interred may add to } L) \\ \mathrm{RETURN} \ G \end{aligned}$$

Basic algebras Signed standard bases Ext algebras The F5 criterion A non-commutative Faugère F5 algorithm Get Loewy layers from the F5 signature

Application: Read off Loewy layers

- The d-th Loewy layer is $\mathcal{L}_d(M) := \operatorname{Rad}^{d-1}(M) / \operatorname{Rad}^d(M)$
- Recall $\operatorname{Rad}^d(M) = M \cdot J^d_{\mathcal{B}}$ for basic algebras \mathcal{B}

Basic algebras Ext algebras A non-commutative Faugère F₃ algorithm Get Loewy layers from the F₅ signature

Application: Read off Loewy layers

The d-th Loewy layer is L_d(M) := Rad^{d-1}(M)/Rad^d(M)
Recall Rad^d(M) = M · J^d_B for basic algebras B

The k-bases of $\mathcal{L}_0(M)$ are the minimal generating sets of M!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Basic algebras Ext algebras A non-commutative Faugere F₂ algorithm Get Loewy layers from the F₅ signature

Application: Read off Loewy layers

The d-th Loewy layer is L_d(M) := Rad^{d-1}(M)/Rad^d(M)
Recall Rad^d(M) = M · J^d_B for basic algebras B

The k-bases of $\mathcal{L}_0(M)$ are the minimal generating sets of M!

- Hypothesis: G is an interreduced signed standard basis of M wrt. a negative degree monomial ordering.
- Denote [f] for the equ. class of $f \in \operatorname{Rad}^{d-1}(M)$ in $\mathcal{L}_d(M)$.

- 4 周 ト 4 戸 ト 4 戸 ト

Application: Read off Loewy layers

The d-th Loewy layer is L_d(M) := Rad^{d-1}(M)/Rad^d(M)
Recall Rad^d(M) = M · J^d_B for basic algebras B

The k-bases of $\mathcal{L}_0(M)$ are the minimal generating sets of M!

- Hypothesis: G is an interreduced signed standard basis of M wrt. a negative degree monomial ordering.
- Denote [f] for the equ. class of $f \in \operatorname{Rad}^{d-1}(M)$ in $\mathcal{L}_d(M)$.

Theorem

The set of all $[u(g) \cdot c]$ with $g \in G$ and small cofactors $c \in Mon \mathcal{B}$ of Im(u(g)) such that

- deg $(\sigma(g) \cdot \lambda(\mathfrak{c})) = d 1$ and
- $(\mathfrak{u}(g) \cdot \mathfrak{c}, \sigma(g) \cdot \lambda(\mathfrak{c})) \in_{s} M$ has no reductor in G.

forms a k-vector space basis of $\mathcal{L}_d(M)$.

Basic algebras Ext algebras A non-commutative Faugère F₃ algorithm Get Loewy layers from the F₅ signature

Results of a toy implementation in Sage

Why to compute Ext algebras?

• $H^*(G; k) = \text{Ext}^*(S_0, S_0)$, S_0 trivial representation.

Get Loewy layers from the F_5 signature

Results of a toy implementation in Sage

Why to compute Ext algebras?

- $H^*(G; k) = \text{Ext}^*(S_0, S_0)$, S_0 trivial representation.
- Presentation degree for Ext versus cohomology:
 - M11 mod 2: Degree 5 versus degree 10
 - L3(2) mod 2: Degree 3 versus degree 6
 - J1 mod 7: Degree 7 versus degree 22
 - J1 mod 11: Degree 11 versus degree 38
 - J1 mod 19: Degree 15 versus degree 22

- 4 同 ト 4 ヨ ト 4 ヨ

Get Loewy layers from the F_5 signature

Results of a toy implementation in Sage

Why to compute Ext algebras?

- $H^*(G; k) = \operatorname{Ext}^*(S_0, S_0)$, S_0 trivial representation.
- Presentation degree for Ext versus cohomology:
 - M11 mod 2: Degree 5 versus degree 10
 - L3(2) mod 2: Degree 3 versus degree 6
 - J1 mod 7: Degree 7 versus degree 22
 - J1 mod 11: Degree 11 versus degree 38
 - J1 mod 19: Degree 15 versus degree 22

Efficiency: F_5 versus Heady

- $A_9 \mod 3$, 2^{nd} and 3^{rd} term of min. proj. resolution
 - Heady needs > 1800 and < 2600 zero reductions.
 - F_5 can do with < 1300 and < 1500 zero reductions.
- F_5 computes resolutions out to degree 13 for A_5 mod 3 and 2nd block of M_{12} mod 5 without any zero reduction.