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ABSTRACTA new randomized algorithm is presented for 
omputing the
hara
teristi
 polynomial of an n × n matrix over a �eld.Over a su�
iently large �eld the asymptoti
 expe
ted 
om-plexity of the algorithm is O(nθ) �eld operations, improvingby a fa
tor of log n on the worst 
ase 
omplexity of Keller�Gehrig's algorithm [8℄.
1. INTRODUCTIONComputing the 
hara
teristi
 polynomial of an n× n ma-trix A over a �eld F is a 
lassi
al problem. Keller-Gehrig [8℄gave three redu
tions of the problem to matrix multipli
a-tion. Let θ be an admissible exponent for the 
omplexityof matrix multipli
ation: O(nθ) operations from F are su�-
ient to multiply together two n×n matri
es over F. In thispaper all 
omplexity bounds are in terms of �eld operationsfrom F and we make the 
ommon assumption that θ > 2.Keller-Gehrig's third algorithm has 
ost O(nθ) but onlyworks for input matri
es with restri
tive generi
ity require-ments. His �rst algorithm, a simpli�ed version of the se
-ond, also only works for input matri
es satisfying 
ertainrequirements. Of primary interest here is his se
ond algo-rithm whi
h works for all input matri
es and has a worst
ase 
ost of O(nθ log n). The extra log n fa
tor arises be-
ause the algorithm 
omputes A2, A4, A8, . . . , A⌈log

2
n⌉ usingbinary poweringComputing the 
hara
tersti
 polynomial is 
losely relatedto other problem su
h as 
omputing the minimal polyno-mial, testing two matri
es for similarity, and 
omputing theFrobenius 
anoni
al form. Known redu
tions to matrix mul-tipli
ation for these problems, both deterministi
 [10, 11℄and probabalisti
 [4, 5, 6℄, all have an extra log n fa
tor intheir worst 
ase 
omplexity bounds, arising be
ause Keller�Gehrig's algorithm is used as a subroutine dire
tly [5, 6, 10,11℄ or be
ause a logarithmi
 number of powers of A mightbe 
omputed [4℄.In this paper we 
ombine ideas from [6, 8, 12℄ to get a
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new randomized algorithm for 
omputing the 
hara
teristi
polynomial. If F has at least 2n2 elements our Las Vegas al-gorithm has expe
ted 
ost O(nθ), mat
hing the lower boundfor this problem. Unlike Keller-Gehrig's O(nθ log n) algo-rithm, we pro
eed in phases for k = 1, 2, 3, . . . , n and thus
onverges arithmeti
ally.In Se
tion 2 we introdu
e some notation and re
all somefa
ts about Krylov matri
es. Se
tion 3 gives a worked ex-ample of the new algorithm and o�ers an overview of Se
-tions 4�6 whi
h are devoted to presenting the algorithmand proving 
orre
tness. The new algorithm is not only oftheoreti
al interest but also pra
ti
al. In Se
tion 7 we de-s
ribes an implementation, present some timings, and 
om-pare with the previously most e�
ient implementations thatwe are aware of. Se
tion 8 
on
ludes.
2. NOTATIONWe will frequently write matri
es using a 
onformal blo
kde
omposition. A blo
k is a submatrix 
omprised of a 
on-tiguous sequen
e of rows and 
olumns. A blo
k may bea single matrix entry or may have row or 
olumn dimen-sion zero. The generi
 blo
k label ∗ denotes that a blo
k ispossibly nonzero. Blo
ks that are ne
essarily zero are leftunlabelled.In this paper a 
ompanion matrix looks like

C∗ =

2

6

6

6

4

0 · · · 0 ∗

1
. . . ... .... . . 0 ∗

1 ∗

3

7

7

7

5

∈ K
k×k. (1)and the sizes of 
ompanion blo
ks in the Frobenius 
anoni
alform are monotoni
ally nonin
reasing. Companion blo
ksmay have dimension zero. We use the label B∗ to denote ablo
k whi
h has all entries zero ex
ept for possibly entries inthe last 
olumn. The dimension of a blo
k labelled B∗ willbe 
onformal with adja
ent blo
ks.For a square matrix A ∈ K

n×n and ve
tor v ∈ K
n×1, let

KA(v, d) denote the Krylov matrix
ˆ

v Av · · · Ad−1v
˜

∈ K
n×d.For V ∈ K

n×j we denote by OrbA(V ) the subspa
e of K
nspanned by all the 
olumn ve
tors in ˆ

V | AV | A2V | . . .
˜.Fa
t 1. Let A ∈ K

n×n be arbitrary and U ∈ K
n×n benonsingular. Then



1. U =
ˆ

KA(v1, d1) · · · KA(vn, dm)
˜ for some ve
-tors v1, . . . , vm ∈ K

n×1 and positive integers d1, . . . , dmif and only if
U−1AU =

2

6

6

6

4

C1 B∗ · · · B∗

B∗ C2 · · · B∗... ... . . . ...
B∗ B∗ · · · Cm

3

7

7

7

5

(2)with Ci a 
ompanion matrix of dimension di, 1 ≤ i ≤
m.2. For any j, 1 ≤ j ≤ m, the matrix (2) 
an be writtenas
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6

6

4

C1 B∗ · · · B∗ B∗ B∗ · · · B∗

B∗ C2 · · · B∗ B∗ B∗ · · · B∗... ... . . . ... ... ... . . . ...
B∗ B∗ · · · Cj B∗ B∗ · · · B∗

Cj+1 B∗ · · · B∗

B∗ Cj+2 · · · B∗... ... . . . ...
B∗ B∗ · · · Cm

3

7

7

7

7

7

7

7

7

7

7

7

7

5if and only the dimension of OrbA([ v1 | · · · | vj ]) isequal to d1 + · · · + dj.The matrix in (2) is a shifted Hessenberg form with degreesequen
e (d1, d2, . . . , dm), 
orresponding to the dimensionsof the diagonal blo
ks. A shifted Hessenberg form with theshape
2

6

6

6

4

C1 B∗ · · · B∗

C2 · · · B∗. . . ...
Cm

3

7

7

7

5is simply 
alled a Hessenberg form.Let ei denote the i'th 
olumn of the identity matrix of theappropriate dimension.
3. OVERVIEWThe key to our algorithm is what we 
all a k-uniformshifted Hessenberg form: ea
h diagonal 
ompanion blo
k hasdimension k, ex
ept for possibly the last whi
h may havedimension less than k. For brevity we will refer to su
ha matrix as a k-shifted form. The algorithm pro
eeds inphases for in
reasing k. Phase k involves the transformationof a k-shifted form to a (k + 1)-shifted form. We begindire
tly with a worked example of one phase of the algorithmand then �ll in the details in the subsequent se
tions.Consider the following 3-shifted form of order 14 over
Z/(97), with diagonal blo
ks 
orresponding to the degree

sequen
e (3, 3, 3, 3, 2) :
A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

57 93 63 32 29
1 15 13 78 92 33

1 26 88 53 70 35
0 22 4 23 78
21 1 64 16 18 43
76 1 12 77 56 73
62 50 92 57 30
13 6 1 27 31 65
22 41 1 76 9 2
64 59 47 67 55
39 19 83 1 46 36
91 19 64 1 82 6
55 73 49 66 86
42 24 48 31 1 12
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7
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7
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7

7

7

7

5

.

The striped Krylov matrix
ˆ

KA(e1, 3) KA(e4, 3) KA(e7, 3) KA(e10, 3) KA(e13, 2)
˜will be the identity matrix sin
e the dimensions of the sli
es
orresponding to the basis ve
tors (e1, e4, e7, e10, e13) mat
hthe degree sequen
e (3, 3, 3, 3, 2) of the diagonal blo
ks. Ouridea, made pre
ise in Se
tion 4, is to 
ompute what we 
allthe Krylov extension of A by in
reasing the rank of ea
hKrylov sli
e by at most one in a lexi
ographi
ally maximalfashion. In this example the Krylov extension is (4, 4, 3, 2, 1),
orresponding to the full 
olumn rank matrix K:

[ KA(e1, 4) KA(e4, 4) KA(e7, 3) KA(e10, 2) KA(e13, 1) ] .If the the Krylov extension is not mononti
ally nonin
reas-ing or does not 
orrespond to a square matrix the algorithmwill abort. For this example we may 
ontinue. The Krylovextension 
orresponds to the striped Krylov matrix
K =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 57 93
1 15 13

1 26 88
0 1 22
21 1 64
76 1 12
62 50 1
13 6 1
22 41 1
64 59 1
39 19 1
91 19
55 73 1
42 24
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.

As demonstrated by this example, it is always the 
ase that
K will be 
omprised entirely of identity ve
tors and 
olumnsof A. This follows from the fa
t that A is in k-shifted formand we are extending ea
h Krylov sli
e to dimension at most
k + 1. Applying the similarity transform K to A we obtainthe shifted Hessenberg form

K−1AK =

»

Ā B
C D

–

=

2

6

6

6

6

6
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6
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6

6

6
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19 21 72 56 69
1 89 65 3 69 58

1 55 1 69 82 85
1 32 10 50 84 79

5 77 42 33 74
14 1 9 73 78 73
54 1 41 19 36 68
24 1 68 60 47 76
29 45 6 8 32
39 7 1 84 81 69
29 45 1 8 8 93

96 63
1 2 34
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.



Be
ause the Krylov extension (4, 4, 3, 2, 1) is monontoni
allynonin
reasing we may partition it into two parts: (4, 4, 3)
orresponsing the the prin
ipal blo
k Ā of K−1AK whi
h isne
essarily in 4-shifted form; and (2, 1) 
orresponding to thetrailing 3 × 3 blo
k D. For this example the Krylov exten-sion is what we 
all normal: the southwest blo
k C of thematrix K−1AK is �lled with zeroes and the trailing blo
k
D is in blo
k upper triangular shifted Hessenberg form (also
alled simply Hessenberg form). If these 
onditions are notsatis�ed the algorithm will abort. For this example we may
ontinue: the algorithm re
ursively 
omputes the 
hara
ter-isti
 polynomial of the prin
ipal blo
k Ā and multiplies theresult by the 
hara
teristi
 polynomial of D, thus obtainingthe 
hara
teristi
 polynomial of A.In Se
tion 4 we de�ne pre
isely what we mean by theKrylov extension of a k-shifted form and give an algorithmfor its 
omputation that has 
ost O(k(n/k)θ). As dis
ussedin the example above, for the algorithm to be able to 
on-tinue the Krylov extension must be normal, that is, mustsatisfy 
ertain 
onditions (see De�nition 1). In Se
tion 6we show how to pre
ondition the input matrix so that allthe Krylov extensions 
omputed during the 
ourse of thealgorithm will be normal with high probability.In Se
tion 5 we present an algorithm that takes as inputa square matrix A ∈ K

n×n over a �eld, and either returnsthe 
hara
teristi
 polynomial or reports �fail.� The algo-rithm transform the prin
ipal blo
k of the work matrix from
k-shifted to (k + 1)-shifted form for k = 2, 3, . . . , n in su
-
ession. The running time of the algorithm is bounded by
O(

Pn−1
k=1 k(n/k)θ), whi
h 
an be shown to be O(nθ) underthe assumption that θ > 2.

4. NORMAL KRYLOV EXTENSIONNote that the number of (non�trivial) diagonal blo
ks ina k-shifted form A ∈ K
n×n is given by m := ⌈n/k⌉, and thatthe dimension of the trailing blo
k is n− (m− 1)k. If we let

vi = e(i−1)k+1 for 1 ≤ i ≤ m, then the blo
k Krylov matrix
ˆ

KA(v1, k) · · · KA(vm−1, k) KA(vm, n − (m − 1)k)
˜ (3)will be equal to In.Definition 1. The Krylov extension of a k-shifted form

A ∈ K
n×n with m := ⌈n/k⌉ diagonal blo
ks is the lexi-
ographi
ally maximal sequen
e (d1, . . . , dm) of nonnegativeintegers that satis�es the following restri
tions:

• di ≤ k + 1 for all 1 ≤ i ≤ m;
• K =

ˆ

KA(v1, d1) · · · KA(vm, dm)
˜ has full 
ol-umn rank;where vi = e(i−1)k+1 for 1 ≤ i ≤ m. The Krylov extensionis said to be normal if the following additional 
onditionsare satis�ed:1. d1 + · · · + dm = n;2. (d1, . . . , dm) is monotoni
ally nonin
reasing;3. dm ≤ n − (m − 1)k;4. The shifted Hessenberg form K−1AK has the shape

K−1AK =

»

Ā B
D

–

,

where D is a Hesssenberg form (possibly of dimensionzero) and Ā is (k + 1)-shifted form of dimension n̄ =
d1 + · · ·+ dm̄, where m̄ is the minimal index su
h that
dm̄ < k + 1.We now des
ribe an algorithm that 
omputes the Krylovextension. A
tually, the algorithm is only guaranteed towork if the Krylov extension is normal. If any of 
onditions1, 2 or 3 of De�nition 1 are not satis�ed the algorithm willdete
t this and report failure. The idea of the algorithmis straighforward. Consider the n × (n + m − 1) matrix Eobtained from the matrix in (3) by extending the dimensionof ea
h Krylov sli
e from k to k + 1, ex
ept for the last.Then E has all the 
olumns of In plus an additional m − 1
olumns from A.The following result follows from Fa
t 1.2 by 
onsideringthe shape of K−1AK in 
ase the Krylov extension is normal.Lemma 1. If the Krylov extension (d1, . . . , dm) of a k-shifted form A ∈ K

n×n is normal, then the submatrix of E
omprised of the rank pro�le 
olumns is equal to the matrix
K of De�ntion 1.We next des
ribe how to 
ompute the 
olumn rank pro�leof the matrix E taking advantage of its stru
ture.
Computing the column rank profileConsider the matrix F = ET J , where J is the anti-diagonalmatrix su
h that Ji,j = 1 if i + j = n + 1 and 0 otherwise.The 
olumn rank pro�le of E is the row rank pro�le of F .For example for the matrix

E =

2

6

6

6

6

6

6

6

6

4

1 10 20 30
1 11 21 31

1 12 22 32
13 1 23 33
14 1 24 34
15 1 25 35
0 26 1 36
0 27 1 37
0 28 1 38
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7

7

7

7

7

7

7

5the 
orresponding F is the matrix
F =

2
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1
1

1
0 0 0 15 14 13 12 11 10

1
1

1
28 27 26 25 24 23 22 21 20

1
1

1
38 37 36 35 34 33 32 31 30
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7

7

7

7

7

7

7

7

7

7

7

5The row rank pro�le of F 
an be 
omputed using gaus-sian elimination, pro
essing ea
h row in turn, starting fromthe �rst row to the last. Pro
essing of a row involves ei-ther determining that the row has already been zeroed out,and hen
e is not in
luded in the rank pro�le, or performinggaussian elmination to zero entries below the �rst non-zeroentry in the row (the pivot). Pro
essing of the �rst threerows 
onsists in zeroing the 
oe�
ients below the ones. Af-ter pro
essing the fourth row the matrix has the following



shape:
F =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1
1

1
0 0 0 15 14 13

1
1
83 84

28 27 26 33 66
1

1
1
38 37 36 66 35
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7

7

7

7

7

7

7

7

7

7

7

7

5The key observation now is that afer pro
essing rows 5 and6, row 7 will be zeroed out and is therefore not in the rankpro�le. After the elimination is 
ompleted, the matrix hasthe form
F =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1
1

1
0 0 0 1 85 72

1
1

28 27 26
1

1
1

3
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7

7
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7

7

7

7

5

.

The rank pro�le is (1, 2, 3, 4, 5, 6, 8, 9, 10).To take advantage of the stru
ture of the matrix, we willperform the elimination on the n × m submatrix G formedby the dense rows of index k+1, 2(k+1), . . . , (m−2)(k+1), nof the matrix F .In the previous example,
G =

2

4

0 0 0 15 14 13 12 11 10
28 27 26 25 24 23 22 21 20
38 37 36 35 34 33 32 31 30

3

5It is then su�
ient to keep tra
k of the stru
tured rows bythe ve
tor ℓ of their indi
es: if H is the submatrix formedby these n rows, ℓ[i] = j ⇔ Hi,j = 1. At the beginning ofthe elimination H = J and so ℓ = [n, n − 1, . . . , 1].Now 
onsider the pro
essing of the ith row of G if wein
lude pivoting.
• The 
oe�
ients Fi,ℓ[j] ∀j ≤ k× i are set to zero to sim-ulate the elimination of the 
orresponding stru
turedrows above.
• The ve
tor ℓ has to be updated with the permutationthat may be used to �nd the �rst non zero pivot onthe 
urrent row.The elimination on G 
an be performed in time O(n(n/k)θ)using the LQUP algorithm of Ibarra, Moran & Hui [7℄.The only modi�
ation is to in
orporate the operations listedabove into the last re
ursion level of the algorithm (for m =

1). In the following algorithm we will denote the subroutinejust des
ribed by Stru
turedRankProfile.Theorem 1. Algorithm Extension is 
orre
t. The 
ostof the algorithm is O(k(n/k)θ).
5. CHARACTERISTIC POLYNOMIAL VIA

ARITHMETIC PROGRESSION

Algorithm 1 Extension(A, n, k)Require: A k-shifted form A ∈ K
n×n.Ensure: The Krylov extension (d1, . . . , dm) of A, or fail./* Fail will be returned if any of 
onditions 1,2 and 3 of Definition 1 are not satisifed. Failwill not be returned if the Krylov extension isnormal. */Form the n× (n+m) matrix E from (3) by extending thedimension of ea
h Krylov sli
e by one.

[j1, . . . , jr] := Stru
turedRankProfile(E,k).if there exists a monotoni
all nonin
reasing sequen
e
(d1, . . . , dm) in
reasing su
h that [j1, . . . , jr] is equal to
[1, . . . , d1, (k+1)+1, . . . , (k+1)+d2, . . . , (m−1)(k+
1) + 1, . . . , (m − 1)(k + 1) + 1 + dm] thenreturn (d1, . . . , dm)elsereturn Fail.end ifLet A ∈ K

n×n be a k-shifted form with a normal Krylovextension (d1, . . . , dm). Let K be the striped Krylov matrixasso
iated to the extension. A key step of the algorithmis perform the 
hange of basis K−1AK. To perform thise�
iently the stru
ture of the matri
es A, K and K−1AKhave to be taken into a

ount.Note that all the 
olumns of K−1AK will be known 
olumnsof In ex
ept for the at most m 
olumns {d1, d1+d2, . . . , d1+
d2 + · · ·+ dm}. Let Y be the submatrix of K 
orrespondingto these 
olumns. To re
over K−1AK we need to 
ompute
K−1AY .Let ∗p denote a permutation matrix. Up to a row and 
ol-umn permutations, whi
h may be dedu
ed from the degreesequen
e of diagonal blo
ks in A, we have

A = ∗p

»

In−m ∗
∗

–

∗p .Similarly, sin
e K will have fewer than ⌊n/(k + 1)⌋ 
olumnswhi
h are not identity ve
tors, and ⌊n/(k + 1)⌋ < m, up torow and 
olumn permutations, whi
h may be dedu
ed from
(d1, . . . , dm), we have

K = ∗p

»

In−m ∗
∗

–

∗p .Note that K−1 
an be expressed similarly to K. This shows
K−1AY = ∗p

»

In−m ∗
∗

–−1

∗p

»

In−m ∗
∗

–

∗p Y.This gives the following result.Lemma 2. Let K ∈ K
n×n be the striped Krylov matrix
orresponding to the uniform Krylov extension (d1, . . . , dm)of a k-shifted form A ∈ K

n×n. There exists an algorithmTransform that takes as input (A,k, (d1, . . . , dm)) and re-turns K−1AK. The 
ost of the algorithm is O(k(n/k)θ)�eld operations from K.Assembling these 
omponents together gives Algorithm 2(CharPolyRe
) that re
ursively 
omputes the 
hara
teristi
polynomial of the input matrix or returns fail. Ea
h re
ur-sive step 
orrespond to the transformation from a k-shiftedform to a k + 1-shifted form.



Algorithm 2 CharPolyRe
(A, n, k, x)Require: A k-shifted form A ∈ K
n×n, an indeterminate x.Ensure: return det xI − A, or fail.if n = k thenReturn det(xI − A)else

(d1, . . . , dm) := Extension(A,k)/* If the 
all to Extension fails then abortand return fail */
m̄ := minimal index with dm̄ < k + 1
n̄ := d1 + · · · + dm̄
»

Ā B
C D

–

:= Transform(A,k, (d1, . . . , dm))/* If C is not the zero matrix then abort andreturn fail */Return CharPolyRec(Ā, n̄, k + 1, x) × det(xI − D)end ifTheorem 2. Algorithm 2 (CharPolyRe
) returns the 
har-a
teristi
 polynomial of the input matrix or fail. The 
ostof the algorithm is O(nθ).Proof. The 
omplexity is dedu
ed from the followingarithmeti
 progression:
n

X

k=1

k(n/k)θ = nθ

n
X

k=1

(1/k)θ−1 = O(nθ)sin
e θ − 1 > 1.To ensure that the algorithm will only fail with a boundedprobability, the input matrix A has to be pre
onditioned bya random similarity transformation. This gives the followingalgorithm.Algorithm 3 CharPoly(A, n, x)Require: A matrix A ∈ K
n×n, an indeterminate x.Ensure: return det(xI − A), or fail./* Fail will be returned with probability atmost 1/2. We require #K ≥ 2n2. */

Λ := a subset of K with #Λ ≥ 2n2Choose V ∈ K
n×n with entries uniformly and randomlyfrom Λ.

B := V −1AV /* If V is singular then abort andreturn fail */Return CharPolyRe
(B, n, 1, x)The probability analysis of Algorithm 3 (CharPoly) will bedetailed in Se
tion 6; the 
ost of the algorithm is obviouslystill O(nθ) �eld operations.
6. PRECONDITIONINGLet A ∈ K

n×n be an arbitrary matrix. In this subse
tionwe prove that Algorithm 2 (CharPolyRe
) will not fail whengiven as input the tuple (B,n, 1, x), where B = V −1AV and
V is �lled with algebrai
ally independent indeterminates.Upon spe
ialization of the indeterminates with random �eldelements, as is done by Algorithm 3 (CharPoly), a boundof 1/2 on the probability of failure will follow due to theS
hwartz-Zippel Lemma [9, 13℄.The proof of the following theorem is similar to and in-spired by [12, Proof of Proposition 6.1℄. Note that for 
onve-nien
e we assume that the Frobenius form of A has n blo
ks,

some of whi
h may trivial (i.e., 0 × 0). In the statement ofthe theorem this means that some of the f∗ and d∗ may bezero.Theorem 3. Let A ∈ K
n×n have Frobenius form withblo
ks of dimension f1 ≥ · · · ≥ fn, and let v1, . . . , vn bethe 
olumns of a matrix V �lled with algebrai
ally indepen-dant indeterminates. Suppose (d1, . . . , dn) is monotoni
allynonin
reasing sequen
e of nonnegative integers. Then

K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜has full 
olumn rank if and only if Pi

j=1 dj ≤
Pi

j=1 fj forall 1 ≤ i ≤ n.Proof. The �only if� dire
tion follows be
ause for anyblo
k X of i ve
tors, even a generi
 blo
k X = [v1 | · · · | vi],the dimension of OrbA(X) is at most Pi

j=1 fi.To prove the other dire
tion we spe
ialize the indetermi-nates in the ve
tors vi. In parti
ular, it will be su�
ient to
onstru
t a full 
olumn rank matrix
K =

ˆ

K1 · · · Kn

˜over K su
h that ea
h Ki is in Krylov form and has di-mension di, 1 ≤ i ≤ n. Consider a 
hange of basis matrix
U ∈ K

n×n su
h that U−1AU is in Frobenius form. Then
U =

ˆ

KA(u1, f1) · · · KA(un, fn)
˜is nonsingular. Let

K̄ =
ˆ

K̄1 · · · K̄n

˜be the submatrix of U su
h that ea
h K̄i has the form
K̄i =

ˆ

KA(ui, min(fi, di)) Ei

˜

,where Ei has dimension di − min(fi, di), and the 
olumnsof E1, E2, . . . , En are �lled with unused 
olumns of U , usingthe 
olumns in order from left to right. Then K̄ has full
olumn rank and ea
h K̄i has the 
orre
t dimension. Ourgoal now is to demonstrate the existen
e of an invertiblematrix T su
h that K = K̄T has the desired form. We will
onstru
t T = I +
Pn

i=1(Ti − I) where ea
h Ti is unit uppertriangular. For all i with di ≤ fi no transformation of K̄i isrequired: set Ti = I . If fi < di then
K̄i =

ˆ

KA(ui, fi) KA(As1uj1 , t1) · · · KA(Ask ujk
, tk)

˜where, by 
onstru
tion of the Ei, we have j1 < j2 < · · · <
jk, tl = fjl

− sl for 1 ≤ l ≤ k − 1, and tk ≤ fk. Usingthe property Pi

j=1 dj ≤
Pi

j=1 fj we have jk < i. Sin
e
(d1, . . . , dn) is monotoni
ally nonde
reasing and KA(vl, dl)is a submatrix of K̄i for 1 ≤ l ≤ k, it follows that

sl ≥ di for 1 ≤ l ≤ k. (4)We 
an write K̄i as the sum of the following k + 1 matri
es:
K̄i =

ˆ

KA(ui, fi) 0, . . . , 0
˜ (5)

+

k−1
X

l=1

ˆ

0, . . . , 0 KA(Asl ujl
, fjl

− sl) 0, . . . , 0
˜(6)

+
ˆ

0, . . . , 0 KA(Ask ujk
, tk)

˜ (7)To bring the matrix in (5) to Krylov form we may addsuitable linear 
ombinations of the �rst fi 
olumns to thelast di − fi 
olumns to obtain
ˆ

KA(ui, fi) KA(Afiui, di − fi)
˜

.



This is possible sin
e the i'th invariant subspa
e has dimen-sion fi. Denote by T
(1)
i the unit upper triangular matrixwhi
h e�e
ts this transformation on K̄.Now 
onsider the matrix in (7). The Krylov spa
e needsto be extended on the left to �ll in the zero 
olumns asfollows:

ˆ

KA(Asujk
, sk − s) KA(Askujk

, tk)
˜

.From (4) we may 
on
lude that s ≥ 0. Sin
e KA(Asujk
, sk−

s) is a submatrix of ˆ

K̄1 · · · K̄i−1

˜, we need only 
opyformer to latter 
olumns. Denote by T
(2)
i the unit upper tri-angular matrix whi
h e�e
ts the 
opying on these 
olumns.Similarly, there exists a unit upper triangular matrix T

(3)
iwhi
h extends the Krylov sequen
e of the matrix in (6) tothe left and right. Let Ti = T

(1)
i + T

(2)
i + T

(3)
i .In the following 
orollary the matrix A and V are as inTheorem 3, that is, A ∈ K

n×n has Frobenius form withblo
ks of dimension f1 ≥ f2 ≥ · · · ≥ fn and V is an n × nmatrix �lled with indeterminates. The 
orollary follows asa result of Fa
t 1.2.Corollary 1. Let B := V −1AV and k satisfy 2 ≤ k ≤
n. The lexi
ographi
ally maximal sequen
e (d1, . . . , dn) ofnonnegative integers su
h that:

• di ≤ k for all 1 ≤ i ≤ m, and
• K =

ˆ

KB(e1, d1) · · · KB(en, dn)
˜ has full 
olumnrank,will satisfy d1 + · · · + dn = n and 
an be written as

(d1, . . . , dn) = (k, . . . , k, dm̄, fm̄+1, fm̄+2, . . . , fn)with k > dm̄ ≥ fm̄+1. Moreover,
K−1BK =

»

Ā B
D

–is in shifted Hessenberg form, where Ā is in (k + 1)-shiftedform of dimension n̄ = d1+· · ·+dm̄, and D is in Hessenbergform.Ea
h entry of V K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜ isa linear 
ombination of indeterminates of V . If follows thatthe determinant of V K is a nonzero polynomial in the inde-terminates of V with total degree at most n.Let K1 = In and Ki be the matrix of Corollary 1 for

k = i, 2 ≤ i ≤ n. Given as input (B,n, 1, x), Algorithm 2(CharPolyRe
) will perform a 
hange of basis at ea
h stepand 
omputes the stru
tured Krylov extension K−1
i−1Ki for

i = 2, 3, . . . , n. Let ∆ be the produ
t of the determinant of
V and ea
h matrix V Ki. Then ∆ is a nonzero polynomialof total degree bounded by n2. The next result now followsfrom the S
hwartz-Zippel lemma.Theorem 4. Algorithm 2 (CharPoly) will return fail withprobability at most 1/2.We remark that the randomized Frobenious form algorithmsin [5, 6℄ rely on the fa
t that the diagonal blo
ks in theHessenberg form K−1

n BKn will be those of the Frobeniousform of A, and thus require that the determinant of thesingle matrix V Kn not vanish upon spe
ialization of V withrandom �eld elements.

7. IMPLEMENTATIONIn this se
tion we dis
uss an implementation of the new
hara
teristi
 polynomial algorithm that is modi�ed to per-form the pre
onditinoing step more e�
iently in pra
ti
e.A
tually, the algorithm is adaptive and involves a parameterthat is highly ar
hite
ture-dependant and must be set exper-imentally. We present experiments 
omparing the pra
ti
alperforman
e of our implementation with several others soft-wares.The implementation we des
ribe here makes use of theFFLAS-FFPACK library1. This C++ library provides thee�
ient basi
 routines su
h as matrix multipli
ations andLQUP de
omposition that make use of the level 3 BLASnumeri
al routines [1, 2℄.
7.1 Efficient preconditioningAlthough it does not a�e
t the asymptoti
 
omplexity, thepre
onditioning phase V −1AV of Algorithm 3 (CharPoly)is expensive in pra
ti
e. This pre
onditioning phase 
analso be a
hieved by modifying Algorithm 2 (CharPolyRe
)to 
ompute the �rst Krylov extension using random ve
torsfrom Λ instead of identity ve
tors.Our heuristi
 for this pre
onditioning step is to 
omputea blo
k Krylov matrix M =

ˆ

U |AU | . . . |Ac−1U
˜ where U isformed by ⌈n/c⌉ random ve
tors, for some paramter c. Ifthis matrix is non singular, then the matrix M−1AM will bein c-shifted form (up to row and 
olumn permutations) andAlgorithm 2 (CharPolyRe
) 
an be 
alled with shift param-eter k = c instead of k = 1. If r = rank(M) < n then thelinearly independent 
olumns of M 
an be 
ompleted into anon singular matrix M by adding n− r 
olumns at the end,and we obtain the blo
k upper triangular matrix

M
−1

AM =

»

Hc ∗
R

–where the r × r matrix Hc is in c-shifted form (up to rowand 
olumn permutations). The 
hara
teristi
 polynomialof this matrix is 
omputed by two re
ursive 
alls on thediagonal blo
ks Hc and R. Algorithm 4 (CharPoly) givesthe algorithm with this modi�ed pre
onditioning step.Further explanations on the 
ompletion of M into M usingthe LQUP de
omposition 
an be found in [3℄. Note thatagain, only c 
olumns of the matrix Hc have to be 
omputed,whi
h makes the 
omputation of B mu
h 
heaper.As c gets larger, the sli
es of the blo
k Krylov matrix Kbe
ome smaller. In the extreme 
ase c = n, the algorithm
omputes the usual Krylov matrix of only one ve
tor. In this
ase, the algorithm is equivalent to the algorithm LU-Krylovpresented in [3, algorithm 2.2℄. Assuming θ = 3 the leading
onstant of algorithm LU-Krylov is 
ompetitive (2.66n3) butthe algorithm does not fully exploit matrix multipli
ation.At the opposite, the 
ase c = 2 
orresponds to Algorithm 3(CharPoly): it redu
es the problem fully to matrix multipli-
ation. The pre
onditioning parameter c makes it possibleto balan
e the 
omputation between these two algorithms.Figure 1 displays the 
omputation time of the algorithmfor di�erent values of c. Three matri
es of order 5000 areused: they di�er in the number of blo
ks in their Frobe-nius form. For c < 55, the timings are de
reasing when1This library is available online at http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS or within theLinBox library http://www.linalg.org



Algorithm 4 CharPoly(A, n, x)Require: A matrix A ∈ K
n×n, an indeterminate x, a pre-
onditioning parameter c.Ensure: det(xI − A), or fail./* Fail will be returned with probability atmost 1/2 if #K > 2n2 */

Λ := a subset of K with #Λ ≥ 2n2

m := ⌈n/c⌉Choose V ∈ K
n×m with entries uniformly and randomlyfrom Λ.Compute the n × (c⌈n/c⌉) matrix
M =

ˆ

V |AV | . . . |Ac−1V
˜Compute (L, Q,U, P ), the LQUP de
omposition of MT .Let r = rank(MT )

M :=

»

MQ
ˆ

Ir 0
˜

P T

»

0
In−r

– –

B := M
−1

AM =

»

Hc ∗
R

–Return CharPolyRe
(Hc, n, c, x)×CharPolyRe
(R,n, 0, x)
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Figure 1: Finding the optimal pre
onditioning pa-rameter c for matri
es of order 5000, Itanium2-641.3Ghz, 192Gb
c in
reases, whi
h shows the advantage of using the blo
kKrylov pre
onditioning for a large enough value for c. Thenthe timings in
rease again for larger c. In these 
ases, thedominant operation is the 
omputation of the blo
k Krylovmatrix M by many matrix multipli
ations of uneven dimen-sions. The matrix multipli
ation routine used will be moree�
ient for 
omputing one n × n by n × n produ
t ratherthan c n × n by n × n/c produ
ts, due to both the level 3BLAS behaviour and the use of sub-
ubi
 matrix multipli
a-tion. The optimal value c = 55 gives here the best timings.This value is not only depending the matrix dimension, butalso on the ar
hite
ture and the BLAS that are used, sin
e itis linked with the ratio between the e�
ien
y of the matrixve
tor produ
t and the matrix matrix multipli
ation.Note that the algorithm gets faster as the dimension ofthe largest blo
k de
reases.
7.2 Timing comparisons

We now 
ompare the running time of our implementationof Algorithm 4 CharPoly with that of other state of theart implementations of 
hara
teristi
 polynomial algorithms.The routine LU-Krylov, available in the FFLAS-FFPACKand LinBox, libraries was shown to be the most e�
ientimplementation in most 
ases [3℄.For all the following experiments, we used the �nite �eld
Z/(547 909). On one hand, it is large enough to ensure a highprobability of su

ess; none of the 
omputations returnedfail. On the other hand, the �eld size is small enoughso that the FFLAS-FFPACK routines 
an make e�
ientuse of the level 3 BLAS subroutines, using delayed modularredu
tions with the 53 bits of the double mantissa.

n LU-Krylov New algorithm200 0.024 0.032300 0.06s 0.088s500 0.248s 0.316s750 1.084s 1.288s1000 2.42s 2.296s5000 267.6s 153.9s10 000 1827s 991s20 000 14 652s 7097s30 000 48 887s 24 928sTable 1: Computation time for 1 Frobenius blo
kmatri
es, Itanium2-64 1.3Ghz, 192GbTable 1 presents the timings for the 
omputation of the
hara
teristi
 polynomial of matri
es having only one blo
kon their Frobenius form. The pre
onditioning parameter
c has been set to 100 for these experiments. The new al-gorithm improves the 
omputation time of LU-Krylov formatri
es of order not less than 1000. For matri
es of order
30 000, the improvement fa
tor is about 47.6%, due to thefa
t that the new algorithm fully redu
es to matrix multi-pli
ation and 
an better exploit the level 3 BLAS e�
ien
y.Figure 2 presents these timings in a log s
ale graph. The
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omparison between the new algo-rithm and LU-Krylov, logarithmi
 s
ales, Itanium2-64 1.3Ghz, 192Gbslopes of the two lines, whi
h 
orresponds to the exponent oftheir 
omplexity, are both 
lose to 3. However, the slope of



the new algorithm is slightly lower, indi
ating the e�e
tiveuse of sub-
ubi
 matrix multipli
ation for this 
omputation.
n magma-2.11 LU-Krylov New algorithm100 0.010s 0.005s 0.006s300 0.830s 0.294s 0.105s500 3.810s 1.316s 0.387s800 15.64s 4.663s 1.387s1000 29.96s 10.21s 2.755s1500 102.1s 33.36s 7.696s2000 238.0s 79.13s 17.91s3000 802.0s 258.4s 61.09s5000 3793s 1177s 273.4s7500 MT 4209s 991.4s10 000 MT 8847s 2080sTable 2: Computation time for 1 Frobenius blo
kmatri
es, Athlon 2200, 1.8Ghz, 2GbMT: Memory thrashingLastly table 2 gives a 
omparison with magma-2.112. Hereagain, our new implementation improves the 
omputationtime of this software, with a gain fa
tor of about 13.8 for

n = 5000. Moreover, its better memory management makesit possible to 
ompute with larger matri
es. On this ma-
hine, the e�
ien
y ratio between matrix-ve
tor and matrixmultipli
ation is mu
h lower than on the Itanium2. There-fore the new algorithm gets already faster for dimensionsover 300.
8. CONCLUSIONSWe remark that the 
hara
teristi
 polynomial algorithmwe have presented 
an easily be modi�ed to 
ompute the en-tire Frobenius form by 
he
king some divisibility 
onditionsof the polynomials indu
ed by the blo
ks in the 
omputedHessenberg form. The additional 
ost is bounded by O(nθ)sin
e θ > 2. Thus, we obtain a Las Vegas algorithm for
omputing the Frobenius form of a matrix over �eld thathas expe
ted 
ost O(nθ).To ensure a probability of su

ess at least 1/2, we requirethat the ground �eld have at least 2n2 elements. If the �eldis too small we 
an work over an extension but a better solu-tion (
urrently) would be the apply an alternative algorithmsu
h as LU-Krylov dis
ussed in the previous se
tion for 
om-puting the 
hara
teristi
 polynomial, or the Frobenius formalgorithm of Eberly [4℄.For 
omparison, Eberly's Las Vegas Frobenius form algo-rithm has expe
ted 
ost O(nθ log n), no restri
tions on the�eld size, and it 
omputes a similarity transform matrix aswell as the form itself. Our algorithm has expe
ted 
ost
O(nθ), requires the ground �eld to have size at least 2n2,and does not re
over a similarity transform matrix in thesame time.On the one hand, re
overy of a similarity transform ma-trix is undoubtedly useful for various appli
ations [5℄. Onthe other hand, for problems su
h as 
omputing the min-imal polynomial or testing two matri
es for similarity theFrobenius form itself will su�
e.2We are grateful to the Medi
is 
omputing 
enter hosted bythe CNRS STIX lab : medi
is.polyte
hnique.fr/medi
is forthe possibility of running magma on their ma
hines

The main open problem we identify is to eliminate the
ondition on the �eld size while maintaining the 
ost bound
O(nθ): ideally the algorithm 
ould be derandomized en-tirely. The 
urrently fastest deterministi
 algorithm has 
ost
O(nθ(log n)(log log n)) [10, 11℄.
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