
Faster Boolean Matrix Operations,
including Extension Fields

Gregory V. Bard

June 21, 2006.

1

Part One: What is so hard about Char 2?

• Matrix Operations over finite fields (particularly GF (2) are used in)

– Stream Cipher Cryptanalysis

– Integer Factorization

– Attacks on Multivariate Polynomial Signature Schemes

– Error Correcting Codes

– Graph Theory (semiring)

• . . . and linear algebra has been around for a very long time, with many

books and articles.

• Yet, many questions about finite field matrix operaitons are unanswered,

and naive algorithms are often used in practice, even if performance is crit-

ical.

2

The Fields Cannot be Ordered

• No finite field, or even a field of non-zero characteristic, can be ordered.

• An ordering of a field can be thought of either through “the positivity

axioms” or “a total ordering that respects the addition operation.”

• By “total ordering” we mean that for all a, b, one of three things is true:

a > b, a = b, or a < c, and also transitivity and anti-symmetry.

• By “respects the operation” we mean that

if a > b and c > d then a + c > b + d

• Of course this means if a > 0 and c > 0 then a + c > 0, or that the set of

elements greater than zero is closed under the addition operation.

• Since 0 6= 1 either 1 > 0 or 1 < 0. Pick one, and consider

1 + 1; 1 + 1 + 1; 1 + 1 + 1 + 1; · · ·

3

Some Concepts Break

• I don’t have time to show all this now, but ask me afterward if you like. . .

• The “norm induced by the dot product” is not a norm, but a seminorm.

(i.e. non-zero vectors ~x can still have |~x| = 0). Consider

|(1, 1, 1, . . . , 1︸ ︷︷ ︸
p times

, 0, 0, . . . , 0)|

• This is because the dot product is not a positive-definite operator when

considered as an element of the dual space.

• One can show that all non-trivial seminorms are not norms.

• Since the ring of matrices over a field is vector space over that field, this

means there are no matrix norms either.

4

Some Algorithms Break

• Gram-Schmidt fails on almost any random example in GF (2).

• . . . this is because the dot-product is not a positive-definite operator in the

space of linear functionals.

• The Cholesky Factorization is one where A = LLT , and so L11 =
√

A11.

• Square-roots are not available for all elements in fields of characteristic not

equal to two. (Otherwise since the multiplicative group of GF (q) has order

q − 1):

(xq/2)2 = xq = xq−1x = x

• For fields of characteristic two, I have modified version of Cholesky that is

fast, but fails in practice. (More on that later).

• The series Ax, A2x, A3x, . . . does not eventually produce an eigenvector.

This is because there is no concept of convergence when the set is finite.

(Only sets with the constant sequence as a suffix will converge).

5

Probability of Invertibility

• Amazingly, the probability of a random matrix being singular is nonzero,

and can be calculated explicitly!

• A matrix is invertible if and only if it is of full rank, that is that its columns

form a basis of the space.

• How many such matrices can I build?

– Recall an n-dimensional sub-space has qn elements in it.

– The first column can be any non-zero vector. (qn − 1 choices).

– The second column cannot be a scalar multiple of the first. (qn − q

choices).

– The third column cannot be in the subspace generated by the first two.

(qn − q2 choices).

– The ith thus can be one from qn − qi−1 choices.

– So I can build Πi=n
i=1

(
qn − qi−1

)
such matrices.

6

Probability of a Random Matrix Being
Invertible

• Knowing that I can build Πi=n
i=1

(
qn − qi−1

)
such matrices.

• There are qn2
matrices of size n × n. Thus the probability of a random

matrix being non-singular is the ratio of these two numbers.

i=n

Π
i=1

(
1− qi−1−n

)
• GF (2) is 0.2888.

• GF (16) is 0.9336.

• GF (256) is 0.9961.

• GF (232) is 1− 2.328× 10−9.

• Rational Arithmetic... essentially one.

7

Complexity Calculations

• In “normal” linear algebra over Q, R, C one can count “floating point op-

erations.” but. . . there are no floating point operations in finite fields!

• To count all operations would require tracking data addressing methods,

loop iterators, cache coherency, branch prediction, etc. . .

• Therefore I propose counting matrix memory reads and writes.

• Field operations are a single gate for GF (2), or a table lookup for GF (256),

whereas reads and writes require memory transactions. With multiple ex-

ecution queues, dual cores, and vector processing, bulk rates are quite fast

(128 bits/clock cycle?)

• The matrices are too big for the cache. All data must get from the memory

to the processor and back, so bus timing is the critical metric. Throughputs

can be upto 1/2 Gigabyte/sec, or about 4–8 bits per clock cycle.

• Finally, coefficients count, so instead of Big-Oh, I use

f (x) ∼ g(x) ⇐⇒ lim
x→∞

f (x)

g(x)
= 1

8

Adjusting Sizes

• For simplicity I will assume matrix dimensions are divisible by various num-

bers. If not, note that [
A 0

0 I

]
−1 =

[
A−1 0

0 I

]
• and also [

A 0

0 I

] [
B 0

0 I

]
=

[
AB 0

0 I

]

9

Part Two: Complexity of Linear Algebra
(Review)

• Basic Operations

– Matrix Multiplication

– Matrix Inversion

– LU-Factorization

– QR-Factorization

• A blackbox algorithm for one of these provides an algorithm of equal com-

plexity for all the others.

• Until 1969 it was thought these were all cubic time algorithms, and beating

cubic time is challenging in practice.

• Denoted “near-cubic time” operations.

10

Strassen’s Famous Paper

• Strassen’s 1969 paper had three algorithms, not one.

– Matrix Multiplication

– Matrix Inversion

– Determinant

• The matrix multiplication runs in time O(nw) where w = log2 7 ≈ 2.807.

• Strassen’s Matrix Inversion Formula shows that matrix inversion is no

harder than matrix multiplication.

• Reverse follows from: I A 0

0 I B

0 0 I

 −1 =

 I −A AB

0 I −B

0 0 I

• Note: Only 3 pages & changed Linear Algebra forever!

11

Strassen’s Matrix Inversion Formula

A−1 =

[
W X

Y Z

]
−1 =

[
W−1 + W−1XS−1Y W−1 −W−1XS−1

−S−1Y W−1 S−1

]
• Where S = Z−Y W−1X , is the Schur Complement of A with respect to W .

• The best procedure has 6 matrix multiplications, and 2 matrix inversions,

or 8 near-cubic time operations.

• MAJOR PROBLEM: What if W or S is not invertible?!

12

The S Lemma

• If A and W are invertible, then the Schur Complement of A with re-

spect to W is invertible also.

• A proof of this is found in Introduction to Algorithms by Cormen, Leis-

erson, Rivest and Stein. It only works for characteristic zero and is over a

page.

• Instead, the following works over any field and was written by my advisor,

Larry Washington.

[
I 0

−Y I

] [
W−1 0

0 I

] [
W X

Y Z

]
=

[
I W−1X

0 Z − Y W−1X︸ ︷︷ ︸
]

• Thus taking the determinant

(det I)(det W)−1(det A) = (det S)

• These are all non-zero on the left, so det S 6= 0.

13

Las Vegas Algorithms

• This takes care of the invertibility of S, but what about W ?

• Two options:

– Failure.

∗ Try the algorithm.

∗ If at any step, W is singular, send the “abort” signal.

∗ Never wrong, but only right with a particular probability.

– Shuffling.

∗ Try the algorithm.

∗ If at any step, W is singular, shuffle A and repeat.

∗ Expected number of shuffles can be calculated. No upper bound.

∗ Never wrong, always right.

∗ Expected running time can be calculated, worse-case is infinity.

• Distinct from Monte-Carlo, with fixed and known running time, but with

errors.

14

Strassen’s Matrix Inversion Formula

• What is the running time without shuffling?

• Suppose matrix multiplication is cn2.807 operations.

IG(n) ∼ 6MGG(n/2) + 2IG(n/2)

∼ 6MGG(n/2) + 12MGG(n/4) + 4IG(n/4)

∼ 6MGG(n/2) + 12MGG(n/4) + 24MGG(n/8) + 8IG(n/8)

∼ 6c
nw

2w
+ 12c

nw

4w
+ 24c

nw

8w
+ 48c

nw

16w
+ · · ·

∼ 3cnw

[
Σi=∞

i=1

2i

(2i)w

]
∼ 6

5
cnw

• The LUP-Shuffle algorithm will do better.

15

Failure Analysis

• Suppose the algorithm is running on an n × n matrix, and will switch to

classical methods at size n0 × n0.

• The first layer has one iteration and thus has one chance of failure, the

second layer has two iterations, thus two chances, etc. . .

• There are 1 + 2 + 4 + . . . + 2i−1 = 2i − 1 chances of failure, where i =

log2(n/n0).

• This means that there are (n/n0)− 1 chances of failure. Total probability

of abortion is

(1− p)
n
n0
−1

• . . . where p is the probability that a random matrix is invertible. (Note p is

almost independant of n and here we assume its completely independant.

If n0 is reasonable, this is not a problem).

• No matter what threshold you desire, this exceeds it for some n, and so

another approach is needed.

16

How to Shuffle During Strassen’s Matrix
Inversion Formula

• See if W is invertible. If not, shuffle with Px, and try again.

• If WPx = W ′ then W−1 = Px(W
′)−1.

• Multiplying by a permutation matrix is cheap (quadratic time).

• Let p be the probability that a random matrix is invertible.

• Instead of two inversions, we expect

φ = 2 +
1− p

p

17

With Shuffling

IG(n) ∼ 6MGG(n/2) + φIG(n/2)

∼ 6MGG(n/2) + 6φMGG(n/4) + φ2IG(n/4)

∼ 6MGG(n/2) + 6φMGG(n/4) + 6φ2MGG(n/8) + φ3IG(n/8)

∼ 6c
nw

2w
+ 6φc

nw

4w
+ 6φ2c

nw

8w
+ 6φ3c

nw

16w
+ · · ·

∼ 6cnw

[
Σi=∞

i=1

φi−1

(2i)w

]
∼ 6

7− φ
cnw

∼ 6

7− 2− (1− p)/p
cnw

∼ 6

6− 1/p
cnw

18

What does that Imply?

• What does ∼ 6
6−1/pcn

w mean?

• The series will only converge if φ/2w = φ/7 is less than one.

• This happens if p > 1/6, but even for the smallest field, GF (2), we have

p ≈ 0.2888, so this is not a problem.

• SANITY CHECK: If p = 1 (an infinite field), then we have ∼ (6/5)cnw as

before.

• If p = 0.2888 for GF (2) , we have 2.364, almost twice as bad.

• If p = 0.9336 for GF (16), we have 1.217.

• If p = 0.9961 for GF (256), we have 1.201, different only in the third decimal

place!

19

Part Three: The LUP-Shuffle Algorithm

• An algorithm suitable for GF (16), GF (256), or other “medium-sized” and

larger fields.

• Characteristic 2 is not required.

• Recursively break the matrix:

A =

[
W X

Y Z

]
• Based on a black-box matrix multiplication algorithm.

• If Strassen’s Algorithm is used, O(n2.807).

• Preserves Sparsity.

20

What is an LUP-factorization?

• Write A = LUP where

– L is lower-triangular.

– U is upper-triangular.

– P is a permutation matrix.

• Used very often in computer linear algebra implementations, along with its

variant Cholesky Factorization, which will be mentioned later.

• Can be calculated along-the-way during Gaussian Elimination.

• Supplanted by the QR-Factorization in the last 20 years, but that algorithm

does not work over finite fields, since not all non-zero vectors can have norm

one. (A requirement for each column of Q).

21

What is the Benefit of Triangular Matrices?

• If L~x = ~b, finding ~x is quadratic rather than cubic complexity.

• Thus solving A~x = LUP~x = ~b is of quadratic complexity, after LUP are

found.

• If A is sparse, then L and U are sparse, while A−1 is in general, dense.

• Faster inversions and multiplies, as the next two slides will show.

22

Triangular-General Matrix Multiplication

[
W X

0 Z

] [
A B

C D

]
=

[
WA + XC WB + XD

ZC ZD

]
• This requires six multiplications of smaller size, not eight if cubic, or seven

if near-cubic (Strassen’s Algorithm).

• Only XD and XC are general-general multiplications, the other four are

general-triangular.

• It turns out, when recursively calculated as in the tabulations for Strassen’s

Matrix Inversion Formula that

– Using Naive Matrix Multiplication, the triangular-general case is twice

as fast as the general-general case.

– Using Strassen’s Matrix Multiplication, the triangular-general case is 3/2

as fast.

– More details in the paper.

23

Triangular Matrix Inversion

[
W X

0 Z

]
−1 =

[
W−1 −W−1XZ−1

0 Z−1

]
• Thus a triangular matrix inversion is an inversion of two smaller matrices,

and two triangular-general multiplications.

• It turns out, when recursively calculated,

– Using Naive Gaussian Elimination, the triangular-inversion case is six

times as fast as the general-inversion case.

– Using O(n2.807) algorithms, the triangular-inversion case is ∼ (4/15)cnw

instead of ∼ (6/5)cnw, or 4.5 times faster.

– More details in the paper.

24

The Concept

[
W X

Y Z

]
=

[
L1 0

Y P−1
1 U−1

1 L2

] [
U1 L−1

1 XP−1
2

0 U2

] [
P1 0

0 P2

]
• . . . where L1U1P1 = W ,

• . . . and L2U2P2 = S = Z − Y W−1X = Z − Y P−1
1 U−1

1 L−1
1 X .

• (The Schur Complement again).

25

The Algorithm

• The algorithm proceeds as follows:

1. Factor W = L1U1P1.

2. Invert P1 (cheap).

3. Invert L−1
1 .

4. Invert U−1
1 .

5. Multiply Y P−1
1 (cheap).

6. Multiply (Y P−1
1)U−1

1 .

7. Multiply L−1
1 X .

8. Multiply (Y P−1
1 U−1

1)(L−1
1 X).

9. Subtract S = Z − Y P−1
1 U−1

1 L−1
1 X (cheap).

10. Factor S = L2U2P2.

11. Invert P2 (cheap).

12. Multiply (L−1
1 X)(P−1

2). (cheap).

• Of the 12 operations, 5 are quadratic time or faster, and are marked cheap.

The other 7 are near-cubic.

26

Summary

• To calculate the LUP -factorization of a matrix:

• Calculate two LUP -factorizations of half the size.

• Invert two triangular matrices.

• Multiply a general matrix with a triangular matrix (twice).

• Multiply a general matrix with a general matrix.

• This is seven near-cubic operations, not eight.

• Triangular inversion and Triangular-General matrix multiplication will be

faster than normal.

27

No Shuffling

IG(n) ∼ 2IT (n/2) + 2MTG(n/2) + MGG(n/2) + 2L(n/2)

∼ 2(4/15)MGG(n/2) + 2(2/3)MGG(n/2) + MGG(n/2) + 2L(n/2)

∼ (43/15)MGG(n/2) + 2L(n/2)

∼ (43/15) [MGG(n/2) + 2MGG(n/4)] + 4L(n/4)

∼ (43/15) [MGG(n/2) + 2MGG(n/4) + 4MGG(n/8)] + 8L(n/8)

∼ (43/15)

[
c
nw

2w
+ 2c

nw

4w
+ 4c

nw

8w
+ 8c

nw

16w
+ · · ·

]
∼ (43/15)cnw

[
Σi=∞

i=1

2i−1

(2i)w

]
∼ 43

75
cnw

28

Chances of Failure

• Exactly as in the Strassen Matrix Inversion Formula, the algorithm fails if

W or S is singular.

• The S Lemma guarantees S is non-singular if A and W are non-singular.

• Thus the probability of failure is identical to Strassen’s Formula.

• And so shuffling must be used.

• If APx = LUP then A = LUPP−1
x .

29

With Shuffling

IG(n) ∼ φIT (n/2) + 2MTG(n/2) + MGG(n/2) + 2L(n/2)

∼ φ(4/15)MGG(n/2) + 2(2/3)MGG(n/2) + MGG(n/2) + 2L(n/2)

∼ (7/3 + 4φ/15)MGG(n/2) + 2L(n/2)

∼ (7/3 + 4φ/15) [MGG(n/2) + 2MGG(n/4)] + 4L(n/4)

∼ (7/3 + 4φ/15) [MGG(n/2) + 2MGG(n/4) + 4MGG(n/8)] + 8L(n/8)

∼ (7/3 + 4φ/15)

[
c
nw

2w
+ 2c

nw

4w
+ 4c

nw

8w
+ 8c

nw

16w
+ · · ·

]
∼ (7/3 + 4φ/15)cnw

[
Σi=∞

i=1

2i−1

(2i)w

]
∼ 7/3 + 4φ/15

5
cnw

∼ 35 + 4(2 + (1− p)/p)

75
cnw

∼ (39/75 + 4/75p)cnw

30

With Shuffling

• What does ∼ (39/75 + 4/75p)cnw tell us?

• If p = 1 for Q then we have ∼ (43/75)cnw, as without shuffling, or ∼
0.5733cnw.

• If p = 0.9961 for GF (256), then we have ∼ 0.5735cnw.

• If p = 0.9336 for GF (16), then we have ∼ 0.5771cnw.

• If p = 0.2888 for GF (2), then we have ∼ 0.7047cnw.

31

Speed Comparison

Field Strassen’s Alg LUP-Shuffle Alg Ratio

Q 1.200 0.5733 2.093

GF (256) 1.201 0.5735 2.094

GF (16) 1.217 0.5771 2.109

GF (2) 2.364 0.7047 3.355

• The LUP-Shuffle algorithm is always at least twice as fast as Strassen’s

Matrix Inversion Formula.

• The GF (2) coefficient divided by that for Q is 1.23 versus 1.97.

• This begs several questions

– Why is LUP-Shuffle less sensitive to field size?

– Why is GF (16) behaving almost as if it is an infinite field?

– Does this difference in coefficient matter?

32

Cross-Over Comparison

• Taking GF (2) as an example, with c = 7 (naive implementation), then . . .

• Strassen’s Matrix Inversion Formula has ∼ 16.55nw.

• LUP-Shuffle has ∼ 4.933nw.

• Gaussian Elimination to Upper Triangular Form has ∼ n3/2.

• Solving c1n
3 = c2n

w for n yields:

– For Strassen’s algorithm: 77, 493, 380× 77, 493, 380 matrices.

– For LUP-Shuffle: 144, 704× 144, 704 matrices.

• So yes, the coefficient makes a difference.

33

Parallelization

• In Strassen’s Matrix Inversion Formula, the eight near-cubic operations can

be broken into six on one processor, two on another.

• In LUP-Shuffle, the seven near-cubic operations can be broken into five on

one, and two on the other.

• The first processor is thus never idle, and idle 66% of the time for Strassen

and 60% of the time for LUP-Shuffle.

• Thus the utilizations are 66% and 70% respectively.

• This gives LUP-Shuffle a 5.00% advantage.

• So in two-processor mode LUP-Shuffle would run 2.198 to 3.523 times faster

rather than 2.093 to 3.355 times faster than Strassen for one processor.

34

Cholesky Factorization

• A Cholesky Factorization is an LU -factorization

where U = LT , or A = LLT .

• This means some calculations can be saved, since U need not be found.

• Unlike LU -factorization, this algorithm must continue down to the 2 × 2

case.

• This means there are n/2− 1 chances for failure, which is very high!

• There is no room for shuffling, except at the begining, since its not an

LLTP -factorization.

• Useful for infinite or very large fields where the probability is still very low,

since virtually no random matrices are singular.

35

The Algorithm

[
W X

XT Z

]
=

[
L1 0

XTL−T
1 L2

] [
LT

1 L−1
1 X

0 LT
2

]
• . . . where W = L1L

T
1 and . . .

S = Z −XTW−1X = Z − (XTL−T
1)(L−1

1 X) = L2L
T
2

• Requires 2 factorizations, 1 triangular inversion, 1 triangular-general multi-

plication, 1 ATA matrix multiplication.

• This is five near-cubic operations instead of seven!

36

One Caveat!

• Since A = LLT is the final factorization:

• This only can be done on symmetric matrices but. . .

• If A is not symmetric, note B = ATA will be and

B−1AT = A−1A−TAT = A−1

37

Part Four: The Method of Four Russians

38

