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ABSTRACTA new randomized algorithm is presented for omputing theharateristi polynomial of an n × n matrix over a �eld.Over a su�iently large �eld the asymptoti expeted om-plexity of the algorithm is O(nθ) �eld operations, improvingby a fator of log n on the worst ase omplexity of Keller�Gehrig's algorithm [8℄.
1. INTRODUCTIONComputing the harateristi polynomial of an n× n ma-trix A over a �eld F is a lassial problem. Keller-Gehrig [8℄gave three redutions of the problem to matrix multiplia-tion. Let θ be an admissible exponent for the omplexityof matrix multipliation: O(nθ) operations from F are su�-ient to multiply together two n×n matries over F. In thispaper all omplexity bounds are in terms of �eld operationsfrom F and we make the ommon assumption that θ > 2.Keller-Gehrig's third algorithm has ost O(nθ) but onlyworks for input matries with restritive generiity require-ments. His �rst algorithm, a simpli�ed version of the se-ond, also only works for input matries satisfying ertainrequirements. Of primary interest here is his seond algo-rithm whih works for all input matries and has a worstase ost of O(nθ log n). The extra log n fator arises be-ause the algorithm omputes A2, A4, A8, . . . , A⌈log

2
n⌉ usingbinary poweringComputing the haratersti polynomial is losely relatedto other problem suh as omputing the minimal polyno-mial, testing two matries for similarity, and omputing theFrobenius anonial form. Known redutions to matrix mul-tipliation for these problems, both deterministi [10, 11℄and probabalisti [4, 5, 6℄, all have an extra log n fator intheir worst ase omplexity bounds, arising beause Keller�Gehrig's algorithm is used as a subroutine diretly [5, 6, 10,11℄ or beause a logarithmi number of powers of A mightbe omputed [4℄.In this paper we ombine ideas from [6, 8, 12℄ to get a
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new randomized algorithm for omputing the harateristipolynomial. If F has at least 2n2 elements our Las Vegas al-gorithm has expeted ost O(nθ), mathing the lower boundfor this problem. Unlike Keller-Gehrig's O(nθ log n) algo-rithm, we proeed in phases for k = 1, 2, 3, . . . , n and thusonverges arithmetially.In Setion 2 we introdue some notation and reall somefats about Krylov matries. Setion 3 gives a worked ex-ample of the new algorithm and o�ers an overview of Se-tions 4�6 whih are devoted to presenting the algorithmand proving orretness. The new algorithm is not only oftheoretial interest but also pratial. In Setion 7 we de-sribes an implementation, present some timings, and om-pare with the previously most e�ient implementations thatwe are aware of. Setion 8 onludes.
2. NOTATIONWe will frequently write matries using a onformal blokdeomposition. A blok is a submatrix omprised of a on-tiguous sequene of rows and olumns. A blok may bea single matrix entry or may have row or olumn dimen-sion zero. The generi blok label ∗ denotes that a blok ispossibly nonzero. Bloks that are neessarily zero are leftunlabelled.In this paper a ompanion matrix looks like
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∈ K
k×k. (1)and the sizes of ompanion bloks in the Frobenius anonialform are monotonially noninreasing. Companion bloksmay have dimension zero. We use the label B∗ to denote ablok whih has all entries zero exept for possibly entries inthe last olumn. The dimension of a blok labelled B∗ willbe onformal with adjaent bloks.For a square matrix A ∈ K

n×n and vetor v ∈ K
n×1, let

KA(v, d) denote the Krylov matrix
ˆ

v Av · · · Ad−1v
˜

∈ K
n×d.For V ∈ K

n×j we denote by OrbA(V ) the subspae of K
nspanned by all the olumn vetors in ˆ

V | AV | A2V | . . .
˜.Fat 1. Let A ∈ K

n×n be arbitrary and U ∈ K
n×n benonsingular. Then



1. U =
ˆ

KA(v1, d1) · · · KA(vn, dm)
˜ for some ve-tors v1, . . . , vm ∈ K

n×1 and positive integers d1, . . . , dmif and only if
U−1AU =
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(2)with Ci a ompanion matrix of dimension di, 1 ≤ i ≤
m.2. For any j, 1 ≤ j ≤ m, the matrix (2) an be writtenas
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5if and only the dimension of OrbA([ v1 | · · · | vj ]) isequal to d1 + · · · + dj.The matrix in (2) is a shifted Hessenberg form with degreesequene (d1, d2, . . . , dm), orresponding to the dimensionsof the diagonal bloks. A shifted Hessenberg form with theshape
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5is simply alled a Hessenberg form.Let ei denote the i'th olumn of the identity matrix of theappropriate dimension.
3. OVERVIEWThe key to our algorithm is what we all a k-uniformshifted Hessenberg form: eah diagonal ompanion blok hasdimension k, exept for possibly the last whih may havedimension less than k. For brevity we will refer to suha matrix as a k-shifted form. The algorithm proeeds inphases for inreasing k. Phase k involves the transformationof a k-shifted form to a (k + 1)-shifted form. We begindiretly with a worked example of one phase of the algorithmand then �ll in the details in the subsequent setions.Consider the following 3-shifted form of order 14 over
Z/(97), with diagonal bloks orresponding to the degree

sequene (3, 3, 3, 3, 2) :
A =
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1 15 13 78 92 33
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62 50 92 57 30
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22 41 1 76 9 2
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39 19 83 1 46 36
91 19 64 1 82 6
55 73 49 66 86
42 24 48 31 1 12
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The striped Krylov matrix
ˆ

KA(e1, 3) KA(e4, 3) KA(e7, 3) KA(e10, 3) KA(e13, 2)
˜will be the identity matrix sine the dimensions of the sliesorresponding to the basis vetors (e1, e4, e7, e10, e13) maththe degree sequene (3, 3, 3, 3, 2) of the diagonal bloks. Ouridea, made preise in Setion 4, is to ompute what we allthe Krylov extension of A by inreasing the rank of eahKrylov slie by at most one in a lexiographially maximalfashion. In this example the Krylov extension is (4, 4, 3, 2, 1),orresponding to the full olumn rank matrix K:

[ KA(e1, 4) KA(e4, 4) KA(e7, 3) KA(e10, 2) KA(e13, 1) ] .If the the Krylov extension is not monontially noninreas-ing or does not orrespond to a square matrix the algorithmwill abort. For this example we may ontinue. The Krylovextension orresponds to the striped Krylov matrix
K =
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As demonstrated by this example, it is always the ase that
K will be omprised entirely of identity vetors and olumnsof A. This follows from the fat that A is in k-shifted formand we are extending eah Krylov slie to dimension at most
k + 1. Applying the similarity transform K to A we obtainthe shifted Hessenberg form

K−1AK =

»

Ā B
C D
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=
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39 7 1 84 81 69
29 45 1 8 8 93
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Beause the Krylov extension (4, 4, 3, 2, 1) is monontoniallynoninreasing we may partition it into two parts: (4, 4, 3)orresponsing the the prinipal blok Ā of K−1AK whih isneessarily in 4-shifted form; and (2, 1) orresponding to thetrailing 3 × 3 blok D. For this example the Krylov exten-sion is what we all normal: the southwest blok C of thematrix K−1AK is �lled with zeroes and the trailing blok
D is in blok upper triangular shifted Hessenberg form (alsoalled simply Hessenberg form). If these onditions are notsatis�ed the algorithm will abort. For this example we mayontinue: the algorithm reursively omputes the harater-isti polynomial of the prinipal blok Ā and multiplies theresult by the harateristi polynomial of D, thus obtainingthe harateristi polynomial of A.In Setion 4 we de�ne preisely what we mean by theKrylov extension of a k-shifted form and give an algorithmfor its omputation that has ost O(k(n/k)θ). As disussedin the example above, for the algorithm to be able to on-tinue the Krylov extension must be normal, that is, mustsatisfy ertain onditions (see De�nition 1). In Setion 6we show how to preondition the input matrix so that allthe Krylov extensions omputed during the ourse of thealgorithm will be normal with high probability.In Setion 5 we present an algorithm that takes as inputa square matrix A ∈ K

n×n over a �eld, and either returnsthe harateristi polynomial or reports �fail.� The algo-rithm transform the prinipal blok of the work matrix from
k-shifted to (k + 1)-shifted form for k = 2, 3, . . . , n in su-ession. The running time of the algorithm is bounded by
O(

Pn−1
k=1 k(n/k)θ), whih an be shown to be O(nθ) underthe assumption that θ > 2.

4. NORMAL KRYLOV EXTENSIONNote that the number of (non�trivial) diagonal bloks ina k-shifted form A ∈ K
n×n is given by m := ⌈n/k⌉, and thatthe dimension of the trailing blok is n− (m− 1)k. If we let

vi = e(i−1)k+1 for 1 ≤ i ≤ m, then the blok Krylov matrix
ˆ

KA(v1, k) · · · KA(vm−1, k) KA(vm, n − (m − 1)k)
˜ (3)will be equal to In.Definition 1. The Krylov extension of a k-shifted form

A ∈ K
n×n with m := ⌈n/k⌉ diagonal bloks is the lexi-ographially maximal sequene (d1, . . . , dm) of nonnegativeintegers that satis�es the following restritions:

• di ≤ k + 1 for all 1 ≤ i ≤ m;
• K =

ˆ

KA(v1, d1) · · · KA(vm, dm)
˜ has full ol-umn rank;where vi = e(i−1)k+1 for 1 ≤ i ≤ m. The Krylov extensionis said to be normal if the following additional onditionsare satis�ed:1. d1 + · · · + dm = n;2. (d1, . . . , dm) is monotonially noninreasing;3. dm ≤ n − (m − 1)k;4. The shifted Hessenberg form K−1AK has the shape

K−1AK =

»

Ā B
D

–

,

where D is a Hesssenberg form (possibly of dimensionzero) and Ā is (k + 1)-shifted form of dimension n̄ =
d1 + · · ·+ dm̄, where m̄ is the minimal index suh that
dm̄ < k + 1.We now desribe an algorithm that omputes the Krylovextension. Atually, the algorithm is only guaranteed towork if the Krylov extension is normal. If any of onditions1, 2 or 3 of De�nition 1 are not satis�ed the algorithm willdetet this and report failure. The idea of the algorithmis straighforward. Consider the n × (n + m − 1) matrix Eobtained from the matrix in (3) by extending the dimensionof eah Krylov slie from k to k + 1, exept for the last.Then E has all the olumns of In plus an additional m − 1olumns from A.The following result follows from Fat 1.2 by onsideringthe shape of K−1AK in ase the Krylov extension is normal.Lemma 1. If the Krylov extension (d1, . . . , dm) of a k-shifted form A ∈ K

n×n is normal, then the submatrix of Eomprised of the rank pro�le olumns is equal to the matrix
K of De�ntion 1.We next desribe how to ompute the olumn rank pro�leof the matrix E taking advantage of its struture.
Computing the column rank profileConsider the matrix F = ET J , where J is the anti-diagonalmatrix suh that Ji,j = 1 if i + j = n + 1 and 0 otherwise.The olumn rank pro�le of E is the row rank pro�le of F .For example for the matrix
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F =
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5The row rank pro�le of F an be omputed using gaus-sian elimination, proessing eah row in turn, starting fromthe �rst row to the last. Proessing of a row involves ei-ther determining that the row has already been zeroed out,and hene is not inluded in the rank pro�le, or performinggaussian elmination to zero entries below the �rst non-zeroentry in the row (the pivot). Proessing of the �rst threerows onsists in zeroing the oe�ients below the ones. Af-ter proessing the fourth row the matrix has the following



shape:
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5The key observation now is that afer proessing rows 5 and6, row 7 will be zeroed out and is therefore not in the rankpro�le. After the elimination is ompleted, the matrix hasthe form
F =
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The rank pro�le is (1, 2, 3, 4, 5, 6, 8, 9, 10).To take advantage of the struture of the matrix, we willperform the elimination on the n × m submatrix G formedby the dense rows of index k+1, 2(k+1), . . . , (m−2)(k+1), nof the matrix F .In the previous example,
G =

2

4

0 0 0 15 14 13 12 11 10
28 27 26 25 24 23 22 21 20
38 37 36 35 34 33 32 31 30

3

5It is then su�ient to keep trak of the strutured rows bythe vetor ℓ of their indies: if H is the submatrix formedby these n rows, ℓ[i] = j ⇔ Hi,j = 1. At the beginning ofthe elimination H = J and so ℓ = [n, n − 1, . . . , 1].Now onsider the proessing of the ith row of G if weinlude pivoting.
• The oe�ients Fi,ℓ[j] ∀j ≤ k× i are set to zero to sim-ulate the elimination of the orresponding struturedrows above.
• The vetor ℓ has to be updated with the permutationthat may be used to �nd the �rst non zero pivot onthe urrent row.The elimination on G an be performed in time O(n(n/k)θ)using the LQUP algorithm of Ibarra, Moran & Hui [7℄.The only modi�ation is to inorporate the operations listedabove into the last reursion level of the algorithm (for m =

1). In the following algorithm we will denote the subroutinejust desribed by StruturedRankProfile.Theorem 1. Algorithm Extension is orret. The ostof the algorithm is O(k(n/k)θ).
5. CHARACTERISTIC POLYNOMIAL VIA

ARITHMETIC PROGRESSION

Algorithm 1 Extension(A, n, k)Require: A k-shifted form A ∈ K
n×n.Ensure: The Krylov extension (d1, . . . , dm) of A, or fail./* Fail will be returned if any of onditions 1,2 and 3 of Definition 1 are not satisifed. Failwill not be returned if the Krylov extension isnormal. */Form the n× (n+m) matrix E from (3) by extending thedimension of eah Krylov slie by one.

[j1, . . . , jr] := StruturedRankProfile(E,k).if there exists a monotoniall noninreasing sequene
(d1, . . . , dm) inreasing suh that [j1, . . . , jr] is equal to
[1, . . . , d1, (k+1)+1, . . . , (k+1)+d2, . . . , (m−1)(k+
1) + 1, . . . , (m − 1)(k + 1) + 1 + dm] thenreturn (d1, . . . , dm)elsereturn Fail.end ifLet A ∈ K

n×n be a k-shifted form with a normal Krylovextension (d1, . . . , dm). Let K be the striped Krylov matrixassoiated to the extension. A key step of the algorithmis perform the hange of basis K−1AK. To perform thise�iently the struture of the matries A, K and K−1AKhave to be taken into aount.Note that all the olumns of K−1AK will be known olumnsof In exept for the at most m olumns {d1, d1+d2, . . . , d1+
d2 + · · ·+ dm}. Let Y be the submatrix of K orrespondingto these olumns. To reover K−1AK we need to ompute
K−1AY .Let ∗p denote a permutation matrix. Up to a row and ol-umn permutations, whih may be dedued from the degreesequene of diagonal bloks in A, we have

A = ∗p

»

In−m ∗
∗

–

∗p .Similarly, sine K will have fewer than ⌊n/(k + 1)⌋ olumnswhih are not identity vetors, and ⌊n/(k + 1)⌋ < m, up torow and olumn permutations, whih may be dedued from
(d1, . . . , dm), we have

K = ∗p

»

In−m ∗
∗

–

∗p .Note that K−1 an be expressed similarly to K. This shows
K−1AY = ∗p

»

In−m ∗
∗

–−1

∗p

»

In−m ∗
∗

–

∗p Y.This gives the following result.Lemma 2. Let K ∈ K
n×n be the striped Krylov matrixorresponding to the uniform Krylov extension (d1, . . . , dm)of a k-shifted form A ∈ K

n×n. There exists an algorithmTransform that takes as input (A,k, (d1, . . . , dm)) and re-turns K−1AK. The ost of the algorithm is O(k(n/k)θ)�eld operations from K.Assembling these omponents together gives Algorithm 2(CharPolyRe) that reursively omputes the harateristipolynomial of the input matrix or returns fail. Eah reur-sive step orrespond to the transformation from a k-shiftedform to a k + 1-shifted form.



Algorithm 2 CharPolyRe(A, n, k, x)Require: A k-shifted form A ∈ K
n×n, an indeterminate x.Ensure: return det xI − A, or fail.if n = k thenReturn det(xI − A)else

(d1, . . . , dm) := Extension(A,k)/* If the all to Extension fails then abortand return fail */
m̄ := minimal index with dm̄ < k + 1
n̄ := d1 + · · · + dm̄
»

Ā B
C D

–

:= Transform(A,k, (d1, . . . , dm))/* If C is not the zero matrix then abort andreturn fail */Return CharPolyRec(Ā, n̄, k + 1, x) × det(xI − D)end ifTheorem 2. Algorithm 2 (CharPolyRe) returns the har-ateristi polynomial of the input matrix or fail. The ostof the algorithm is O(nθ).Proof. The omplexity is dedued from the followingarithmeti progression:
n

X

k=1

k(n/k)θ = nθ

n
X

k=1

(1/k)θ−1 = O(nθ)sine θ − 1 > 1.To ensure that the algorithm will only fail with a boundedprobability, the input matrix A has to be preonditioned bya random similarity transformation. This gives the followingalgorithm.Algorithm 3 CharPoly(A, n, x)Require: A matrix A ∈ K
n×n, an indeterminate x.Ensure: return det(xI − A), or fail./* Fail will be returned with probability atmost 1/2. We require #K ≥ 2n2. */

Λ := a subset of K with #Λ ≥ 2n2Choose V ∈ K
n×n with entries uniformly and randomlyfrom Λ.

B := V −1AV /* If V is singular then abort andreturn fail */Return CharPolyRe(B, n, 1, x)The probability analysis of Algorithm 3 (CharPoly) will bedetailed in Setion 6; the ost of the algorithm is obviouslystill O(nθ) �eld operations.
6. PRECONDITIONINGLet A ∈ K

n×n be an arbitrary matrix. In this subsetionwe prove that Algorithm 2 (CharPolyRe) will not fail whengiven as input the tuple (B,n, 1, x), where B = V −1AV and
V is �lled with algebraially independent indeterminates.Upon speialization of the indeterminates with random �eldelements, as is done by Algorithm 3 (CharPoly), a boundof 1/2 on the probability of failure will follow due to theShwartz-Zippel Lemma [9, 13℄.The proof of the following theorem is similar to and in-spired by [12, Proof of Proposition 6.1℄. Note that for onve-niene we assume that the Frobenius form of A has n bloks,

some of whih may trivial (i.e., 0 × 0). In the statement ofthe theorem this means that some of the f∗ and d∗ may bezero.Theorem 3. Let A ∈ K
n×n have Frobenius form withbloks of dimension f1 ≥ · · · ≥ fn, and let v1, . . . , vn bethe olumns of a matrix V �lled with algebraially indepen-dant indeterminates. Suppose (d1, . . . , dn) is monotoniallynoninreasing sequene of nonnegative integers. Then

K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜has full olumn rank if and only if Pi

j=1 dj ≤
Pi

j=1 fj forall 1 ≤ i ≤ n.Proof. The �only if� diretion follows beause for anyblok X of i vetors, even a generi blok X = [v1 | · · · | vi],the dimension of OrbA(X) is at most Pi

j=1 fi.To prove the other diretion we speialize the indetermi-nates in the vetors vi. In partiular, it will be su�ient toonstrut a full olumn rank matrix
K =

ˆ

K1 · · · Kn

˜over K suh that eah Ki is in Krylov form and has di-mension di, 1 ≤ i ≤ n. Consider a hange of basis matrix
U ∈ K

n×n suh that U−1AU is in Frobenius form. Then
U =

ˆ

KA(u1, f1) · · · KA(un, fn)
˜is nonsingular. Let

K̄ =
ˆ

K̄1 · · · K̄n

˜be the submatrix of U suh that eah K̄i has the form
K̄i =

ˆ

KA(ui, min(fi, di)) Ei

˜

,where Ei has dimension di − min(fi, di), and the olumnsof E1, E2, . . . , En are �lled with unused olumns of U , usingthe olumns in order from left to right. Then K̄ has fullolumn rank and eah K̄i has the orret dimension. Ourgoal now is to demonstrate the existene of an invertiblematrix T suh that K = K̄T has the desired form. We willonstrut T = I +
Pn

i=1(Ti − I) where eah Ti is unit uppertriangular. For all i with di ≤ fi no transformation of K̄i isrequired: set Ti = I . If fi < di then
K̄i =

ˆ

KA(ui, fi) KA(As1uj1 , t1) · · · KA(Ask ujk
, tk)

˜where, by onstrution of the Ei, we have j1 < j2 < · · · <
jk, tl = fjl

− sl for 1 ≤ l ≤ k − 1, and tk ≤ fk. Usingthe property Pi

j=1 dj ≤
Pi

j=1 fj we have jk < i. Sine
(d1, . . . , dn) is monotonially nondereasing and KA(vl, dl)is a submatrix of K̄i for 1 ≤ l ≤ k, it follows that

sl ≥ di for 1 ≤ l ≤ k. (4)We an write K̄i as the sum of the following k + 1 matries:
K̄i =

ˆ

KA(ui, fi) 0, . . . , 0
˜ (5)

+

k−1
X

l=1

ˆ

0, . . . , 0 KA(Asl ujl
, fjl

− sl) 0, . . . , 0
˜(6)

+
ˆ

0, . . . , 0 KA(Ask ujk
, tk)

˜ (7)To bring the matrix in (5) to Krylov form we may addsuitable linear ombinations of the �rst fi olumns to thelast di − fi olumns to obtain
ˆ

KA(ui, fi) KA(Afiui, di − fi)
˜

.



This is possible sine the i'th invariant subspae has dimen-sion fi. Denote by T
(1)
i the unit upper triangular matrixwhih e�ets this transformation on K̄.Now onsider the matrix in (7). The Krylov spae needsto be extended on the left to �ll in the zero olumns asfollows:

ˆ

KA(Asujk
, sk − s) KA(Askujk

, tk)
˜

.From (4) we may onlude that s ≥ 0. Sine KA(Asujk
, sk−

s) is a submatrix of ˆ

K̄1 · · · K̄i−1

˜, we need only opyformer to latter olumns. Denote by T
(2)
i the unit upper tri-angular matrix whih e�ets the opying on these olumns.Similarly, there exists a unit upper triangular matrix T

(3)
iwhih extends the Krylov sequene of the matrix in (6) tothe left and right. Let Ti = T

(1)
i + T

(2)
i + T

(3)
i .In the following orollary the matrix A and V are as inTheorem 3, that is, A ∈ K

n×n has Frobenius form withbloks of dimension f1 ≥ f2 ≥ · · · ≥ fn and V is an n × nmatrix �lled with indeterminates. The orollary follows asa result of Fat 1.2.Corollary 1. Let B := V −1AV and k satisfy 2 ≤ k ≤
n. The lexiographially maximal sequene (d1, . . . , dn) ofnonnegative integers suh that:

• di ≤ k for all 1 ≤ i ≤ m, and
• K =

ˆ

KB(e1, d1) · · · KB(en, dn)
˜ has full olumnrank,will satisfy d1 + · · · + dn = n and an be written as

(d1, . . . , dn) = (k, . . . , k, dm̄, fm̄+1, fm̄+2, . . . , fn)with k > dm̄ ≥ fm̄+1. Moreover,
K−1BK =

»

Ā B
D

–is in shifted Hessenberg form, where Ā is in (k + 1)-shiftedform of dimension n̄ = d1+· · ·+dm̄, and D is in Hessenbergform.Eah entry of V K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜ isa linear ombination of indeterminates of V . If follows thatthe determinant of V K is a nonzero polynomial in the inde-terminates of V with total degree at most n.Let K1 = In and Ki be the matrix of Corollary 1 for

k = i, 2 ≤ i ≤ n. Given as input (B,n, 1, x), Algorithm 2(CharPolyRe) will perform a hange of basis at eah stepand omputes the strutured Krylov extension K−1
i−1Ki for

i = 2, 3, . . . , n. Let ∆ be the produt of the determinant of
V and eah matrix V Ki. Then ∆ is a nonzero polynomialof total degree bounded by n2. The next result now followsfrom the Shwartz-Zippel lemma.Theorem 4. Algorithm 2 (CharPoly) will return fail withprobability at most 1/2.We remark that the randomized Frobenious form algorithmsin [5, 6℄ rely on the fat that the diagonal bloks in theHessenberg form K−1

n BKn will be those of the Frobeniousform of A, and thus require that the determinant of thesingle matrix V Kn not vanish upon speialization of V withrandom �eld elements.

7. IMPLEMENTATIONIn this setion we disuss an implementation of the newharateristi polynomial algorithm that is modi�ed to per-form the preonditinoing step more e�iently in pratie.Atually, the algorithm is adaptive and involves a parameterthat is highly arhiteture-dependant and must be set exper-imentally. We present experiments omparing the pratialperformane of our implementation with several others soft-wares.The implementation we desribe here makes use of theFFLAS-FFPACK library1. This C++ library provides thee�ient basi routines suh as matrix multipliations andLQUP deomposition that make use of the level 3 BLASnumerial routines [1, 2℄.
7.1 Efficient preconditioningAlthough it does not a�et the asymptoti omplexity, thepreonditioning phase V −1AV of Algorithm 3 (CharPoly)is expensive in pratie. This preonditioning phase analso be ahieved by modifying Algorithm 2 (CharPolyRe)to ompute the �rst Krylov extension using random vetorsfrom Λ instead of identity vetors.Our heuristi for this preonditioning step is to omputea blok Krylov matrix M =

ˆ

U |AU | . . . |Ac−1U
˜ where U isformed by ⌈n/c⌉ random vetors, for some paramter c. Ifthis matrix is non singular, then the matrix M−1AM will bein c-shifted form (up to row and olumn permutations) andAlgorithm 2 (CharPolyRe) an be alled with shift param-eter k = c instead of k = 1. If r = rank(M) < n then thelinearly independent olumns of M an be ompleted into anon singular matrix M by adding n− r olumns at the end,and we obtain the blok upper triangular matrix

M
−1

AM =

»

Hc ∗
R

–where the r × r matrix Hc is in c-shifted form (up to rowand olumn permutations). The harateristi polynomialof this matrix is omputed by two reursive alls on thediagonal bloks Hc and R. Algorithm 4 (CharPoly) givesthe algorithm with this modi�ed preonditioning step.Further explanations on the ompletion of M into M usingthe LQUP deomposition an be found in [3℄. Note thatagain, only c olumns of the matrix Hc have to be omputed,whih makes the omputation of B muh heaper.As c gets larger, the slies of the blok Krylov matrix Kbeome smaller. In the extreme ase c = n, the algorithmomputes the usual Krylov matrix of only one vetor. In thisase, the algorithm is equivalent to the algorithm LU-Krylovpresented in [3, algorithm 2.2℄. Assuming θ = 3 the leadingonstant of algorithm LU-Krylov is ompetitive (2.66n3) butthe algorithm does not fully exploit matrix multipliation.At the opposite, the ase c = 2 orresponds to Algorithm 3(CharPoly): it redues the problem fully to matrix multipli-ation. The preonditioning parameter c makes it possibleto balane the omputation between these two algorithms.Figure 1 displays the omputation time of the algorithmfor di�erent values of c. Three matries of order 5000 areused: they di�er in the number of bloks in their Frobe-nius form. For c < 55, the timings are dereasing when1This library is available online at http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS or within theLinBox library http://www.linalg.org



Algorithm 4 CharPoly(A, n, x)Require: A matrix A ∈ K
n×n, an indeterminate x, a pre-onditioning parameter c.Ensure: det(xI − A), or fail./* Fail will be returned with probability atmost 1/2 if #K > 2n2 */

Λ := a subset of K with #Λ ≥ 2n2

m := ⌈n/c⌉Choose V ∈ K
n×m with entries uniformly and randomlyfrom Λ.Compute the n × (c⌈n/c⌉) matrix
M =

ˆ

V |AV | . . . |Ac−1V
˜Compute (L, Q,U, P ), the LQUP deomposition of MT .Let r = rank(MT )

M :=

»

MQ
ˆ

Ir 0
˜

P T

»

0
In−r

– –

B := M
−1

AM =

»

Hc ∗
R

–Return CharPolyRe(Hc, n, c, x)×CharPolyRe(R,n, 0, x)
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Figure 1: Finding the optimal preonditioning pa-rameter c for matries of order 5000, Itanium2-641.3Ghz, 192Gb
c inreases, whih shows the advantage of using the blokKrylov preonditioning for a large enough value for c. Thenthe timings inrease again for larger c. In these ases, thedominant operation is the omputation of the blok Krylovmatrix M by many matrix multipliations of uneven dimen-sions. The matrix multipliation routine used will be moree�ient for omputing one n × n by n × n produt ratherthan c n × n by n × n/c produts, due to both the level 3BLAS behaviour and the use of sub-ubi matrix multiplia-tion. The optimal value c = 55 gives here the best timings.This value is not only depending the matrix dimension, butalso on the arhiteture and the BLAS that are used, sine itis linked with the ratio between the e�ieny of the matrixvetor produt and the matrix matrix multipliation.Note that the algorithm gets faster as the dimension ofthe largest blok dereases.
7.2 Timing comparisons

We now ompare the running time of our implementationof Algorithm 4 CharPoly with that of other state of theart implementations of harateristi polynomial algorithms.The routine LU-Krylov, available in the FFLAS-FFPACKand LinBox, libraries was shown to be the most e�ientimplementation in most ases [3℄.For all the following experiments, we used the �nite �eld
Z/(547 909). On one hand, it is large enough to ensure a highprobability of suess; none of the omputations returnedfail. On the other hand, the �eld size is small enoughso that the FFLAS-FFPACK routines an make e�ientuse of the level 3 BLAS subroutines, using delayed modularredutions with the 53 bits of the double mantissa.

n LU-Krylov New algorithm200 0.024 0.032300 0.06s 0.088s500 0.248s 0.316s750 1.084s 1.288s1000 2.42s 2.296s5000 267.6s 153.9s10 000 1827s 991s20 000 14 652s 7097s30 000 48 887s 24 928sTable 1: Computation time for 1 Frobenius blokmatries, Itanium2-64 1.3Ghz, 192GbTable 1 presents the timings for the omputation of theharateristi polynomial of matries having only one blokon their Frobenius form. The preonditioning parameter
c has been set to 100 for these experiments. The new al-gorithm improves the omputation time of LU-Krylov formatries of order not less than 1000. For matries of order
30 000, the improvement fator is about 47.6%, due to thefat that the new algorithm fully redues to matrix multi-pliation and an better exploit the level 3 BLAS e�ieny.Figure 2 presents these timings in a log sale graph. The
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Figure 2: Timing omparison between the new algo-rithm and LU-Krylov, logarithmi sales, Itanium2-64 1.3Ghz, 192Gbslopes of the two lines, whih orresponds to the exponent oftheir omplexity, are both lose to 3. However, the slope of



the new algorithm is slightly lower, indiating the e�etiveuse of sub-ubi matrix multipliation for this omputation.
n magma-2.11 LU-Krylov New algorithm100 0.010s 0.005s 0.006s300 0.830s 0.294s 0.105s500 3.810s 1.316s 0.387s800 15.64s 4.663s 1.387s1000 29.96s 10.21s 2.755s1500 102.1s 33.36s 7.696s2000 238.0s 79.13s 17.91s3000 802.0s 258.4s 61.09s5000 3793s 1177s 273.4s7500 MT 4209s 991.4s10 000 MT 8847s 2080sTable 2: Computation time for 1 Frobenius blokmatries, Athlon 2200, 1.8Ghz, 2GbMT: Memory thrashingLastly table 2 gives a omparison with magma-2.112. Hereagain, our new implementation improves the omputationtime of this software, with a gain fator of about 13.8 for

n = 5000. Moreover, its better memory management makesit possible to ompute with larger matries. On this ma-hine, the e�ieny ratio between matrix-vetor and matrixmultipliation is muh lower than on the Itanium2. There-fore the new algorithm gets already faster for dimensionsover 300.
8. CONCLUSIONSWe remark that the harateristi polynomial algorithmwe have presented an easily be modi�ed to ompute the en-tire Frobenius form by heking some divisibility onditionsof the polynomials indued by the bloks in the omputedHessenberg form. The additional ost is bounded by O(nθ)sine θ > 2. Thus, we obtain a Las Vegas algorithm foromputing the Frobenius form of a matrix over �eld thathas expeted ost O(nθ).To ensure a probability of suess at least 1/2, we requirethat the ground �eld have at least 2n2 elements. If the �eldis too small we an work over an extension but a better solu-tion (urrently) would be the apply an alternative algorithmsuh as LU-Krylov disussed in the previous setion for om-puting the harateristi polynomial, or the Frobenius formalgorithm of Eberly [4℄.For omparison, Eberly's Las Vegas Frobenius form algo-rithm has expeted ost O(nθ log n), no restritions on the�eld size, and it omputes a similarity transform matrix aswell as the form itself. Our algorithm has expeted ost
O(nθ), requires the ground �eld to have size at least 2n2,and does not reover a similarity transform matrix in thesame time.On the one hand, reovery of a similarity transform ma-trix is undoubtedly useful for various appliations [5℄. Onthe other hand, for problems suh as omputing the min-imal polynomial or testing two matries for similarity theFrobenius form itself will su�e.2We are grateful to the Mediis omputing enter hosted bythe CNRS STIX lab : mediis.polytehnique.fr/mediis forthe possibility of running magma on their mahines

The main open problem we identify is to eliminate theondition on the �eld size while maintaining the ost bound
O(nθ): ideally the algorithm ould be derandomized en-tirely. The urrently fastest deterministi algorithm has ost
O(nθ(log n)(log log n)) [10, 11℄.
9. REFERENCES[1℄ J.-G. Dumas, T. Gautier, and C. Pernet. Finite �eldlinear algebra subroutines. In Pro. Int'l. Symp. onSymboli and Algebrai Computation: ISSAC '02,pages 63�74. ACM Press, New York, 2002.[2℄ J.-G. Dumas, P. Giorgi, and C. Pernet. Finite �eldlinear algebra pakage. In J. Gutierrez, editor, Pro.Int'l. Symp. on Symboli and Algebrai Computation:ISSAC '04, pages 119�126. ACM Press, New York,2004.[3℄ J.-G. Dumas, C. Pernet, and Z. Wan. E�ientomputation of the harateristi polynomial. InM. Kauers, editor, Pro. Int'l. Symp. on Symboli andAlgebrai Computation: ISSAC '05, pages 140�147.ACM Press, New York, 2005.[4℄ W. Eberly. Asymptotially e�ient algorithms for theFrobenius form. Tehnial report, Department ofComputer Siene, University of Calgary, 2000.[5℄ M. Giesbreht. Nearly Optimal Algorithms forCanonial Matrix Forms. PhD thesis, University ofToronto, 1993.[6℄ M. Giesbreht. Nearly optimal algorithms foranonial matrix forms. SIAM Journal of Computing,24:948�969, 1995.[7℄ O. Ibarra, S. Moran, and R. Hui. A generalization ofthe fast LUP matrix deomposition algorithm andappliations. Journal of Algorithms, 3:45�56, 1982.[8℄ W. Keller-Gehrig. Fast algorithms for theharateristi polynomial. Theoretial ComputerSiene, 36:309�317, 1985.[9℄ J. T. Shwartz. Fast probabilisti algorithms forveri�ation of polynomial identities. J. ACM,27:701�717, 1980.[10℄ A. Storjohann. Algorithms for Matrix CanonialForms. PhD thesis, Swiss Federal Institute ofTehnology, ETH�Zurih, 2000.[11℄ A. Storjohann. Deterministi omputation of theFrobenius form (Extended Abstrat). In Pro. 42ndAnnual Symp. Foundations of Comp. Si., pages368�377, Los Alamitos, California, 2001. IEEEComputer Soiety Press.[12℄ G. Villard. A study of Coppersmith's blokWiedemann algorithm using matrix polynomials.Tehnial Report RR 975-I-M, IMAG GrenobleFrane, April 1997.[13℄ R. Zippel. Probabilisti algorithms for sparsepolynomials. In Pro. EUROSAM 79, pages 216�226,Marseille, 1979.


