An Algorithm for Inverting

Matrices over GF (2) in time $O\left(n^{3} / \log n\right)$

Gregory Bard

University of Maryland

Applications

- Error Correcting Codes.
- Cryptography and Cryptanalysis.
- Determining a Graph Coloring.
- Systems of Polynomial Equations via the XL Algorithm.

History

- In 1970, Arlazarov, Dinic, Kronrod, and Faradzev published "On Economical Construction of the Transitive Closure of a Directed Graph."
- Finding the transitive closure of a graph is equivalent to the repeated squaring of its adjacency matrix.
- Squaring a matrix and multiplication are equivalent:

$$
\left[\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
A^{2} & A B \\
0 & 0
\end{array}\right]
$$

- Thus was born "The Four Russians" matrix multiplication algorithm.

Overview

- Objective: To find an algorithm for inverting or LUP-factoring a matrix with entries from $G F(2)$, in faster than cubic time.

Gaussian Elimination	$O\left(n^{3}\right)$
Method of Four Russians	$O\left(n^{3} / \log n\right)$
Strassen's Algorithm w/ SMIF	$O\left(n^{2.807}\right)$

- Strategy: Combine both algorithms.
- Use Strassen's Matrix Inversion Formula to cut the matrix into submatrices of size roughly 64000×64000.
- Use the Method of Four Russians on each submatrix.
- Glue it all back together with Strassen's Algorithm.

The Gray Code

- Discovered by Frank Gray at Bell Labs in 1953.
- Example of a Gray 3-Code:

$$
(000,001,011,010,110,111,101,100)
$$

- Each string is different in exactly one location from its neighbors.
- All possible 3-bit strings are included.

Problem: Computing All Linear Combinations

- Suppose I had to find all $2^{10}=1024$ vectors in the span of 10 linearly independent vectors: v_{1}, \ldots, v_{10}.
- e.g. $\ldots,\left(v_{1}+v_{3}+v_{7}\right),\left(v_{3}+v_{4}+v_{5}+v_{9}\right),(0), \ldots$
- The naive method would require $4 \times 1024=4096$ vector additions, since a typical vector in the span is the sum of (on average) 5 vectors.

Solution: Computing All Linear Combinations

- But with a Gray 10-Code, only 1023 vector additions are required!

```
0 0 0 0 0 0 0 0 0 0 ~ 0
00000 00001 v
0000000011 v9 + v10
0 0 0 0 0 0 0 0 1 0 ~ v 9
0000000110 v8}+\mp@subsup{v}{8}{
0000000111 v
1011000101 v
1 0 1 1 0 0 0 1 1 1 ~ v _ { 1 } + v _ { 3 } + v _ { 4 } + v _ { 8 } + v _ { 9 } + v _ { 1 0 }
1 0 1 1 0 0 0 1 1 0 ~ v _ { 1 } + v _ { 3 } + v _ { 4 } + v _ { 8 } + v _ { 9 }
```


Probability of Full Rank

- Suppose A is an $m \times n$ matrix filled by fair coin flips.
- What is the probability it is full rank?

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- This comes to:

$$
\frac{\left(2^{m}-1\right)\left(2^{m}-2\right) \cdots\left(2^{m}-2^{i-1}\right) \cdots\left(2^{m}-2^{n-1}\right)}{2^{m n}}=\Pi_{i=1}^{i=n}\left(1-2^{i-1-m}\right)
$$

- For large n, if A is $n \times n$ this is 29%.
- If A is $3 n \times n$ this is almost 100%.

Gaussian Elimination

$\left[\begin{array}{cccc|c|ccccc}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & \cdots & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & \cdots & 0 \\ \vdots & & \vdots\end{array}\right]$

- For each column i do
- Find a row with 1 in col i, and swap with row i.
- For each row $j \neq i$ do
- If $A_{j, i}=0$ do nothing.
- If $A_{j, i}=1$ do add row i to row j.

Two-at-a-time

$\left[\begin{array}{llll|ll|llll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & \cdots & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & \cdots & 0 \\ \vdots & & \vdots\end{array}\right]$

- For each column pair i and $i+1$ do
- Do row and column swaps to arrange the above situation.
- For each row $j \neq i, i+1$ do
- If $\left(A_{j, i}, A_{j, i+1}\right)=(0,0)$ do nothing.
- If $\left(A_{j, i}, A_{j, i+1}\right)=(0,1)$ add row $i+1$.
- If $\left(A_{j, i}, A_{j, i+1}\right)=(1,0)$ add row i.
- If $\left(A_{j, i}, A_{j, i+1}\right)=(1,1)$ add both rows.

The Algorithm

- The Method-Of-Four-Russians for Inversion consists of essentially performing k-columns of Gaussian Elimination at once, but including several tricks.
- The parameter k (an integer) will be optimized later, and usually $8 \leq k \leq 16$.
- Each iteration processes k columns, and consists of three stages.

Stage I: Create "Working Rows"

- Here one iteration has finished and we are starting iteration two. These are $k \times k$ blocks or submatrices.
- Select the next $3 k$ rows, and perform Gaussian Elimination on them. This costs $\sim\left(4.5 k^{2} n-0.75 k^{3}\right)$ reads/writes. Probability of failure is infinitesimal.

$$
\left[\begin{array}{c|cccc}
I & ? & ? & \cdots & ? \\
\hline 0 & ? & ? & \cdots & ? \\
0 & ? & ? & \cdots & ? \\
0 & ? & ? & \cdots & ? \\
\hline 0 & ? & ? & \cdots & ? \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & ? & ? & \cdots & ?
\end{array}\right] \Rightarrow\left[\begin{array}{c|cccc}
I & ? & ? & \cdots & ? \\
\hline 0 & I & ? & \cdots & ? \\
0 & 0 & ? & \cdots & ? \\
0 & 0 & ? & \cdots & ? \\
\hline 0 & ? & ? & \cdots & ? \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & ? & ? & \cdots & ?
\end{array}\right]
$$

Stage II: Pre-Calculate Linear Combinations

- We have k row-vectors that now are linearly independent.
- Using the Gray-code, we can cheaply calculate all possible linear combinations of these $2^{k}-1$ non-zero vectors.
- We will use these linear-combinations to clear the k columns of all the other $m-3 k$ rows.
$\left[\begin{array}{c|cccc}I & ? & ? & \ldots & ? \\ \hline 0 & I & ? & \cdots & ? \\ \hline 0 & 0 & ? & \cdots & ? \\ 0 & 0 & ? & \ldots & ? \\ 0 & ? & ? & \ldots & ? \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & ? & ? & \ldots & ?\end{array}\right]$

Stage III: Clear the Rest

- Now suppose the following two rows exist outside the $3 k$ selected rows.

$$
\left[\begin{array}{cccc|cccccc|cccc}
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & 1 & 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\underbrace{\underbrace{}_{k-2 k} \text { COIS }}_{k \text { COIS }}
\end{array}\right]
$$

- The first of these needs a copy of rows 2 and 3 added to it.
- The second one needs a copy of rows 1 and 3 added to it.
- But these are already precomputed! So it's just a vector addition.

Final Complexity Analysis

- Each iteration takes care of k columns. Therefore n / k iterations are required, each of three stages:
1 Force $k \times k$ Identity $\sim\left(4.5 k^{2} n-0.75 k^{3}\right)$ reads and writes.
2 Generate Gray Code $\sim 3\left(2^{k}(n-k)\right)$ reads and writes.
3 Clear k Columns $\sim 3(n-k) m$ reads and writes.
- One can show optimum occurs at $k \approx \log n$.
- Each iteration is then $\sim 6 n^{2}$ operations, or a grand total of $\sim 6 n^{3} / \log n=O\left(n^{3} / \log n\right)$.
- The LUP-factorization and minor tricks reduce 6 to 5/2.
- You can also use this algorithm for system solving, on a $n \times n+1$ matrix, or to find pseudo-inverses of a $m \times n$ matrix.

Dim.	4,000	8,000	16,000	20,000	24,000	32,000
Gauss	19.00	138.34	1033.50	2022.29	3459.77	8061.90
				-	-	-
$k=7$	7.64	-	-	-	-	-
8	7.09	51.78	-	-	-	
9	6.90	48.83	364.74	698.67	1195.78	-
10	7.05	47.31	342.75	651.63	1107.17	2635.64
11	7.67	48.08	332.37	622.86	1051.25	2476.58
12	-	52.55	336.11	620.35	1032.38	2397.45
13	-	-	364.22	655.40	1073.45	2432.18
14	-	-	-	-	-	2657.26
Min	6.90	47.31	332.37	620.35	1032.38	2397.45
Ratio	2.75	2.97	3.11	3.26	3.35	3.36

Running Times of Gaussian Elimination vs. Method of 4 Russians (in seconds)

