Quivers and Path Algebras Sage Days 38: May 7-11, 2012

Øyvind Solberg

Department of Mathematical Sciences, NTNU, Norway

May 8th, 2012

QPA: Quivers

QPA: Quivers

$$
\begin{aligned}
& \left.Q: 1 \xrightarrow{\alpha} 2, \quad Q^{\prime}: 1 \bigcirc \alpha, \quad Q^{\prime \prime}: 1 \frac{\alpha}{2}\right\rceil^{\gamma} \\
& Q= \begin{cases}Q_{0}, & \text { the set of vertices, usually }\{1,2, \ldots, n\} \\
Q_{1}, & \text { the set of arrows } \\
\mathfrak{o}, \mathfrak{t}: Q_{1} \rightarrow Q_{0}, & \text { origin/terminus vertex of an arrow }\end{cases}
\end{aligned}
$$

QPA: Representations (over \mathbb{Q})

$$
\begin{aligned}
& Q: 1 \xrightarrow{\alpha} 2 \\
& \quad M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \mathbb{Q}, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}
\end{aligned}
$$

QPA: Representations (over \mathbb{Q})

$$
\begin{aligned}
Q: & 1 \xrightarrow{\alpha} 2 \\
& M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \mathbb{Q}, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q} \\
M= & \begin{cases}M(i), & \text { finite dim'l vector space at vertex } i \in Q_{0} \\
f_{\alpha}: M(i) \rightarrow M(j), & \text { linear map for each } \alpha: i \rightarrow j \in Q_{1}\end{cases} \\
= & \left(\{M(i)\}_{\left.i \in Q_{0},\left\{f_{\alpha}\right\}_{\alpha \in Q_{1}}\right)}\right.
\end{aligned}
$$

Elements: $m=\left(m_{1}, m_{2}, \ldots, m_{\left|Q_{0}\right|}\right) \in M$ for $m_{i} \in M(i)$.

QPA: Representations (over \mathbb{Q})

$Q: 1 \xrightarrow{\alpha} 2$
$M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}1 \\ -1\end{array}\right]} \mathbb{Q}, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$

$$
\begin{aligned}
M & = \begin{cases}M(i), & \text { finite dim'l vector space at vertex } i \in Q_{0} \\
f_{\alpha}: M(i) \rightarrow M(j), & \text { linear map for each } \alpha: i \rightarrow j \in Q_{1}\end{cases} \\
& =\left(\{M(i)\}_{\left.i \in Q_{0},\left\{f_{\alpha}\right\}_{\alpha \in Q_{1}}\right)}\right.
\end{aligned}
$$

Elements: $m=\left(m_{1}, m_{2}, \ldots, m_{\left|Q_{0}\right|}\right) \in M$ for $m_{i} \in M(i)$.

$$
\operatorname{dim}(M)=(2,1)
$$

Dimension vector: $\operatorname{dim}\left(S_{1}\right)=(1,0)$

$$
\underline{\operatorname{dim}}\left(P_{1}\right)=(1,1)
$$

QPA: Direct sum

$Q: 1 \xrightarrow{\alpha} 2$

$$
S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}
$$

QPA: Direct sum

$Q: 1 \xrightarrow{\alpha} 2$

$$
S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}
$$

Direct sum:

$$
S_{1} \oplus P_{1}: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} 0 \oplus \mathbb{Q}
$$

QPA: Direct sum

$Q: 1 \xrightarrow{\alpha} 2$

$$
S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}
$$

Direct sum:

$$
S_{1} \oplus P_{1}: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} 0 \oplus \mathbb{Q}
$$

For $M=\left(\{M(i)\}_{i \in Q_{0}},\left\{f_{\alpha}\right\}_{\alpha \in Q_{1}}\right)$ and $N=\left(\{N(i)\}_{i \in Q_{0}},\left\{g_{\alpha}\right\}_{\alpha \in Q_{1}}\right)$

$$
M \oplus N= \begin{cases}M(i) \oplus N(i), & i \in Q_{0} \\
M(i) \oplus N(i) \xrightarrow{\left[\begin{array}{cc}
f_{\alpha} & 0 \\
0 & g_{\alpha}
\end{array}\right]} M(j) \oplus N(j), & \alpha: i \rightarrow j \in Q_{1}\end{cases}
$$

QPA: Isomorphisms

$$
Q: 1 \xrightarrow{\alpha} 2
$$

$$
S_{1} \oplus P_{1}: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \mathbb{Q}
$$

QPA: Isomorphisms

$Q: 1 \xrightarrow{\alpha} 2$

$$
S_{1} \oplus P_{1}: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \mathbb{Q}
$$

Definition: Two representations are isomorphic if they define the same vector spaces and linear maps up to some base change.

QPA: Isomorphisms

$Q: 1 \xrightarrow{\alpha} 2$

$$
S_{1} \oplus P_{1}: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \mathbb{Q}
$$

Definition: Two representations are isomorphic if they define the same vector spaces and linear maps up to some base change.
$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{ll}0 & 1\end{array}\right]$, or equivalently $f_{\alpha}=\varphi(1) g_{\alpha} \varphi(2)^{-1}$.
Write: $M \simeq S_{1} \oplus P_{1}$.

QPA: Indecomposable representations

$$
Q: 1 \xrightarrow{\alpha} 2, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}
$$

QPA: Indecomposable representations

$Q: 1 \xrightarrow{\alpha} 2, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$
Definition: A representation M is indecomposable if M is not isomorphic to a direct sum of two non-zero representations.

QPA: Indecomposable representations

$Q: 1 \xrightarrow{\alpha} 2, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$
Definition: A representation M is indecomposable if M is not isomorphic to a direct sum of two non-zero representations.

Recall: $M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}1 \\ -1\end{array}\right]} \mathbb{Q} \simeq S_{1} \oplus P_{1}$

QPA: Indecomposable representations

$Q: 1 \xrightarrow{\alpha} 2, \quad S_{1}: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_{1}: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$
Definition: A representation M is indecomposable if M is not isomorphic to a direct sum of two non-zero representations.

Recall: $M: \mathbb{Q}^{2} \xrightarrow{\left[\begin{array}{c}1 \\ -1\end{array}\right]} \mathbb{Q} \simeq S_{1} \oplus P_{1}$
Krull-Remak-Schmidt-theorem:
(a) Any representation is isomorphic to a direct sum of indecomposable representations.
(b) Any decomposition into indecomposables is essentially unique.

QPA: Homomorphisms

$$
\begin{align*}
M \simeq N \Leftrightarrow & \exists \varphi(i): M(i) \xrightarrow{\sim} N(i) \text { such that } f_{\alpha}=\varphi(i) g_{\alpha} \varphi(j)^{-1} \\
\Leftrightarrow & M(i) \xrightarrow{\varphi(i)} N(i) \text { commutes } \tag{1}\\
& f_{\alpha} \downarrow \\
& M(j) \xrightarrow{\varphi(j)} \underset{\longrightarrow}{\downarrow} N(j)
\end{align*}
$$

QPA: Homomorphisms

$$
\begin{aligned}
M \simeq N \Leftrightarrow & \exists \varphi(i): M(i) \xrightarrow{\sim} N(i) \text { such that } f_{\alpha}=\varphi(i) g_{\alpha} \varphi(j)^{-1} \\
\Leftrightarrow & M(i) \xrightarrow{\varphi(i)} N(i) \text { commutes } \\
& f_{\alpha} \downarrow \\
& M(j) \xrightarrow{\varphi(j)} \underset{\longrightarrow}{\downarrow} N(j)
\end{aligned}
$$

Definition: A family of linear maps $\varphi(i): M(i) \rightarrow N(i)$ is a homomorphism $\varphi: M \rightarrow N$ if (1) commutes for all $\alpha \in Q_{1}$.

QPA: Homomorphisms

$$
\begin{align*}
M \simeq N \Leftrightarrow & \exists \varphi(i): M(i) \xrightarrow{\sim} N(i) \text { such that } f_{\alpha}=\varphi(i) g_{\alpha} \varphi(j)^{-1} \\
\Leftrightarrow & M(i) \xrightarrow{\varphi(i)} N(i) \text { commutes } \tag{1}\\
& f_{\alpha} \downarrow \\
& M(j) \xrightarrow{\varphi(j)} \underset{\longrightarrow}{\downarrow} N(j)
\end{align*}
$$

Definition: A family of linear maps $\varphi(i): M(i) \rightarrow N(i)$ is a homomorphism $\varphi: M \rightarrow N$ if (1) commutes for all $\alpha \in Q_{1}$.

$(\varphi(1), \varphi(2))=(0,0)$
$\{(\varphi(1), \varphi(2))\}=\{(a, 0) \mid a \in \mathbb{Q}\}$

QPA: Quiver with relations

$Q: 1 \bigcirc \alpha$, relation: α^{3}. In representations: $f_{\alpha}^{3}=0$.

QPA: Quiver with relations

$Q: 1 \bigcirc \alpha$, relation: α^{3}. In representations: $f_{\alpha}^{3}=0$.
Representations: $\left.\mathbb{Q}][0], \mathbb{Q}^{2}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathbb{Q}^{2} \supseteq\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

QPA: Quiver with relations

$Q: 1 \bigcirc \alpha$, relation: α^{3}. In representations: $f_{\alpha}^{3}=0$.
Representations: $\left.\left.\mathbb{Q} \bigcirc[0], \mathbb{Q}^{2}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathbb{Q}^{2}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
Q^{\prime}

QPA: Quiver with relations

$Q: 1 \bigcirc \alpha$, relation: α^{3}. In representations: $f_{\alpha}^{3}=0$.
Representations: $\left.\left.\mathbb{Q} \bigcirc[0], \mathbb{Q}^{2}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathbb{Q}^{2}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
Q^{\prime}

Representation: $\begin{aligned} f_{\alpha}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\end{aligned}, \mathbb{Q}, \stackrel{f_{\beta}=[1]}{ } \quad$ with $3 f_{\alpha} f_{\beta}-f_{\gamma} f_{\delta}=0$.

QPA: Path algebras (over \mathbb{Q})

QPA: Path algebras (over \mathbb{Q})

Q :

Basis of $\mathbb{Q} Q:\left\{e_{1}, e_{2}, e_{3}, e_{4}, \alpha, \beta, \gamma, \delta, \alpha \beta, \gamma \delta\right\}\left(e_{i}\right.$ trivial paths)

QPA: Path algebras (over \mathbb{Q})

Q :

Basis of $\mathbb{Q} Q:\left\{e_{1}, e_{2}, e_{3}, e_{4}, \alpha, \beta, \gamma, \delta, \alpha \beta, \gamma \delta\right\}\left(e_{i}\right.$ trivial paths) Additive structure: The vector space structure on $\mathbb{Q} Q$.

QPA: Path algebras (over \mathbb{Q})

Q :

Basis of $\mathbb{Q} Q:\left\{e_{1}, e_{2}, e_{3}, e_{4}, \alpha, \beta, \gamma, \delta, \alpha \beta, \gamma \delta\right\}\left(e_{i}\right.$ trivial paths)
Additive structure: The vector space structure on $\mathbb{Q} Q$.
Multiplicative structure: Induced by concatenation of paths in Q.

$$
\begin{aligned}
e_{1} \cdot \alpha & =\alpha=\alpha \cdot e_{2} \\
\alpha \cdot \gamma & =0 \\
e_{1} \cdot e_{2} & =0 \\
\alpha \cdot \beta & =\alpha \beta
\end{aligned}
$$

QPA: Path algebras (over \mathbb{Q})

Q :

Basis of $\mathbb{Q} Q:\left\{e_{1}, e_{2}, e_{3}, e_{4}, \alpha, \beta, \gamma, \delta, \alpha \beta, \gamma \delta\right\}\left(e_{i}\right.$ trivial paths)
Additive structure: The vector space structure on $\mathbb{Q} Q$.
Multiplicative structure: Induced by concatenation of paths in Q.

$$
\begin{aligned}
e_{1} \cdot \alpha & =\alpha=\alpha \cdot e_{2} \\
\alpha \cdot \gamma & =0 \\
e_{1} \cdot e_{2} & =0 \\
\alpha \cdot \beta & =\alpha \beta
\end{aligned}
$$

Extend by distributivity: $\left(2 e_{1}+\alpha\right)(3 \gamma+4 \beta)=6 \gamma+4 \alpha \beta$ Identity: $1_{\mathbb{Q} Q}=e_{1}+e_{2}+e_{3}+e_{4}$

QPA: Path algebras

$$
\begin{gathered}
\mathbb{Q}(1 \bigcirc \alpha) \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2) \simeq\binom{\mathbb{Q} \mathbb{Q}}{0 \mathbb{Q}}
\end{gathered}
$$

QPA: Path algebras

$$
\begin{aligned}
\left.\mathbb{Q}(1)^{\alpha}\right) & \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2) & \simeq\left(\begin{array}{l}
\mathbb{O} 0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Quotients:

- $J=\langle$ arrows $\rangle \subseteq \mathbb{Q} Q$ - the ideal generated by the arrows.

QPA: Path algebras

$$
\begin{aligned}
\left.\mathbb{Q}(1)^{\alpha}\right) & \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2) & \simeq\binom{\mathbb{O} \mathbb{Q}}{0 \mathbb{Q}}
\end{aligned}
$$

Quotients:

- $J=\langle$ arrows $\rangle \subseteq \mathbb{Q} Q$ - the ideal generated by the arrows.
- $I \subseteq \mathbb{Q} Q$ admissible ideal: $J^{t} \subseteq I \subseteq J^{2}$ for some $t \geq 2$.

QPA: Path algebras

$$
\begin{gathered}
\mathbb{Q}(1 \bigcirc \alpha) \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2)
\end{gathered} \simeq_{\left(\begin{array}{c}
\mathbb{Q} \\
0 \\
0
\end{array}\right)}(1)
$$

Quotients:

- $J=\langle$ arrows $\rangle \subseteq \mathbb{Q} Q$ - the ideal generated by the arrows.
- $I \subseteq \mathbb{Q} Q$ admissible ideal: $J^{t} \subseteq I \subseteq J^{2}$ for some $t \geq 2$.
$\Rightarrow \Lambda=\mathbb{Q} Q /$ - - finite dimensional algebra over \mathbb{Q}.

QPA: Path algebras

$$
\begin{gathered}
\mathbb{Q}(1 \bigcirc \alpha) \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2)
\end{gathered} \simeq_{\left(\begin{array}{c}
\mathbb{Q} \\
0 \\
0
\end{array}\right)}(1)
$$

Quotients:

- $J=\langle$ arrows $\rangle \subseteq \mathbb{Q} Q$ - the ideal generated by the arrows.
- $I \subseteq \mathbb{Q} Q$ admissible ideal: $J^{t} \subseteq I \subseteq J^{2}$ for some $t \geq 2$.
$\Rightarrow \Lambda=\mathbb{Q} Q / I$ - finite dimensional algebra over \mathbb{Q}.
\Rightarrow I has a finite Gröbner basis
\rightsquigarrow a unique representation of elements in Λ can be computed algorithmically.

QPA: Path algebras

$$
\begin{gathered}
\mathbb{Q}(1 \bigcirc \alpha) \simeq \mathbb{Q}[x] \\
\mathbb{Q}(1 \xrightarrow{\alpha} 2)
\end{gathered} \simeq_{\left(\begin{array}{c}
\mathbb{Q} \\
0 \\
0
\end{array}\right)}(1)
$$

Quotients:

- $J=\langle$ arrows $\rangle \subseteq \mathbb{Q} Q$ - the ideal generated by the arrows.
- $I \subseteq \mathbb{Q} Q$ admissible ideal: $J^{t} \subseteq I \subseteq J^{2}$ for some $t \geq 2$.
$\Rightarrow \Lambda=\mathbb{Q} Q / I$ - finite dimensional algebra over \mathbb{Q}.
\Rightarrow / has a finite Gröbner basis
\rightsquigarrow a unique representation of elements in Λ can be computed algorithmically.
Fact: Modules over \wedge correspond to representations of Q satisfying the relations given by l.

Some basic problems

Classify all indecomposables:

Some basic problems

Classify all indecomposables:
Finite type finite number of isomorphism classes of indecomposable modules
tame type
wild type

Some basic problems

Classify all indecomposables:
Finite type finite number of isomorphism classes of indecomposable modules
tame type
wild type
Almost split sequences: $\mathbb{Q}(1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3)$:

Some basic problems

Projective dimension: Q - quiver, ρ-admissible relations, M representation of Q satisfying ρ. Projective resolution of M :

Some basic problems

Projective dimension: Q - quiver, ρ-admissible relations, M representation of Q satisfying ρ. Projective resolution of M :

Projective dimension, $\operatorname{pd}(M)$, of M :
smallest n such that $\Omega^{n}(M)$ is projective.

Some basic problems

Projective dimension: Q - quiver, ρ-admissible relations, M representation of Q satisfying ρ. Projective resolution of M :

Projective dimension, $\operatorname{pd}(M)$, of M :

$$
\text { smallest } n \text { such that } \Omega^{n}(M) \text { is projective. }
$$

Finitistic dimension:

$$
\operatorname{findim}(\Lambda)=\sup \{\operatorname{pd}(M) \mid \operatorname{pd}(M)<\infty\}
$$

Some basic problems

Projective dimension: Q - quiver, ρ-admissible relations, M representation of Q satisfying ρ. Projective resolution of M :

Projective dimension, $\operatorname{pd}(M)$, of M :

$$
\text { smallest } n \text { such that } \Omega^{n}(M) \text { is projective. }
$$

Finitistic dimension:

$$
\operatorname{findim}(\Lambda)=\sup \{\operatorname{pd}(M) \mid \operatorname{pd}(M)<\infty\}
$$

Finitistic dimension conjecture:

$$
\text { findim }(\Lambda)<\infty
$$

QPA = Quivers and Path Algebras

History Hopf-project (1998-2002) \rightsquigarrow QPA (2006-?)

QPA = Quivers and Path Algebras

History Hopf-project (1998-2002) \rightsquigarrow QPA (2006-?)
Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.

QPA = Quivers and Path Algebras

History Hopf-project (1998-2002) \rightsquigarrow QPA (2006-?)
Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.
Depend on The Gröbner package GBNP by A. M. Cohen and J. W. Knopper.

QPA = Quivers and Path Algebras

History Hopf-project (1998-2002) \rightsquigarrow QPA (2006-?)
Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.
Depend on The Gröbner package GBNP by A. M. Cohen and J. W. Knopper.

Current status Quotients of path algebras, tensor products of algebras, representations (also projective/injective/simple), homomorphisms, Hom/End-spaces, radical/socle series, kernel/image/cokernel, pushout-pullback, projective covers, extensions of modules, almost split sequences, left/right approximations, (maximal) common summand, duality, transpose and more.

QPA = Quivers and Path Algebras

Design Inherited.

QPA = Quivers and Path Algebras

Design Inherited.
Algorithms - Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

QPA = Quivers and Path Algebras

Design Inherited.
Algorithms - Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

- Projective resolutions - based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).

QPA = Quivers and Path Algebras

Design Inherited.
Algorithms - Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

- Projective resolutions - based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
- Common direct summand - (Bongartz improved version).

QPA = Quivers and Path Algebras

Design Inherited.
Algorithms - Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

- Projective resolutions - based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
- Common direct summand - (Bongartz improved version).
- Almost split sequences - based on computing the socle of an Ext-group (work in progress: use AR-formula)

QPA = Quivers and Path Algebras

Design Inherited.
Algorithms - Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

- Projective resolutions - based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
- Common direct summand - (Bongartz improved version).
- Almost split sequences - based on computing the socle of an Ext-group (work in progress: use AR-formula)
Community http://sourceforge.net/projects/quiverspathalg/
ICRA conference - August 2012

QPA: Future projects

- Projective resolutions of modules

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory
- Covering theory

QPA: Future projects

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory
- Covering theory
- Hopf algebras

QPA: Where to get it

Google: qpa quiver

http://sourceforge.net/projects/quiverspathalg/
http://www.math.ntnu.no/~oyvinso/QPA/

