The [[http://wstein.org/home/wstein/days/33/eulerprod.py|eulerprod.py]] file. {{{ #Use the following command to attach the eulerprod package (after downloading it from the link above): attach /users/lola/desktop/eulerprod.py #Auxiliary functions that will be called later on: R_cdf = CDF['x'] def quad_roots(a, p): t = R_cdf([p, -a, 1]).roots() return (t[0][0], t[1][0]) def __init__(self, N, f, g, h): self._N = ZZ(N) if not (self._N.is_squarefree() and self._N > 0): raise ValueError, "N (=%s) must be a squarefree positive integer"%self._N self._newforms = (f,g,h) #Here is where we start defining the LSeriesTripleProduct class: class LSeriesTripleProduct(LSeriesAbstract): def __init__(self, N, f, g, h): self._N = ZZ(N) self._f = f self._g = g self._h = h self._newforms = [f, g, h] LSeriesAbstract.__init__(self, conductor = N**10, hodge_numbers = [-1,-1,-1,0,0,0,0,1], weight = 4, epsilon = self._compute_epsilon(), poles = [], residues = [], base_field = QQ, is_selfdual = True) self._gen = RDF['X'].gen() self._genC = CDF['X'].gen() self._series = RDF[['X']] def _compute_epsilon(self, p=None): if p is None: # Right below equation (1.11) in [Gross-Kudla] return -prod(self._compute_epsilon(p) for p in self._N.prime_divisors()) else: if not ZZ(p).is_prime(): raise ValueError, "p must be prime" if self._N % p != 0: raise ValueError, "p must divide the level" # Equation (1.3) in [Gross-Kudla] a_p, b_p, c_p = [f[p] for f in self._newforms] return -a_p*b_p*c_p def _cmp(self, right): return cmp((self._N, self._f, self._g, self._h), (right._N, right._f, right._g, right._h)) def __repr__(self): return "L-series triple product of %s" %self._f %self._g %self._h def _local_factor(self, P, prec): return charpoly(self, P) def __call__(self, s): return self._function(prec(s))(s) def _charpoly_good(self, p): Y = self._genC a = [quad_roots(f[p], p) for f in self._newforms] L = 1 for n in range(8): d = ZZ(n).digits(2) d = [0]*(3-len(d)) + d L *= 1 - prod(a[i][d[i]] for i in range(3))*Y return self._gen.parent()([x.real_part() for x in L]) def _charpoly_bad(self, p): X = self._gen a_p, b_p, c_p = [f[p] for f in self._newforms] return (1 - a_p*b_p*c_p * X) * (1 - a_p*b_p*c_p*p*X)**2 def charpoly(self, p): if self._N % p == 0: return self._charpoly_bad(p) else: return self._charpoly_good(p) # Examples E=EllipticCurve([0,-1,1,-10,-20]) f = E.anlist(10**7) L = LSeriesTripleProduct(11, f, f, f) L.anlist(7) L.number_of_coefficients(5) L(RealField(5)(2)) #This command currently returns a RunTime Error ("Unable to create L-series, due to precision or other limits in PARI") }}}