
An Algorithm for Inverting

Matrices over GF(2)

in time O(n3/ logn)

Gregory Bard

University of Maryland

1

Applications

• Error Correcting Codes.

• Cryptography and Cryptanalysis.

• Determining a Graph Coloring.

• Systems of Polynomial Equations via the XL Algorithm.

2

History

• In 1970, Arlazarov, Dinic, Kronrod, and Faradzev published

“On Economical Construction of the Transitive Closure of a

Directed Graph.”

• Finding the transitive closure of a graph is equivalent to the

repeated squaring of its adjacency matrix.

• Squaring a matrix and multiplication are equivalent:[
A B
0 0

]2

=

[
A2 AB
0 0

]

• Thus was born “The Four Russians” matrix multiplication

algorithm.

3

Overview

• Objective: To find an algorithm for inverting or LUP-factoring

a matrix with entries from GF (2), in faster than cubic time.

Gaussian Elimination O(n3)
Method of Four Russians O(n3/ logn)
Strassen’s Algorithm w/ SMIF O(n2.807)

• Strategy: Combine both algorithms.

• Use Strassen’s Matrix Inversion Formula to cut the matrix

into submatrices of size roughly 64000× 64000.

• Use the Method of Four Russians on each submatrix.

• Glue it all back together with Strassen’s Algorithm.

4

The Gray Code

• Discovered by Frank Gray at Bell Labs in 1953.

• Example of a Gray 3-Code:

(000,001,011,010,110,111,101,100)

• Each string is different in exactly one location from its neigh-

bors.

• All possible 3-bit strings are included.

5

Problem: Computing All Linear Combinations

• Suppose I had to find all 210 = 1024 vectors in the span of

10 linearly independent vectors: v1, . . . , v10.

• e.g. . . . , (v1 + v3 + v7), (v3 + v4 + v5 + v9), (0), . . .

• The naive method would require 4 × 1024 = 4096 vector

additions, since a typical vector in the span is the sum of (on

average) 5 vectors.

6

Solution: Computing All Linear Combinations

• But with a Gray 10-Code, only 1023 vector additions are
required!

00000 00000 0
00000 00001 v10
00000 00011 v9 + v10
00000 00010 v9
00000 00110 v8 + v9
00000 00111 v8 + v9 + v10

... ...
10110 00101 v1 + v3 + v4 + v8 + v10
10110 00111 v1 + v3 + v4 + v8 + v9 + v10
10110 00110 v1 + v3 + v4 + v8 + v9

... ...

7

Probability of Full Rank

• Suppose A is an m× n matrix filled by fair coin flips.

• What is the probability it is full rank?
a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn


• This comes to:

(2m−1)(2m−2)···(2m−2i−1)···(2m−2n−1)
2mn = Πi=n

i=1 (1− 2i−1−m)

• For large n, if A is n× n this is 29%.

• If A is 3n× n this is almost 100%.

8

Gaussian Elimination



1 0 0 0 0 1 0 1 · · · 0
0 1 0 0 0 1 0 1 · · · 1
0 0 1 0 0 0 1 1 · · · 0
0 0 0 1 1 0 1 0 · · · 0
0 0 0 0 1 0 1 0 · · · 1
0 0 0 0 0 1 1 1 · · · 0
0 0 0 0 0 1 1 1 · · · 0
0 0 0 0 1 1 1 1 · · · 0
0 0 0 0 1 0 1 1 · · · 0
...


• For each column i do

• Find a row with 1 in col i, and swap with row i.

• For each row j 6= i do

• If Aj,i = 0 do nothing.

• If Aj,i = 1 do add row i to row j.

9

Two-at-a-time


1 0 0 0 0 1 0 1 · · · 0
0 1 0 0 0 1 0 1 · · · 1
0 0 1 0 0 0 1 1 · · · 0
0 0 0 1 1 0 1 0 · · · 0
0 0 0 0 1 0 1 0 · · · 1
0 0 0 0 0 1 1 1 · · · 0
0 0 0 0 0 1 1 1 · · · 0
0 0 0 0 1 1 1 1 · · · 0
0 0 0 0 1 0 1 1 · · · 0
...


• For each column pair i and i + 1 do

• Do row and column swaps to arrange the above situation.
• For each row j 6= i, i + 1 do
• If (Aj,i, Aj,i+1) = (0,0) do nothing.
• If (Aj,i, Aj,i+1) = (0,1) add row i + 1.
• If (Aj,i, Aj,i+1) = (1,0) add row i.
• If (Aj,i, Aj,i+1) = (1,1) add both rows.

10

The Algorithm

• The Method-Of-Four-Russians for Inversion consists of es-

sentially performing k-columns of Gaussian Elimination at

once, but including several tricks.

• The parameter k (an integer) will be optimized later, and

usually 8 ≤ k ≤ 16.

• Each iteration processes k columns, and consists of three

stages.

11

Stage I: Create “Working Rows”

• Here one iteration has finished and we are starting iteration

two. These are k × k blocks or submatrices.

• Select the next 3k rows, and perform Gaussian Elimination

on them. This costs ∼ (4.5k2n−0.75k3) reads/writes. Prob-

ability of failure is infinitesimal.

I ? ? · · · ?
0 ? ? · · · ?
0 ? ? · · · ?
0 ? ? · · · ?
0 ? ? · · · ?
...
0 ? ? · · · ?


⇒



I ? ? · · · ?
0 I ? · · · ?
0 0 ? · · · ?
0 0 ? · · · ?
0 ? ? · · · ?
...
0 ? ? · · · ?


12

Stage II: Pre-Calculate Linear Combinations

• We have k row-vectors that now are linearly independent.

• Using the Gray-code, we can cheaply calculate all possible
linear combinations of these 2k − 1 non-zero vectors.

• We will use these linear-combinations to clear the k columns
of all the other m− 3k rows.

I ? ? · · · ?
0 I ? · · · ?
0 0 ? · · · ?
0 0 ? · · · ?
0 ? ? · · · ?
...
0 ? ? · · · ?


13

Stage III: Clear the Rest

• Now suppose the following two rows exist outside the 3k

selected rows.

...
0 0 · · · 0 0 1 1 0 · · · 0 1 1 · · · 0
...
0 0 · · · 0 1 0 1 0 · · · 0 1 1 · · · 0
...︸ ︷︷ ︸

k cols
︸ ︷︷ ︸

k cols
︸ ︷︷ ︸
n−2k cols


• The first of these needs a copy of rows 2 and 3 added to it.

• The second one needs a copy of rows 1 and 3 added to it.

• But these are already precomputed! So it’s just a vector
addition.

14

Final Complexity Analysis

• Each iteration takes care of k columns. Therefore n/k iter-
ations are required, each of three stages:

1 Force k × k Identity ∼ (4.5k2n− 0.75k3) reads and writes.
2 Generate Gray Code ∼ 3(2k(n− k)) reads and writes.
3 Clear k Columns ∼ 3(n− k)m reads and writes.

• One can show optimum occurs at k ≈ logn.

• Each iteration is then ∼ 6n2 operations, or a grand total of
∼ 6n3/ logn = O(n3/ logn).

• The LUP-factorization and minor tricks reduce 6 to 5/2.

• You can also use this algorithm for system solving, on a
n×n+1 matrix, or to find pseudo-inverses of a m×n matrix.

15

Dim. 4,000 8,000 16,000 20,000 24,000 32,000

Gauss 19.00 138.34 1033.50 2022.29 3459.77 8061.90

k=7 7.64 – – – – –
8 7.09 51.78 – – – –
9 6.90 48.83 364.74 698.67 1195.78 –
10 7.05 47.31 342.75 651.63 1107.17 2635.64
11 7.67 48.08 332.37 622.86 1051.25 2476.58
12 – 52.55 336.11 620.35 1032.38 2397.45
13 – – 364.22 655.40 1073.45 2432.18
14 – – – – – 2657.26

Min 6.90 47.31 332.37 620.35 1032.38 2397.45

Ratio 2.75 2.97 3.11 3.26 3.35 3.36

Running Times of Gaussian Elimination vs. Method of 4 Russians (in seconds)

16

