Chromatic quasisymmetric functions and regular semisimple Hessenberg varieties

John Shareshian
Washington University
Michelle Wachs
University of Miami

Chromatic Symmetric Functions

$G=([n], E)$ a finite, loopless graph.

$$
\operatorname{col}(G):=\{f:[n] \rightarrow \mathbb{N} \mid f(i) \neq f(j) \text { whenever } i j \in E\}
$$

R. Stanley's chromatic symmetric function:

$$
X_{G}(\mathbf{x}):=X_{G}\left(x_{1}, x_{2}, \ldots\right):=\sum_{f \in \operatorname{col}(G)} \prod_{i=1}^{n} x_{f(i)}
$$

$$
X_{G}(\mathbf{x}):=X_{G}\left(x_{1}, x_{2}, \ldots\right):=\sum_{f \in \operatorname{col}(G)} \prod_{i=1}^{n} x_{f(i)}
$$

$$
G=1--2--3
$$

$$
X_{G}(\mathbf{x})=6 \sum_{i<j<k} x_{i} x_{j} x_{k}+\sum_{i \neq j} x_{i}^{2} x_{j}
$$

Symmetric functions

Let R be a commutative ring (for us, \mathbb{Q} or $\mathbb{Q}[t]$). Λ_{R} is the ring of symmetric functions with coefficients in R.
Λ_{R} consists of all $f \in R\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ such that

- f has bounded degree, and
- $f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)$ for all $\sigma \in \operatorname{Sym}(\mathbb{N})$.

Decomposition into homogeneous pieces:

$$
\Lambda_{R}=\bigoplus_{k \geq 0} \Lambda_{R}^{k}
$$

Some homogeneous symmetric functions:

Complete:

$$
h_{n}:=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{n}} \prod_{j=1}^{n} x_{i_{j}}
$$

Elementary:

$$
e_{n}:=\sum_{i_{1}<i_{2}<\ldots<i_{n}} \prod_{j=1}^{n} x_{i_{j}}
$$

Power sum:

$$
p_{n}:=\sum_{j=1}^{\infty} x_{j}^{n}
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ be a partition, $b \in\{h, e, p\}$.

$$
b_{\lambda}:=\prod_{j=1}^{l} b_{\lambda_{j}}
$$

Fact: $\left\{b_{\lambda} \mid \lambda \in \operatorname{Par}(k)\right\}$ is a basis for $\Lambda_{\mathbb{Q}}^{k}$.
Examples:

$$
\begin{gathered}
h_{(2,2,1)}=\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+\ldots\right)^{2}\left(x_{1}+x_{2}+\ldots\right) \\
e_{(2,2,1)}=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots\right)^{2}\left(x_{1}+x_{2}+\ldots\right) \\
p_{(2,2,1)}=\left(x_{1}^{2}+x_{2}^{2}+\ldots\right)^{2}\left(x_{1}+x_{2}+\ldots\right)
\end{gathered}
$$

Incomparability graphs

Let P be a poset on $[n]$. The incomparability graph Inc (P) has vertex set [n] and edge set

$$
\{i j \mid i \text { and } j \text { are incomparable in } P\} .
$$

For $a, b \in \mathbb{N}, P$ is $(a+b)$-free if there do not exist $x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b} \in P$ such that

- $x_{1}<\ldots<x_{a}$,
- $y_{1}<\ldots<y_{b}$, and
- x_{i} and y_{j} are incomparable for all i, j.

Conjecture (Stanley-Stembridge, 1993): If P is a $3+1$-free poset on $\left[n\right.$] then $X_{\operatorname{lnc}(P)}$ is e-positive, that is,

$$
X_{\operatorname{lnc}(P)} \in \mathbb{N}_{0}\left[\left\{e_{\lambda}: \lambda \in \operatorname{Par}(n)\right\}\right] .
$$

Frobenius characteristic

$$
\text { Class }\left(S_{n}\right):=\left\{f: S_{n} \rightarrow \mathbb{Q} \mid f \text { is constant on conjugacy classes }\right\}
$$

$$
\operatorname{dim} \operatorname{Class}\left(S_{n}\right)=\operatorname{dim} \Lambda_{\mathbb{Q}}^{n}=|\operatorname{Par}(n)|
$$

For $\lambda \in \operatorname{Par}(n)$, set

$$
C_{\lambda}:=\left\{\sigma \in S_{n}: \sigma \text { has cycle shape } \lambda\right\},
$$

and

$$
z_{\lambda}:=n!/\left|C_{\lambda}\right| .
$$

The Frobenius characteristic is the unique linear map

$$
c h: \bigoplus_{n \geq 0} \operatorname{Class}\left(S_{n}\right) \rightarrow \Lambda_{\mathbb{Q}}
$$

satisfying

$$
\operatorname{ch}\left(\delta_{C_{\lambda}}\right)=p_{\lambda} / z_{\lambda}
$$

Schur functions

The irreducible characters χ^{λ} of S_{n} are naturally indexed by $\operatorname{Par}(n)$ and form a basis for $\operatorname{Class}\left(S_{n}\right)$. The Schur functions s_{λ} satisfy

$$
s_{\lambda}=\operatorname{ch}\left(\chi^{\lambda}\right)
$$

For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right) \in \operatorname{Par}(n)$, let μ^{λ} be the character of the permutation representation of S_{n} on the cosets of $\prod_{j=1}^{l} S_{\lambda_{j}}$.

$$
\begin{gathered}
\operatorname{ch}\left(\mu^{\lambda}\right)=h_{\lambda} \\
\operatorname{ch}\left(\mu^{\lambda} \cdot \operatorname{sign}\right)=e_{\lambda}
\end{gathered}
$$

So, if $f \in \Lambda_{\mathbb{Q}}$ is h-positive or e-positive then f is s-positive.

Theorem (V. Gasharov, 1996): Let P be a $3+1$-free poset. Then $X_{\operatorname{Inc}(P)}$ is s-positive.

Gasharov gives a formula for the coefficient of each s_{λ} in $X_{\operatorname{Inc}(P)}$. We will see it later.

Goal: a conceptual explanation of Gasharov's theorem and the Stanley-Stembridge conjecture.

Chromatic quasisymmetric functions

For $G=([n], E)$ and $f \in \operatorname{col}(G)$, define

$$
\operatorname{asc}(f):=\mid\{i j \in E \mid i<j \text { and } f(i)<f(j)\} \mid .
$$

The chromatic quasisymmetric function of G is

$$
X_{G}(\mathbf{x} ; t):=\sum_{f \in \operatorname{col}(G)} t^{\operatorname{asc}(f)} \prod_{j=1}^{n} x_{f(j)}
$$

$$
\begin{gathered}
X_{G}(\mathbf{x} ; t):=\sum_{f \in \operatorname{col}(G)} t^{\operatorname{asc}(f)} \prod_{j=1}^{n} x_{f(j)} \\
G=1--2--3 \\
X_{G}(\mathbf{x} ; t)=\left(1+4 t+t^{2}\right) \sum_{i<j<k} x_{i} x_{j} x_{k}+t \sum_{i \neq j} x_{i}^{2} x_{j} \\
H=1--3--2 \\
X_{H}(\mathbf{x} ; t)=2\left(1+t+t^{2}\right) \sum_{i<j<k} x_{i} x_{j} x_{k}+\sum_{i<j} x_{i} x_{j}^{2}+t^{2} \sum_{i<j} x_{i}^{2} x_{j}
\end{gathered}
$$

- $X_{G}(\mathbf{x} ; t) \in \Lambda_{\mathbb{Q}[t]}$ but $X_{H}(\mathbf{x} ; t) \notin \Lambda_{\mathbb{Q}[t]}$.

Our favorite graphs

A Hessenberg vector is any $h=\left(h_{1}, \ldots, h_{n-1}\right) \in \mathbb{N}^{n-1}$ satisfying

- $i \leq h_{i} \leq n$ for all $i \in[n-1]$ and
- $\mathrm{h}_{i} \leq \mathrm{h}_{i+1}$ for all $i \in[n-2]$.

The Hessenberg graph $\Gamma(\mathrm{h})$ associated to h has vertex set $[n]$ and edge set

$$
E(h):=\left\{i j \mid i<j \leq h_{i}\right\} .
$$

Proposition (D. Scott-P. Suppes, 1958): A poset P is both $(3+1)$-free and $(2+2)$-free if and only if there is some Hessenberg vector h such that $\operatorname{Inc}(P)$ is isomorphic to $\Gamma(\mathrm{h})$. If h is a Hessenberg vector then there is a $3+1$-free and $2+2$-free poset P such that $\operatorname{Inc}(P)=\Gamma(\mathrm{h})$.

Proposition: If h is a Hessenberg vector then $X_{\Gamma(h)}(\mathbf{x} ; t) \in \Lambda_{\mathbb{Q}[t]}$.

Schur decomposition

Let h be a Hessenberg vector and let P be the poset on [n] with $\operatorname{Inc}(P)=\Gamma(\mathrm{h})$. Let $\lambda \in \operatorname{Par}(n)$.

A P-tableau T of shape λ is a filling of the Young diagram of shape λ with all of the elements of $[n]$ such that

- if j appears immediately to the right of j in T then $i<_{p} j$, and
- if j appears immediately below i in T then $j \nless p i$.

Let \mathcal{T}_{λ} be the set of all P-tableau of shape λ. For $T \in \mathcal{T}_{\lambda}$, set

$$
\operatorname{inv}_{P}(T):=\mid\left\{i j \in E(\mathrm{~h}) \mid i<j \text { and } \operatorname{row}_{T}(i)>\operatorname{row}_{T}(j)\right\} \mid .
$$

Theorem: With h, P as above,

$$
X_{\operatorname{lnc}(P)}(\mathbf{x} ; t)=\sum_{\lambda \in \operatorname{Par}(n)}\left(\sum_{T \in \mathcal{T}_{\lambda}} t^{i n v_{P}(T)}\right) s_{\lambda} .
$$

$$
X_{\operatorname{Inc}(P)}(\mathbf{x} ; t)=\sum_{\lambda \in \operatorname{Par}(n)}\left(\sum_{T \in \mathcal{T}_{\lambda}} t^{\operatorname{invP}(T)}\right) s_{\lambda}
$$

When $t=1$, this is Gasharov's formula.

Example: $\mathrm{h}=(2,3), \Gamma(\mathrm{h})=1--2--3$

$$
\begin{aligned}
& \begin{array}{llllll}
T & 1 & 1 & 2 & 3 & 13 \\
& 2 & 3 & 1 & 2 & 2 \\
& 3 & 2 & 1 & 1 &
\end{array} \\
& \operatorname{inv}_{P}(T) \quad 0 \quad 1 \quad 1 \quad 2 \quad 1 \\
& X_{\Gamma(\mathrm{h})}(\mathbf{x} ; t)=\left(1+2 t+t^{2}\right) s_{(1,1,1)}+t s_{(2,1)}
\end{aligned}
$$

Quasisymmetric functions

Let $n \in \mathbb{N}_{0}$ and let $S \subseteq[n-1]$. Let $P(S, n)$ be the set of all weakly decreasing sequences $J=\left(j_{1}, \ldots, j_{n}\right)$ from \mathbb{N} such that $j_{i}>j_{i+1}$ whenever $i \in S$. Set

$$
F_{S, n}:=\sum_{J \in P(S, n)} \prod_{i=1}^{n} x_{j_{i}} \in R[[\mathbf{x}]]
$$

The ring \mathcal{Q}_{R} of quasisymmetric functions is the R-submodule of $R[[x]]$ generated by all $F_{S, n}$.

Note $F_{\emptyset, n}=h_{n}$. So, $\Lambda_{R} \subseteq \mathcal{Q}_{R}$.
(Easy) Proposition: For every graph $G=([n], E)$, $X_{G}(\mathbf{x} ; t) \in \mathcal{Q}_{\mathbb{Q}[t]}$.

Let P be a poset on $[n]$ and let $\operatorname{Inc}(P)=([n], E)$. For $\sigma \in S_{n}$, set

$$
I N V_{P}(\sigma):=\left\{a b \in E \mid a>b, \sigma^{-1}(a)<\sigma^{-1}(b)\right\}
$$

and

$$
D E S_{P}(\sigma):=\left\{i \in[n-1] \mid \sigma(i)>_{P} \sigma(i+1)\right\} .
$$

Theorem: For any poset P on [n],

$$
X_{G}(\mathbf{x} ; t)=\sum_{\sigma \in S_{n}} t^{\left|I N V_{G}(\sigma)\right|} F_{[n-1] \backslash D E S_{P}(\sigma), n}
$$

When $t=1$, this is a theorem of T . Chow.

$$
X_{G}(\mathbf{x} ; t)=\sum_{\sigma \in S_{n}} t^{\left|I N V_{G}(\sigma)\right|} F_{[n-1] \backslash D E S_{P}(\sigma), n}
$$

Corollary: Let $h=\left(h_{1}, \ldots, h_{n-1}\right)$ be a Hessenberg vector. Write

$$
c h^{-1}\left(X_{\Gamma(\mathrm{h})}(\mathbf{x} ; t)\right)=\sum_{j \geq 0} \theta_{j} t^{j}
$$

Then, for each j such that θ_{j} is not the zero function, θ_{j} is a character of S_{n} and

$$
\theta_{j}(1)=\left|\left\{\sigma \in S_{n}:\left|I N V_{\Gamma(h)}(\sigma)\right|=j\right\}\right| .
$$

"Proof": Consider the coefficient of $\prod_{j=1}^{n} x_{j}$ in $X_{G}(\mathbf{x} ; t)$.

The flag variety

Let $n \in \mathbb{N}$, let $G=G L_{n}(\mathbb{C})$ and let B be the subgroup of G consisting of those $g \in G$ that are upper triangular.

The flag variety is the quotient space Flag $_{n}:=G / B$.

A flag in \mathbb{C}^{n} is any chain

$$
\mathcal{F}: 0=V_{0}<V_{1}<\ldots<V_{n}=\mathbb{C}^{n}
$$

of subspaces of \mathbb{C}^{n}.
The group G acts transitively on the set of all flags in \mathbb{C}^{n} and B is the stabilizer of a particular flag. So, the elements of Flag_{n} are in bijection with the set of flags in \mathbb{C}^{n}.

Hessenberg varieties of type A

Let $h=\left(h_{1}, \ldots, h_{n-1}\right)$ be a Hessenberg vector and let $s \in G=G L_{n}(\mathbb{C})$.

First definition: The Hessenberg variety $\operatorname{Hess}(\mathrm{h}, \mathrm{s})$ consists of those

$$
\mathcal{F}: 0=V_{0}<V_{1}<\ldots<V_{n}=\mathbb{C}^{n}
$$

in Flag ${ }_{n}$ satisfying

$$
s V_{i} \leq V_{\mathrm{h}_{i}}
$$

for all $i \in[n-1]$.

Let $\mathrm{h}=\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{n-1}\right)$ be a Hessenberg vector and let $s \in G=G L_{n}(\mathbb{C})$.

Define $M_{n}^{h}(\mathbb{C})$ to be the set of all matrices $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$ such that $a_{i j}=0$ whenever $i>h_{j}$.

Example:

$$
M_{4}^{(2,3,4)}(\mathbb{C})=\left\{\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right]\right\}
$$

Second definition: The Hessenberg variety $\operatorname{Hess}(h, s)$ consists of those $g B \in G / B$ such that $g^{-1} s g \in M_{n}^{h}(\mathbb{C})$.

If $s \in G$ is diagonalizable with n pairwise distinct eigenvalues, then Hess (h, n) is a regular semisimple Hessenberg variety of type A.

Theorem (De Mari-Shayman 1988, De Mari-Procesi-Shayman 1992): Let $\operatorname{Hess}(\mathrm{h}, s) \subseteq \mathrm{Flag}_{n}$ be a regular semisimple Hessenberg variety. Then, for all $j \in \mathbb{N}_{0}$,

- $H^{2 j+1}(\operatorname{Hess}(\mathrm{~h}, \mathrm{~s}))=0$, and
- $\operatorname{dim} H^{2 j}(\operatorname{Hess}(\mathrm{~h}, s), \mathbb{Q})=\left|\left\{\sigma \in S_{n}:\left|I N V_{\Gamma(\mathrm{h})}(\sigma)\right|=j\right\}\right|$

Note $\operatorname{dim} H^{2 j}(\operatorname{Hess}(h, s), \mathbb{Q})=\theta_{j}(1)$.
Let $T=C_{G}(s)$. For $g \in T$ and

$$
\mathcal{F}: 0=V_{0}<V_{1}<\ldots<V_{n}=\mathbb{C}^{n} \in \operatorname{Hess}(h, s)
$$

and $i \in[n-1]$,

$$
s g V_{i}=g s V_{i} \leq g V_{\mathrm{h}_{i}}
$$

Therefore, $g \mathcal{F} \in \operatorname{Hess}(h, s)$.
So, we have an action of T on $\operatorname{Hess}(h, s)$.
Note T is a torus, that is, $T \cong\left(\mathbb{C}^{*}\right)^{n}$.

The theory of Goresky-Kottwitz-MacPherson

This theory applies to the action of a torus S on a variety X when certain technical conditions are satisfied. Such conditions are satisfied by the action of T on $\operatorname{Hess}(\mathrm{h}, \mathrm{s})$ described above.

Given $S=\left(\mathbb{C}^{*}\right)^{n}$ and X, let F be the set of fixed points of S on X and let O be the set of 1 -dimensional orbits of S on X. The technical conditions force that

- F and O are finite, and
- each orbit in F has in its closure exactly two points in O.

The moment graph M associated to the action of S on X has vertex set (indexed by) F and edge set (indexed by) O with $f \in F$ an endpoint of $o \in O$ if and only if $f \subseteq \bar{o}$.

Let $P=\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ and let $R=P^{F}$, the direct sum of $|F|$ copies of R. Write an element of R as $\left(p_{f}\right)_{f \in F}$.

The G-K-M theory says that there is a collection of ideals $\left\{I_{0}: o \in O\right\}$ in P (determined by the action of S on X) such that

- the equivariant cohomology ring $H_{S}^{*}(X, \mathbb{C})$ is isomorphic to the subring of R consisting of those $\left(p_{f}\right)$ satisfying

$$
p_{f}-p_{g} \in I_{o} \text { whenever } o=\{f, g\} \text { is an edge of } M \text {. }
$$

Moreover, $H_{S}^{*}(X, \mathbb{C})$ is a P-submodule of R, and

- $H^{*}(X, \mathbb{C}) \cong H_{S}^{*}(X, \mathbb{C}) /\left(t_{1}, \ldots, t_{n}\right) H_{S}^{*}(X, \mathbb{C})$.

Applying the G-K-M theory to $\operatorname{Hess}(\mathrm{h}, \mathrm{s})$

We may assume that s is diagonal. Then T consists of all diagonal matrices. A flag

$$
\mathcal{F}: 0=V_{0}<V_{1}<\ldots<V_{n}=\mathbb{C}^{n}
$$

is fixed by T if and only if each V_{i} is spanned by i standard basis vectors. Every such flag lies in every $\operatorname{Hess}(h, s)$.

It follows that the elements of F are indexed by the permutations in S_{n} (consider the order in which standard basis vectors are added as we move up the flag).

Given $v, w \in S_{n}$, it turns out that $\{v, w\}$ is an edge in M if and only if there is a transposition $(i j) \in S_{n}$ such that

- $w v^{-1}=(i j)$, and
- ij is an edge in $\Gamma(h)$.

Given an edge $\{v, w\}$ of $M, v^{-1} w$ is a transposition ($k l$), and

$$
I_{\{v, w\}}=\left(t_{k}-t_{l}\right) .
$$

Figure: A cohomology class

The action of S_{n} on itself (from the right) gives an action of S_{n} on the moment graph M.

The natural action of S_{n} on indices determines and action on the polynomial ring P.

If $u \in S_{n}$ maps the edge $\{v, w\}$ to the edge $\{y, z\}$ then u maps $I_{\{v, w\}}$ to $I_{\{y, z\}}$.

Combining these two actions, we get a representation of S_{n} on $H^{*}(\operatorname{Hess}(\mathrm{~h}, \mathrm{~s}), \mathbb{C})$.

This representation has been studied by J. Tymoczko and collaborators.

Figure: The action of a transposition

The main conjecture

Conjecture: Let $\rho_{j}(\mathrm{~h}, s)$ be the character of S_{n} obtained by multiplying the character of the representation on $H^{2 j}(\operatorname{Hess}(h, s), \mathbb{C})$ by the sign character. Then $\operatorname{ch}\left(\rho_{j}(\mathrm{~h}, \mathrm{~s})\right)$ is the coefficient of t^{j} in $X_{\Gamma(\mathrm{h})}(\mathbf{x} ; t)$.

The conjecture holds in the following cases.

- When $\mathrm{h}=(n, \ldots, n)$. In this case $\Gamma(\mathrm{h})$ is the complete graph and $\operatorname{Hess}(h, s)$ is the flag variety.
- When $h=(n-1, n, \ldots, n)$.
- When $\mathrm{h}=(2,3, \ldots, n)$. In this case $\Gamma(h)$ is the toric variety associated to the Coxeter complex of type A and the given representation was studied by C. Procesi, R. Stanley, J.
Stembridge, and I. Dolgachev-V. Lunts.
- When $n \leq 4$.

