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Chromatic Symmetric Functions

G = ([n],E ) a finite, loopless graph.

col(G ) := {f : [n]→ N|f (i) 6= f (j) whenever ij ∈ E}

R. Stanley’s chromatic symmetric function:

XG (x) := XG (x1, x2, . . .) :=
∑

f ∈col(G)

n∏
i=1

xf (i)



XG (x) := XG (x1, x2, . . .) :=
∑

f ∈col(G)

n∏
i=1

xf (i)

G = 1−−2−−3

XG (x) = 6
∑

i<j<k

xixjxk +
∑
i 6=j

x2
i xj



Symmetric functions

Let R be a commutative ring (for us, Q or Q[t]). ΛR is the ring of
symmetric functions with coefficients in R.

ΛR consists of all f ∈ R[[x1, x2, . . .]] such that

I f has bounded degree, and

I f (x1, x2, . . .) = f (xσ(1), xσ(2), . . .) for all σ ∈ Sym(N).

Decomposition into homogeneous pieces:

ΛR =
⊕
k≥0

Λk
R



Some homogeneous symmetric functions:

Complete:

hn :=
∑

i1≤i2≤...≤in

n∏
j=1

xij

Elementary:

en :=
∑

i1<i2<...<in

n∏
j=1

xij

Power sum:

pn :=
∞∑
j=1

xn
j



Let λ = (λ1, . . . , λl) be a partition, b ∈ {h, e, p}.

bλ :=
l∏

j=1

bλj

Fact: {bλ|λ ∈ Par(k)} is a basis for Λk
Q.

Examples:

h(2,2,1) = (x2
1 + x1x2 + x2

2 + . . .)2(x1 + x2 + . . .)

e(2,2,1) = (x1x2 + x1x3 + x2x3 + . . .)2(x1 + x2 + . . .)

p(2,2,1) = (x2
1 + x2

2 + . . .)2(x1 + x2 + . . .)



Incomparability graphs

Let P be a poset on [n]. The incomparability graph Inc(P) has
vertex set [n] and edge set

{ij |i and j are incomparable in P}.

For a, b ∈ N, P is (a + b)-free if there do not exist
x1, . . . , xa, y1, . . . , yb ∈ P such that

I x1 < . . . < xa,

I y1 < . . . < yb, and

I xi and yj are incomparable for all i , j .

Conjecture (Stanley-Stembridge, 1993): If P is a 3 + 1-free poset
on [n] then XInc(P) is e-positive, that is,

XInc(P) ∈ N0[{eλ : λ ∈ Par(n)}].



Frobenius characteristic

Class(Sn) := {f : Sn → Q|f is constant on conjugacy classes}

dim Class(Sn) = dim Λn
Q = |Par(n)|

For λ ∈ Par(n), set

Cλ := {σ ∈ Sn : σ has cycle shape λ},

and
zλ := n!/|Cλ|.

The Frobenius characteristic is the unique linear map

ch :
⊕
n≥0

Class(Sn)→ ΛQ

satisfying
ch(δCλ

) = pλ/zλ.



Schur functions

The irreducible characters χλ of Sn are naturally indexed by Par(n)
and form a basis for Class(Sn). The Schur functions sλ satisfy

sλ = ch(χλ)

For λ = (λ1, . . . , λl) ∈ Par(n), let µλ be the character of the
permutation representation of Sn on the cosets of

∏l
j=1 Sλj .

ch(µλ) = hλ

ch(µλ · sign) = eλ

So, if f ∈ ΛQ is h-positive or e-positive then f is s-positive.



Theorem (V. Gasharov, 1996): Let P be a 3 + 1-free poset. Then
XInc(P) is s-positive.

Gasharov gives a formula for the coefficient of each sλ in XInc(P).
We will see it later.

Goal: a conceptual explanation of Gasharov’s theorem and the
Stanley-Stembridge conjecture.



Chromatic quasisymmetric functions

For G = ([n],E ) and f ∈ col(G ), define

asc(f ) := |{ij ∈ E |i < j and f (i) < f (j)}|.

The chromatic quasisymmetric function of G is

XG (x; t) :=
∑

f ∈col(G)

tasc(f )
n∏

j=1

xf (j).



XG (x; t) :=
∑

f ∈col(G)

tasc(f )
n∏

j=1

xf (j).

G = 1−−2−−3

XG (x; t) = (1 + 4t + t2)
∑

i<j<k

xixjxk + t
∑
i 6=j

x2
i xj

H = 1−−3−−2

XH(x; t) = 2(1 + t + t2)
∑

i<j<k

xixjxk +
∑
i<j

xix
2
j + t2

∑
i<j

x2
i xj

I XG (x; t) ∈ ΛQ[t] but XH(x; t) 6∈ ΛQ[t].



Our favorite graphs

A Hessenberg vector is any h = (h1, . . . , hn−1) ∈ Nn−1 satisfying

I i ≤ hi ≤ n for all i ∈ [n − 1] and

I hi ≤ hi+1 for all i ∈ [n − 2].

The Hessenberg graph Γ(h) associated to h has vertex set [n] and
edge set

E (h) := {ij |i < j ≤ hi}.

Proposition (D. Scott-P. Suppes, 1958): A poset P is both
(3 + 1)-free and (2 + 2)-free if and only if there is some
Hessenberg vector h such that Inc(P) is isomorphic to Γ(h). If h is
a Hessenberg vector then there is a 3 + 1-free and 2 + 2-free poset
P such that Inc(P) = Γ(h).

Proposition: If h is a Hessenberg vector then XΓ(h)(x; t) ∈ ΛQ[t].



Schur decomposition
Let h be a Hessenberg vector and let P be the poset on [n] with
Inc(P) = Γ(h). Let λ ∈ Par(n).

A P-tableau T of shape λ is a filling of the Young diagram of
shape λ with all of the elements of [n] such that

I if j appears immediately to the right of j in T then i <P j , and

I if j appears immediately below i in T then j ≮P i .

Let Tλ be the set of all P-tableau of shape λ. For T ∈ Tλ, set

invP(T ) := |{ij ∈ E (h)|i < j and rowT (i) > rowT (j)}|.

Theorem: With h,P as above,

XInc(P)(x; t) =
∑

λ∈Par(n)

 ∑
T∈Tλ

t invP(T )

 sλ.



XInc(P)(x; t) =
∑

λ∈Par(n)

 ∑
T∈Tλ

t invP(T )

 sλ

When t = 1, this is Gasharov’s formula.

Example: h = (2, 3), Γ(h) = 1−−2−−3

T 1 1 2 3 13
2 3 1 2 2
3 2 1 1

invP(T ) 0 1 1 2 1

XΓ(h)(x; t) = (1 + 2t + t2)s(1,1,1) + ts(2,1)



Quasisymmetric functions

Let n ∈ N0 and let S ⊆ [n − 1]. Let P(S , n) be the set of all
weakly decreasing sequences J = (j1, . . . , jn) from N such that
ji > ji+1 whenever i ∈ S . Set

FS,n :=
∑

J∈P(S ,n)

n∏
i=1

xji ∈ R[[x]]

.

The ring QR of quasisymmetric functions is the R-submodule of
R[[x ]] generated by all FS ,n.

Note F∅,n = hn. So, ΛR ⊆ QR .

(Easy) Proposition: For every graph G = ([n],E ),
XG (x; t) ∈ QQ[t].



Let P be a poset on [n] and let Inc(P) = ([n],E ). For σ ∈ Sn, set

INVP(σ) := {ab ∈ E |a > b, σ−1(a) < σ−1(b)}

and
DESP(σ) := {i ∈ [n − 1]|σ(i) >P σ(i + 1)}.

Theorem: For any poset P on [n],

XG (x; t) =
∑
σ∈Sn

t |INVG (σ)|F[n−1]\DESP(σ),n.

When t = 1, this is a theorem of T. Chow.



XG (x; t) =
∑
σ∈Sn

t |INVG (σ)|F[n−1]\DESP(σ),n

Corollary: Let h = (h1, . . . , hn−1) be a Hessenberg vector. Write

ch−1(XΓ(h)(x; t)) =
∑
j≥0

θj t
j .

Then, for each j such that θj is not the zero function, θj is a
character of Sn and

θj(1) = |{σ ∈ Sn : |INVΓ(h)(σ)| = j}|.

“Proof”: Consider the coefficient of
∏n

j=1 xj in XG (x; t).



The flag variety

Let n ∈ N, let G = GLn(C) and let B be the subgroup of G
consisting of those g ∈ G that are upper triangular.

The flag variety is the quotient space Flagn := G/B.

A flag in Cn is any chain

F : 0 = V0 < V1 < . . . < Vn = Cn

of subspaces of Cn.

The group G acts transitively on the set of all flags in Cn and B is
the stabilizer of a particular flag. So, the elements of Flagn are in
bijection with the set of flags in Cn.



Hessenberg varieties of type A

Let h = (h1, . . . , hn−1) be a Hessenberg vector and let
s ∈ G = GLn(C).

First definition: The Hessenberg variety Hess(h, s) consists of
those

F : 0 = V0 < V1 < . . . < Vn = Cn

in Flagn satisfying
sVi ≤ Vhi

for all i ∈ [n − 1].



Let h = (h1, . . . , hn−1) be a Hessenberg vector and let
s ∈ G = GLn(C).

Define Mh
n (C) to be the set of all matrices A = (aij) ∈ Mn(C) such

that aij = 0 whenever i > hj .

Example:

M
(2,3,4)
4 (C) =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗




Second definition: The Hessenberg variety Hess(h, s) consists of
those gB ∈ G/B such that g−1sg ∈ Mh

n (C).



If s ∈ G is diagonalizable with n pairwise distinct eigenvalues, then
Hess(h, n) is a regular semisimple Hessenberg variety of type A.

Theorem (De Mari-Shayman 1988, De Mari-Procesi-Shayman
1992): Let Hess(h, s) ⊆ Flagn be a regular semisimple Hessenberg
variety. Then, for all j ∈ N0,

I H2j+1(Hess(h, s)) = 0, and

I dim H2j(Hess(h, s),Q) = |{σ ∈ Sn : |INVΓ(h)(σ)| = j}|



Note dim H2j(Hess(h, s),Q) = θj(1).

Let T = CG (s). For g ∈ T and

F : 0 = V0 < V1 < . . . < Vn = Cn ∈ Hess(h, s)

and i ∈ [n − 1],
sgVi = gsVi ≤ gVhi

.

Therefore, gF ∈ Hess(h, s).

So, we have an action of T on Hess(h, s).

Note T is a torus, that is, T ∼= (C∗)n.



The theory of Goresky-Kottwitz-MacPherson

This theory applies to the action of a torus S on a variety X when
certain technical conditions are satisfied. Such conditions are
satisfied by the action of T on Hess(h, s) described above.

Given S = (C∗)n and X , let F be the set of fixed points of S on X
and let O be the set of 1-dimensional orbits of S on X . The
technical conditions force that

I F and O are finite, and

I each orbit in F has in its closure exactly two points in O.

The moment graph M associated to the action of S on X has
vertex set (indexed by) F and edge set (indexed by) O with f ∈ F
an endpoint of o ∈ O if and only if f ⊆ o.



Let P = C[t1, . . . , tn] and let R = PF , the direct sum of |F | copies
of R. Write an element of R as (pf )f ∈F .

The G-K-M theory says that there is a collection of ideals
{Io : o ∈ O} in P (determined by the action of S on X ) such that

I the equivariant cohomology ring H∗S(X ,C) is isomorphic to
the subring of R consisting of those (pf ) satisfying

pf − pg ∈ Io whenever o = {f , g} is an edge of M.

Moreover, H∗S(X ,C) is a P-submodule of R, and

I H∗(X ,C) ∼= H∗S(X ,C)/(t1, . . . , tn)H∗S(X ,C).



Applying the G-K-M theory to Hess(h, s)

We may assume that s is diagonal. Then T consists of all diagonal
matrices. A flag

F : 0 = V0 < V1 < . . . < Vn = Cn

is fixed by T if and only if each Vi is spanned by i standard basis
vectors. Every such flag lies in every Hess(h, s).

It follows that the elements of F are indexed by the permutations
in Sn (consider the order in which standard basis vectors are added
as we move up the flag).



Given v ,w ∈ Sn, it turns out that {v ,w} is an edge in M if and
only if there is a transposition (ij) ∈ Sn such that

I wv−1 = (ij), and

I ij is an edge in Γ(h).

Given an edge {v ,w} of M, v−1w is a transposition (kl), and

I{v ,w} = (tk − tl).
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G=1---2---3 P=  3 2|
1

t_1-t_2

t_1-t_3

t_2-t_3 t_1-t_2

t_1-t_3
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0

0

0

t_1-t_2

t_3-t_2

Figure: A cohomology class



The action of Sn on itself (from the right) gives an action of Sn on
the moment graph M.

The natural action of Sn on indices determines and action on the
polynomial ring P.

If u ∈ Sn maps the edge {v ,w} to the edge {y , z} then u maps
I{v ,w} to I{y ,z}.

Combining these two actions, we get a representation of Sn on
H∗(Hess(h, s),C).

This representation has been studied by J. Tymoczko and
collaborators.
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Figure: The action of a transposition



The main conjecture

Conjecture: Let ρj(h, s) be the character of Sn obtained by
multiplying the character of the representation on
H2j(Hess(h, s),C) by the sign character. Then ch(ρj(h, s)) is the
coefficient of t j in XΓ(h)(x; t).

The conjecture holds in the following cases.

I When h = (n, . . . , n). In this case Γ(h) is the complete graph
and Hess(h, s) is the flag variety.

I When h = (n − 1, n, . . . , n).

I When h = (2, 3, . . . , n). In this case Γ(h) is the toric variety
associated to the Coxeter complex of type A and the given
representation was studied by C. Procesi, R. Stanley, J.
Stembridge, and I. Dolgachev-V. Lunts.

I When n ≤ 4.


