Chromatic quasisymmetric functions and regular semisimple Hessenberg varieties

> John Shareshian Washington University Michelle Wachs University of Miami

### Chromatic Symmetric Functions

G = ([n], E) a finite, loopless graph.

 $\operatorname{col}(G) := \{f : [n] \to \mathbb{N} | f(i) \neq f(j) \text{ whenever } ij \in E\}$ 

R. Stanley's chromatic symmetric function:

$$X_G(\mathbf{x}) := X_G(x_1, x_2, \ldots) := \sum_{f \in \operatorname{col}(G)} \prod_{i=1}^n x_{f(i)}$$

$$X_G(\mathbf{x}) := X_G(x_1, x_2, \ldots) := \sum_{f \in \operatorname{col}(G)} \prod_{i=1}^n x_{f(i)}$$

$$G = 1 - -2 - -3$$

$$X_G(\mathbf{x}) = 6 \sum_{i < j < k} x_i x_j x_k + \sum_{i \neq j} x_i^2 x_j$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

## Symmetric functions

Let *R* be a commutative ring (for us,  $\mathbb{Q}$  or  $\mathbb{Q}[t]$ ).  $\Lambda_R$  is the ring of symmetric functions with coefficients in *R*.

 $\Lambda_R$  consists of all  $f \in R[[x_1, x_2, \ldots]]$  such that

f has bounded degree, and

• 
$$f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots)$$
 for all  $\sigma \in Sym(\mathbb{N})$ .

Decomposition into homogeneous pieces:

$$\Lambda_R = \bigoplus_{k \ge 0} \Lambda_R^k$$

Some homogeneous symmetric functions:

Complete:

$$h_n := \sum_{i_1 \le i_2 \le \dots \le i_n} \prod_{j=1}^n x_{i_j}$$

Elementary:

$$e_n := \sum_{i_1 < i_2 < \ldots < i_n} \prod_{j=1}^n x_{i_j}$$

Power sum:

$$p_n := \sum_{j=1}^{\infty} x_j^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let 
$$\lambda = (\lambda_1, \dots, \lambda_l)$$
 be a partition,  $b \in \{h, e, p\}$ . $b_\lambda := \prod_{j=1}^l b_{\lambda_j}$ 

Fact:  $\{b_{\lambda} | \lambda \in Par(k)\}$  is a basis for  $\Lambda_{\mathbb{Q}}^{k}$ .

Examples:

$$h_{(2,2,1)} = (x_1^2 + x_1x_2 + x_2^2 + \dots)^2 (x_1 + x_2 + \dots)$$
$$e_{(2,2,1)} = (x_1x_2 + x_1x_3 + x_2x_3 + \dots)^2 (x_1 + x_2 + \dots)$$
$$p_{(2,2,1)} = (x_1^2 + x_2^2 + \dots)^2 (x_1 + x_2 + \dots)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Incomparability graphs

Let P be a poset on [n]. The *incomparability graph* Inc(P) has vertex set [n] and edge set

 $\{ij|i \text{ and } j \text{ are incomparable in } P\}.$ 

For  $a, b \in \mathbb{N}$ , P is (a + b)-free if there do not exist  $x_1, \ldots, x_a, y_1, \ldots, y_b \in P$  such that

- $x_1 < \ldots < x_a$ ,
- $y_1 < \ldots < y_b$ , and
- $x_i$  and  $y_j$  are incomparable for all i, j.

**Conjecture** (Stanley-Stembridge, 1993): If P is a 3 + 1-free poset on [n] then  $X_{Inc(P)}$  is e-positive, that is,

$$X_{Inc(P)} \in \mathbb{N}_0[\{e_{\lambda} : \lambda \in Par(n)\}].$$

#### Frobenius characteristic

 $Class(S_n) := \{f : S_n \to \mathbb{Q} | f \text{ is constant on conjugacy classes} \}$ 

dim Class
$$(S_n)$$
 = dim  $\Lambda^n_{\mathbb{O}}$  =  $|Par(n)|$ 

For  $\lambda \in Par(n)$ , set

$$C_{\lambda} := \{ \sigma \in S_n : \sigma \text{ has cycle shape } \lambda \},\$$

and

$$z_{\lambda} := n!/|C_{\lambda}|.$$

The Frobenius characteristic is the unique linear map

$$ch: \bigoplus_{n\geq 0} \operatorname{Class}(S_n) o \Lambda_{\mathbb{Q}}$$

satisfying

$$ch(\delta_{C_{\lambda}}) = p_{\lambda}/z_{\lambda}.$$

## Schur functions

The irreducible characters  $\chi^{\lambda}$  of  $S_n$  are naturally indexed by Par(n) and form a basis for  $Class(S_n)$ . The *Schur functions*  $s_{\lambda}$  satisfy

$$s_{\lambda} = ch(\chi^{\lambda})$$

For  $\lambda = (\lambda_1, ..., \lambda_l) \in Par(n)$ , let  $\mu^{\lambda}$  be the character of the permutation representation of  $S_n$  on the cosets of  $\prod_{j=1}^l S_{\lambda_j}$ .

$${\it ch}(\mu^\lambda)={\it h}_\lambda$$

$$\mathit{ch}(\mu^{\lambda} \cdot \mathit{sign}) = \mathit{e}_{\lambda}$$

So, if  $f \in \Lambda_{\mathbb{Q}}$  is *h*-positive or *e*-positive then *f* is *s*-positive.

**Theorem** (V. Gasharov, 1996): Let P be a 3 + 1-free poset. Then  $X_{Inc(P)}$  is s-positive.

Gasharov gives a formula for the coefficient of each  $s_{\lambda}$  in  $X_{Inc(P)}$ . We will see it later.

Goal: a conceptual explanation of Gasharov's theorem and the Stanley-Stembridge conjecture.

(日) (日) (日) (日) (日) (日) (日) (日)

# Chromatic quasisymmetric functions

For 
$$G = ([n], E)$$
 and  $f \in col(G)$ , define  
 $asc(f) := |\{ij \in E | i < j \text{ and } f(i) < f(j)\}|.$ 

The chromatic quasisymmetric function of G is

$$X_G(\mathbf{x};t) := \sum_{f \in \operatorname{col}(G)} t^{\operatorname{asc}(f)} \prod_{j=1}^n x_{f(j)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$X_G(\mathbf{x};t) := \sum_{f \in \operatorname{col}(G)} t^{\operatorname{asc}(f)} \prod_{j=1}^n x_{f(j)}$$

$$G = 1 - 2 - 3$$

$$X_G(\mathbf{x}; t) = (1 + 4t + t^2) \sum_{i < j < k} x_i x_j x_k + t \sum_{i \neq j} x_i^2 x_j$$

$$H = 1 - -3 - -2$$

$$X_{G}(\mathbf{x}; t) := \sum_{f \in col(G)} t^{asc(f)} \prod_{j=1}^{n} x_{f(j)}.$$

$$G = 1 - -2 - -3$$

$$X_{G}(\mathbf{x}; t) = (1 + 4t + t^{2}) \sum_{i < j < k} x_{i}x_{j}x_{k} + t \sum_{i \neq j} x_{i}^{2}x_{j}$$

$$H = 1 - -3 - -2$$

$$X_{H}(\mathbf{x}; t) = 2(1 + t + t^{2}) \sum_{i < j < k} x_{i}x_{j}x_{k} + \sum_{i < j} x_{i}x_{j}^{2} + t^{2} \sum_{i < j} x_{i}^{2}x_{j}$$

 $\blacktriangleright \ X_G({\sf x};t) \in \Lambda_{\mathbb{Q}[t]} \ \text{but} \ X_H({\sf x};t) \not\in \Lambda_{\mathbb{Q}[t]}.$ 

## Our favorite graphs

A Hessenberg vector is any  $h = (h_1, \ldots, h_{n-1}) \in \mathbb{N}^{n-1}$  satisfying

•  $i \leq h_i \leq n$  for all  $i \in [n-1]$  and

• 
$$h_i \leq h_{i+1}$$
 for all  $i \in [n-2]$ .

The Hessenberg graph  $\Gamma(h)$  associated to h has vertex set [n] and edge set

$$E(h) := \{ ij | i < j \le h_i \}.$$

**Proposition** (D. Scott-P. Suppes, 1958): A poset P is both (3 + 1)-free and (2 + 2)-free if and only if there is some Hessenberg vector h such that Inc(P) is isomorphic to  $\Gamma(h)$ . If h is a Hessenberg vector then there is a 3 + 1-free and 2 + 2-free poset P such that  $Inc(P) = \Gamma(h)$ .

**Proposition**: If h is a Hessenberg vector then  $X_{\Gamma(h)}(\mathbf{x}; t) \in \Lambda_{\mathbb{Q}[t]}$ .

#### Schur decomposition

Let h be a Hessenberg vector and let P be the poset on [n] with  $Inc(P) = \Gamma(h)$ . Let  $\lambda \in Par(n)$ .

A *P*-tableau *T* of shape  $\lambda$  is a filling of the Young diagram of shape  $\lambda$  with all of the elements of [n] such that

- if j appears immediately to the right of j in T then  $i <_P j$ , and
- if j appears immediately below i in T then  $j \not\leq_P i$ .

Let  $\mathcal{T}_{\lambda}$  be the set of all *P*-tableau of shape  $\lambda$ . For  $\mathcal{T} \in \mathcal{T}_{\lambda}$ , set

$$inv_P(T) := |\{ij \in E(h) | i < j \text{ and } row_T(i) > row_T(j)\}|.$$

**Theorem**: With h, P as above,

$$X_{Inc(P)}(\mathbf{x};t) = \sum_{\lambda \in Par(n)} \left( \sum_{T \in \mathcal{T}_{\lambda}} t^{inv_{P}(T)} \right) s_{\lambda}.$$

$$X_{\mathit{Inc}(P)}(\mathbf{x};t) = \sum_{\lambda \in \mathit{Par}(n)} \left( \sum_{T \in \mathcal{T}_{\lambda}} t^{\mathit{inv}_{P}(T)} 
ight) s_{\lambda}$$

When t = 1, this is Gasharov's formula.

**Example**: h = (2, 3),  $\Gamma(h) = 1 - 2 - 3$ 

 $inv_P(T)$  0 1 1 2 1

$$X_{\Gamma(h)}(\mathbf{x};t) = (1+2t+t^2)s_{(1,1,1)} + ts_{(2,1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Quasisymmetric functions

Let  $n \in \mathbb{N}_0$  and let  $S \subseteq [n-1]$ . Let P(S, n) be the set of all weakly decreasing sequences  $J = (j_1, \ldots, j_n)$  from  $\mathbb{N}$  such that  $j_i > j_{i+1}$  whenever  $i \in S$ . Set

$$F_{S,n} := \sum_{J \in P(S,n)} \prod_{i=1}^n x_{j_i} \in R[[\mathbf{x}]]$$

The ring  $Q_R$  of quasisymmetric functions is the *R*-submodule of R[[x]] generated by all  $F_{S,n}$ .

Note  $F_{\emptyset,n} = h_n$ . So,  $\Lambda_R \subseteq Q_R$ .

(Easy) **Proposition**: For every graph G = ([n], E),  $X_G(\mathbf{x}; t) \in \mathcal{Q}_{\mathbb{Q}[t]}$ .

Let P be a poset on [n] and let Inc(P) = ([n], E). For  $\sigma \in S_n$ , set  $INV_P(\sigma) := \{ab \in E | a > b, \sigma^{-1}(a) < \sigma^{-1}(b)\}$ 

and

$$DES_P(\sigma) := \{i \in [n-1] | \sigma(i) >_P \sigma(i+1)\}.$$

**Theorem**: For any poset P on [n],

$$X_G(\mathbf{x};t) = \sum_{\sigma \in S_n} t^{|INV_G(\sigma)|} F_{[n-1] \setminus DES_P(\sigma), n}.$$

When t = 1, this is a theorem of T. Chow.

$$X_G(\mathbf{x};t) = \sum_{\sigma \in S_n} t^{|INV_G(\sigma)|} F_{[n-1] \setminus DES_P(\sigma), n}$$

**Corollary**: Let  $h = (h_1, \dots, h_{n-1})$  be a Hessenberg vector. Write

$$ch^{-1}(X_{\Gamma(\mathsf{h})}(\mathsf{x};t)) = \sum_{j\geq 0} heta_j t^j.$$

Then, for each j such that  $\theta_j$  is not the zero function,  $\theta_j$  is a character of  $S_n$  and

$$\theta_j(1) = |\{\sigma \in S_n : |INV_{\Gamma(h)}(\sigma)| = j\}|.$$

"Proof": Consider the coefficient of  $\prod_{i=1}^{n} x_i$  in  $X_G(\mathbf{x}; t)$ .

#### The flag variety

Let  $n \in \mathbb{N}$ , let  $G = GL_n(\mathbb{C})$  and let B be the subgroup of G consisting of those  $g \in G$  that are upper triangular.

The *flag variety* is the quotient space  $Flag_n := G/B$ .

A flag in  $\mathbb{C}^n$  is any chain

$$\mathcal{F}: 0 = V_0 < V_1 < \ldots < V_n = \mathbb{C}^n$$

of subspaces of  $\mathbb{C}^n$ .

The group *G* acts transitively on the set of all flags in  $\mathbb{C}^n$  and *B* is the stabilizer of a particular flag. So, the elements of  $\operatorname{Flag}_n$  are in bijection with the set of flags in  $\mathbb{C}^n$ .

## Hessenberg varieties of type A

Let 
$$h = (h_1, ..., h_{n-1})$$
 be a Hessenberg vector and let  $s \in G = GL_n(\mathbb{C}).$ 

**First definition**: The *Hessenberg variety* Hess(h, s) consists of those

$$\mathcal{F}: 0 = V_0 < V_1 < \ldots < V_n = \mathbb{C}^n$$

in Flag<sub>n</sub> satisfying

$$sV_i \leq V_{h_i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

for all  $i \in [n-1]$ .

Let  $h = (h_1, ..., h_{n-1})$  be a Hessenberg vector and let  $s \in G = GL_n(\mathbb{C}).$ 

Define  $M_n^h(\mathbb{C})$  to be the set of all matrices  $A = (a_{ij}) \in M_n(\mathbb{C})$  such that  $a_{ij} = 0$  whenever  $i > h_j$ .

Example:

$$\mathcal{M}_{4}^{(2,3,4)}(\mathbb{C}) = \left\{ \left[ egin{array}{cccc} * & * & * & * \ * & * & * & * \ 0 & * & * & * \ 0 & 0 & * & * \ 0 & 0 & * & * \end{array} 
ight] 
ight\}$$

**Second definition**: The Hessenberg variety Hess(h, s) consists of those  $gB \in G/B$  such that  $g^{-1}sg \in M_n^h(\mathbb{C})$ .

If  $s \in G$  is diagonalizable with *n* pairwise distinct eigenvalues, then Hess(h, *n*) is a *regular semisimple Hessenberg variety of type A*.

**Theorem** (De Mari-Shayman 1988, De Mari-Procesi-Shayman 1992): Let  $\text{Hess}(h, s) \subseteq \text{Flag}_n$  be a regular semisimple Hessenberg variety. Then, for all  $j \in \mathbb{N}_0$ ,

• dim  $H^{2j}(\text{Hess}(h, s), \mathbb{Q}) = |\{\sigma \in S_n : |INV_{\Gamma(h)}(\sigma)| = j\}|$ 

Note dim  $H^{2j}(\text{Hess}(h, s), \mathbb{Q}) = \theta_j(1)$ . Let  $T = C_G(s)$ . For  $g \in T$  and  $\mathcal{F} : 0 = V_0 < V_1 < \ldots < V_n = \mathbb{C}^n \in \text{Hess}(h, s)$ and  $i \in [n-1]$ ,  $sgV_i = gsV_i \leq gV_{h_i}$ .

Therefore,  $g\mathcal{F} \in \text{Hess}(h, s)$ .

So, we have an action of T on Hess(h, s).

Note T is a torus, that is,  $T \cong (\mathbb{C}^*)^n$ .

## The theory of Goresky-Kottwitz-MacPherson

This theory applies to the action of a torus S on a variety X when certain technical conditions are satisfied. Such conditions are satisfied by the action of T on Hess(h, s) described above.

Given  $S = (\mathbb{C}^*)^n$  and X, let F be the set of fixed points of S on X and let O be the set of 1-dimensional orbits of S on X. The technical conditions force that

- F and O are finite, and
- ▶ each orbit in *F* has in its closure exactly two points in *O*.

The moment graph M associated to the action of S on X has vertex set (indexed by) F and edge set (indexed by) O with  $f \in F$ an endpoint of  $o \in O$  if and only if  $f \subseteq \overline{o}$ .

Let  $P = \mathbb{C}[t_1, \ldots, t_n]$  and let  $R = P^F$ , the direct sum of |F| copies of R. Write an element of R as  $(p_f)_{f \in F}$ .

The G-K-M theory says that there is a collection of ideals  $\{I_o : o \in O\}$  in P (determined by the action of S on X) such that

► the equivariant cohomology ring H<sup>\*</sup><sub>S</sub>(X, C) is isomorphic to the subring of R consisting of those (p<sub>f</sub>) satisfying

$$p_f - p_g \in I_o$$
 whenever  $o = \{f, g\}$  is an edge of  $M$ .

Moreover,  $H^*_S(X, \mathbb{C})$  is a *P*-submodule of *R*, and

$$H^*(X,\mathbb{C}) \cong H^*_S(X,\mathbb{C})/(t_1,\ldots,t_n)H^*_S(X,\mathbb{C}).$$

Applying the G-K-M theory to Hess(h, s)

We may assume that s is diagonal. Then T consists of all diagonal matrices. A flag

$$\mathcal{F}: 0 = V_0 < V_1 < \ldots < V_n = \mathbb{C}^n$$

is fixed by T if and only if each  $V_i$  is spanned by i standard basis vectors. Every such flag lies in every Hess(h, s).

It follows that the elements of F are indexed by the permutations in  $S_n$  (consider the order in which standard basis vectors are added as we move up the flag).

Given  $v, w \in S_n$ , it turns out that  $\{v, w\}$  is an edge in M if and only if there is a transposition  $(ij) \in S_n$  such that

- $wv^{-1} = (ij)$ , and
- *ij* is an edge in  $\Gamma(h)$ .

Given an edge  $\{v, w\}$  of M,  $v^{-1}w$  is a transposition (kl), and

$$I_{\{v,w\}}=(t_k-t_l).$$



Figure: A cohomology class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The action of  $S_n$  on itself (from the right) gives an action of  $S_n$  on the moment graph M.

The natural action of  $S_n$  on indices determines and action on the polynomial ring P.

If  $u \in S_n$  maps the edge  $\{v, w\}$  to the edge  $\{y, z\}$  then u maps  $I_{\{v, w\}}$  to  $I_{\{y, z\}}$ .

Combining these two actions, we get a representation of  $S_n$  on  $H^*(\text{Hess}(h, s), \mathbb{C})$ .

This representation has been studied by J. Tymoczko and collaborators.





▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Figure: The action of a transposition

#### The main conjecture

**Conjecture**: Let  $\rho_j(h, s)$  be the character of  $S_n$  obtained by multiplying the character of the representation on  $H^{2j}(\text{Hess}(h, s), \mathbb{C})$  by the sign character. Then  $ch(\rho_j(h, s))$  is the coefficient of  $t^j$  in  $X_{\Gamma(h)}(\mathbf{x}; t)$ .

The conjecture holds in the following cases.

When h = (n,..., n). In this case Γ(h) is the complete graph and Hess(h, s) is the flag variety.

• When 
$$h = (n - 1, n, ..., n)$$
.

When h = (2, 3, ..., n). In this case Γ(h) is the toric variety associated to the Coxeter complex of type A and the given representation was studied by C. Procesi, R. Stanley, J. Stembridge, and I. Dolgachev-V. Lunts.

• When 
$$n \leq 4$$
.