Quivers and Path Algebras Sage Days 38: May 7–11, 2012

Øyvind Solberg

Department of Mathematical Sciences, NTNU, Norway

May 8th, 2012

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

1/16

 $Q = \begin{cases} Q_0, & \text{the set of vertices, usually } \{1, 2, \dots, n\} \\ Q_1, & \text{the set of arrows} \\ \mathfrak{o}, \mathfrak{t} \colon Q_1 \to Q_0, & \text{origin/terminus vertex of an arrow} \end{cases}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の 2/16

QPA: **Representations** (over Q)

 $Q: 1 \xrightarrow{\alpha} 2$ $M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$

<ロト < 部ト < 言ト < 言ト 差 の Q () 3/16

QPA: **Representations** (over Q)

$$Q: 1 \xrightarrow{\alpha} 2$$
$$M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

 $M = \begin{cases} M(i), & \text{finite dim'l vector space at vertex } i \in Q_0 \\ f_{\alpha} \colon M(i) \to M(j), & \text{linear map for each } \alpha \colon i \to j \in Q_1 \\ = (\{M(i)\}_{i \in Q_0}, \{f_{\alpha}\}_{\alpha \in Q_1}) \end{cases}$

Elements: $m = (m_1, m_2, \dots, m_{|Q_0|}) \in M$ for $m_i \in M(i)$.

QPA: **Representations** (over Q)

$$Q: 1 \xrightarrow{\alpha} 2$$
$$M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

$$M = \begin{cases} M(i), & \text{finite dim'l vector space at vertex } i \in Q_0 \\ f_\alpha \colon M(i) \to M(j), & \text{linear map for each } \alpha \colon i \to j \in Q_1 \\ = (\{M(i)\}_{i \in Q_0}, \{f_\alpha\}_{\alpha \in Q_1}) \end{cases}$$

Elements: $m = (m_1, m_2, \dots, m_{|Q_0|}) \in M$ for $m_i \in M(i)$. $\underline{\dim}(M) = (2, 1)$ Dimension vector: $\underline{\dim}(S_1) = (1, 0)$ $\underline{\dim}(P_1) = (1, 1)$ $Q: 1 \xrightarrow{\alpha} 2$

$$S_1: \mathbb{Q} \xrightarrow{[0]} 0, P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

$$Q: 1 \xrightarrow{\alpha} 2$$
$$S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

Direct sum:

$$S_1 \oplus P_1 : \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}} 0 \oplus \mathbb{Q}$$

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ ()
4 / 16

$$Q: 1 \xrightarrow{\alpha} 2$$

$$S_1: \mathbb{Q} \xrightarrow{[0]} 0, P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

Direct sum:

$$S_1 \oplus P_1 : \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}} 0 \oplus \mathbb{Q}$$

For $M = (\{M(i)\}_{i \in Q_0}, \{f_\alpha\}_{\alpha \in Q_1})$ and $N = (\{N(i)\}_{i \in Q_0}, \{g_\alpha\}_{\alpha \in Q_1})$

$$M \oplus N = \begin{cases} M(i) \oplus N(i), & i \in Q_0 \\ \\ M(i) \oplus N(i) \xrightarrow{\begin{bmatrix} f_\alpha & 0 \\ 0 & g_\alpha \end{bmatrix}} M(j) \oplus N(j), & \alpha \colon i \to j \in Q_1 \end{cases}$$

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ ()
4/16

QPA: Isomorphisms

$$Q: 1 \xrightarrow{\alpha} 2$$

$$S_1 \oplus P_1: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}$$

 $Q: 1 \xrightarrow{\alpha} 2$ $S_1 \oplus P_1: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}$

Definition: Two representations are *isomorphic* if they define the same vector spaces and linear maps up to some base change.

 $Q: 1 \xrightarrow{\alpha} 2$ $S_1 \oplus P_1: \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}} 0 \oplus \mathbb{Q}, \quad M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q}$

Definition: Two representations are *isomorphic* if they define the same vector spaces and linear maps up to some base change.

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$, or equivalently $f_{\alpha} = \varphi(1)g_{\alpha}\varphi(2)^{-1}$. Write: $M \simeq S_1 \oplus P_1$.

QPA: Indecomposable representations

$$Q: 1 \xrightarrow{\alpha} 2, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$$

$Q: 1 \xrightarrow{\alpha} 2, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$

Definition: A representation M is *indecomposable* if M is not isomorphic to a direct sum of two non-zero representations.

$Q: 1 \xrightarrow{\alpha} 2, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$

Definition: A representation M is *indecomposable* if M is not isomorphic to a direct sum of two non-zero representations.

Recall:
$$M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q} \simeq S_1 \oplus P_1$$

$Q: 1 \xrightarrow{\alpha} 2, \quad S_1: \mathbb{Q} \xrightarrow{[0]} 0, \quad P_1: \mathbb{Q} \xrightarrow{[1]} \mathbb{Q}$

Definition: A representation M is *indecomposable* if M is not isomorphic to a direct sum of two non-zero representations.

Recall:
$$M: \mathbb{Q}^2 \xrightarrow{\begin{bmatrix} 1 \\ -1 \end{bmatrix}} \mathbb{Q} \simeq S_1 \oplus P_1$$

Krull-Remak-Schmidt-theorem:

- (a) Any representation is isomorphic to a direct sum of indecomposable representations.
- (b) Any decomposition into indecomposables is essentially unique.

QPA: Homomorphisms

Definition: A family of linear maps $\varphi(i) \colon M(i) \to N(i)$ is a homomorphism $\varphi \colon M \to N$ if (1) commutes for all $\alpha \in Q_1$.

Definition: A family of linear maps $\varphi(i) \colon M(i) \to N(i)$ is a homomorphism $\varphi \colon M \to N$ if (1) commutes for all $\alpha \in Q_1$.

 $Q: 1 \bigcirc \alpha$, relation: α^3 . In representations: $f_{\alpha}^3 = 0$.

 $Q: 1 \bigcirc \alpha$, relation: α^3 . In representations: $f_{\alpha}^3 = 0$. Representations: $\mathbb{Q} \bigcirc [0]$, $\mathbb{Q}^2 \bigcirc \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbb{Q}^2 \bigcirc \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{array}{l} Q: \ 1 \bigcirc \alpha \text{ , relation: } \alpha^3. \text{ In representations: } f_{\alpha}^3 = 0. \\ \text{Representations: } \mathbb{Q} \bigcirc [0] \text{ , } \mathbb{Q}^2 \bigcirc \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ , } \mathbb{Q}^2 \bigcirc \begin{bmatrix} 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \\ Q': \begin{array}{c} \alpha & 2 & \beta \\ \gamma & 3 & \delta \end{array} \text{ , relation: } 3\alpha\beta - \gamma\delta. \end{array}$

 $Q: 1 \cap \alpha$, relation: α^3 . In representations: $f_{\alpha}^3 = 0$. Representations: $\mathbb{Q} \supset [0]$, $\mathbb{Q}^2 \supset \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbb{Q}^2 \supset \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $Q': \frac{\alpha}{1-\gamma} \frac{2-\beta}{4}$, relation: $3\alpha\beta - \gamma\delta$. Representation: $f_{\alpha} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mathcal{Q} \mathcal{I}_{\beta} = [1]$ with $3f_{\alpha}f_{\beta} - f_{\gamma}f_{\delta} = 0$. $f_{\gamma} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

QPA: Path algebras (over \mathbb{Q})

QPA: Path algebras (over \mathbb{Q})

Basis of $\mathbb{Q}Q$: $\{e_1, e_2, e_3, e_4, \alpha, \beta, \gamma, \delta, \alpha\beta, \gamma\delta\}$ (e_i trivial paths)

Basis of $\mathbb{Q}Q$: { $e_1, e_2, e_3, e_4, \alpha, \beta, \gamma, \delta, \alpha\beta, \gamma\delta$ } (e_i trivial paths) Additive structure: The vector space structure on $\mathbb{Q}Q$.

Basis of $\mathbb{Q}Q$: { e_1 , e_2 , e_3 , e_4 , α , β , γ , δ , $\alpha\beta$, $\gamma\delta$ } (e_i trivial paths) Additive structure: The vector space structure on $\mathbb{Q}Q$. Multiplicative structure: Induced by concatenation of paths in Q.

$$e_{1} \cdot \alpha = \alpha = \alpha \cdot e_{2}$$
$$\alpha \cdot \gamma = 0$$
$$e_{1} \cdot e_{2} = 0$$
$$\alpha \cdot \beta = \alpha \beta$$

Basis of $\mathbb{Q}Q$: { e_1 , e_2 , e_3 , e_4 , α , β , γ , δ , $\alpha\beta$, $\gamma\delta$ } (e_i trivial paths) Additive structure: The vector space structure on $\mathbb{Q}Q$. Multiplicative structure: Induced by concatenation of paths in Q.

$$e_{1} \cdot \alpha = \alpha = \alpha \cdot e_{2}$$
$$\alpha \cdot \gamma = 0$$
$$e_{1} \cdot e_{2} = 0$$
$$\alpha \cdot \beta = \alpha\beta$$

Extend by distributivity: $(2e_1 + \alpha)(3\gamma + 4\beta) = 6\gamma + 4\alpha\beta$ Identity: $1_{\mathbb{Q}Q} = e_1 + e_2 + e_3 + e_4$

$$\mathbb{Q}(1\bigcirc \alpha) \simeq \mathbb{Q}[x]$$
$$\mathbb{Q}(1 \xrightarrow{\alpha} 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Q}(1\bigcirc \alpha) \simeq \mathbb{Q}[x]$$
$$\mathbb{Q}(1 \xrightarrow{\alpha} 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$$

Quotients:

• $J = \langle \operatorname{arrows} \rangle \subseteq \mathbb{Q}Q$ - the ideal generated by the arrows.

 $\mathbb{Q}(1 \bigcirc \alpha) \simeq \mathbb{Q}[x]$ $\mathbb{Q}(1 \xrightarrow{\alpha} 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$

- $J = \langle \operatorname{arrows} \rangle \subseteq \mathbb{Q}Q$ the ideal generated by the arrows.
- $I \subseteq \mathbb{Q}Q$ admissible ideal: $J^t \subseteq I \subseteq J^2$ for some $t \ge 2$.

$$\mathbb{Q}(1\bigcirc \alpha) \simeq \mathbb{Q}[x]$$
$$\mathbb{Q}(1 \longrightarrow 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$$

- $J = \langle \operatorname{arrows} \rangle \subseteq \mathbb{Q}Q$ the ideal generated by the arrows.
- $I \subseteq \mathbb{Q}Q$ admissible ideal: $J^t \subseteq I \subseteq J^2$ for some $t \ge 2$.
- $\Rightarrow \Lambda = \mathbb{Q}Q/I$ finite dimensional algebra over \mathbb{Q} .

 $\mathbb{Q}(1)^{\alpha} \simeq \mathbb{Q}[x]$ $\mathbb{Q}(1 \xrightarrow{\alpha} 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$

- $J = \langle \operatorname{arrows} \rangle \subseteq \mathbb{Q}Q$ the ideal generated by the arrows.
- $I \subseteq \mathbb{Q}Q$ admissible ideal: $J^t \subseteq I \subseteq J^2$ for some $t \ge 2$.
- $\Rightarrow \Lambda = \mathbb{Q}Q/I$ finite dimensional algebra over \mathbb{Q} .
- ⇒ / has a finite Gröbner basis
- → a unique representation of elements in Λ can be computed algorithmically.

$$\mathbb{Q}(1\bigcirc \alpha) \simeq \mathbb{Q}[x]$$
$$\mathbb{Q}(1 \longrightarrow 2) \simeq \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$$

- $J = \langle \operatorname{arrows} \rangle \subseteq \mathbb{Q}Q$ the ideal generated by the arrows.
- $I \subseteq \mathbb{Q}Q$ admissible ideal: $J^t \subseteq I \subseteq J^2$ for some $t \ge 2$.
- $\Rightarrow \Lambda = \mathbb{Q}Q/I$ finite dimensional algebra over \mathbb{Q} .
- ⇒ / has a finite Gröbner basis
- \rightsquigarrow a unique representation of elements in Λ can be computed algorithmically.
- Fact: Modules over Λ correspond to representations of Q satisfying the relations given by I.

Some basic problems

Classify all indecomposables:

Some basic problems

Classify all indecomposables:

Finite type	finite number of isomorphism classes of indecom- posable modules
Infinite type	tame type wild type

Classify all indecomposables:

finite number of isomorphism classes of indecom-Finite type posable modules

tame type Infinite type

wild type

Almost split sequences: $\mathbb{Q}(1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3)$:

Projective dimension: Q - quiver, ρ - admissible relations, M representation of Q satisfying ρ . Projective resolution of M:

$$\cdots \longrightarrow P(2) \xrightarrow{d_2} P(1) \xrightarrow{d_1} P(0) \xrightarrow{d_0} M \longrightarrow 0$$
$$\Omega^2(M) \xrightarrow{Q^2(M)} \Omega(M)$$

Projective dimension: Q - quiver, ρ - admissible relations, M representation of Q satisfying ρ . Projective resolution of M:

Projective dimension, pd(M), of *M*:

smallest *n* such that $\Omega^n(M)$ is projective.

Projective dimension: Q - quiver, ρ - admissible relations, M representation of Q satisfying ρ . Projective resolution of M:

Projective dimension, pd(M), of M:

smallest *n* such that $\Omega^n(M)$ is projective.

Finitistic dimension:

findim(Λ) = sup{pd(M) | pd(M) < ∞ }

◆□▶ ◆□▶ ★ □▶ ★ □▶ = □ ● のへで

12/16

Projective dimension: Q - quiver, ρ - admissible relations, M representation of Q satisfying ρ . Projective resolution of M:

Projective dimension, pd(M), of M:

smallest *n* such that $\Omega^n(M)$ is projective.

Finitistic dimension:

findim(Λ) = sup{pd(M) | pd(M) < ∞ }

Finitistic dimension conjecture:

findim(Λ) < ∞

QPA = **Q**uivers and **P**ath **A**lgebras

History Hopf-project (1998–2002) → QPA (2006–?)

History Hopf-project (1998–2002) → QPA (2006–?)
 Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.

History Hopf-project (1998–2002) \rightsquigarrow QPA (2006–?)

Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.

Depend on The Gröbner package GBNP by A. M. Cohen and J. W. Knopper.

History Hopf-project (1998–2002) → QPA (2006–?)

Overall aim A software package and a common platform for development of software for finite dimensional quotients of path algebras. A package for GAP.

Depend on The Gröbner package GBNP by A. M. Cohen and J. W. Knopper.

Current status Quotients of path algebras, tensor products of algebras, representations (also projective/injective/simple), homomorphisms, Hom/End-spaces, radical/socle series, kernel/image/cokernel, pushout-pullback, projective covers, extensions of modules, almost split sequences, left/right approximations, (maximal) common summand, duality, transpose and more.

QPA = Quivers and Path Algebras

QPA = Quivers and Path Algebras

Design Inherited.

 Algorithms
 Hom-space - linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).

- Algorithms Hom-space linear algebra, have algorithm using Gröbner basis theory (Green Heath Struble).
 - Projective resolutions based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).

- Algorithms Ho
 - Hom-space linear algebra, have algorithm using Gröbner basis theory (Green Heath Struble).
 - Projective resolutions based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
 - Common direct summand (Bongartz improved version).

- Algorithms Hom-space linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).
 - Projective resolutions based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
 - Common direct summand (Bongartz improved version).
 - Almost split sequences based on computing the socle of an Ext-group (work in progress: use AR-formula)

- Algorithms Hom-space linear algebra, have algorithm using Gröbner basis theory (Green - Heath - Struble).
 - Projective resolutions based on linear algebra, have at least two algorithms based on using Gröbner basis theory (Green-Solberg-Zacharia, Lada).
 - Common direct summand (Bongartz improved version).
 - Almost split sequences based on computing the socle of an Ext-group (work in progress: use AR-formula)

Community http://sourceforge.net/projects/quiverspathalg/

ICRA conference - August 2012

• Projective resolutions of modules

- Projective resolutions of modules
- Decomposition of modules

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory
- Covering theory

- Projective resolutions of modules
- Decomposition of modules
- Tensor product of modules
- Adjoint isomorphism
- Representation of complexes of modules and basic operations on such
- Multiplicative structure of Ext-algebras of modules
- Auslander-Reiten theory
- Cluster theory via representation theory
- Include combinatorial data and programs from CREP
- Tilting theory
- Covering theory
- Hopf algebras

Google: qpa quiver

http://sourceforge.net/projects/quiverspathalg/

http://www.math.ntnu.no/~oyvinso/QPA/