Combinatorics on words - demo <span id="demo-words"></span> <h1>Words</h1> <h2>Finite Words</h2> <p>One can create a finite word from anything.</p> <ul> <li><p class="first">From Python objects:</p> {{{id=0| Word('abfasdfas') /// word: abfasdfas }}} {{{id=1| Word([2,3,4,5,6,6]) /// word: 234566 }}} {{{id=2| Word((0,1,2,1,2,)) /// word: 01212 }}} </li> <li><p class="first">From an iterator:</p> {{{id=3| it = iter(range(10)) Word(it) /// word: 0123456789 }}} </li> <li><p class="first">From a function:</p> {{{id=4| f = lambda n : (3 ^ n) % 5 Word(f, length=20) /// word: 13421342134213421342 }}} </li> </ul> <h2>Infinite Words</h2> <p>One can create an infinite word.</p> <ul> <li><p class="first">From an iterator:</p> {{{id=5| from itertools import count, repeat Word(count()) /// word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,... }}} {{{id=6| Word(repeat('a')) /// word: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... }}} </li> <li><p class="first">From a function:</p> {{{id=7| f = lambda n : (3 ^ n) % 5 Word(f) /// word: 1342134213421342134213421342134213421342... }}} </li> </ul> <h2>Word methods and algorithms</h2> <p>There are more than one hundreds methods and algorithms implemented for finite words and infinite words. One can list them using the TAB command:</p> {{{id=8| w = Word(range(10)) w.<TAB> /// }}} <p>For instance, one can slice an infinite word to get a certain finite factor and compute its factor complexity:</p> {{{id=9| w = Word(p % 3 for p in primes(10000)) w /// word: 2021212122112122211211221212121221211122... }}} {{{id=10| factor = w[1000:2000] factor /// word: 1122111211211222121222211211121212211212... }}} {{{id=11| map(factor.number_of_factors, range(20)) /// [1, 2, 4, 8, 16, 32, 62, 110, 156, 190, 206, 214, 218, 217, 216, 215, 214, 213, 212, 211] }}} <h1>Word Morphisms</h1> <h2>Creation</h2> <p>Creation of a word morphism:</p> <ul> <li><p class="first">from a dictionary:</p> {{{id=12| m = WordMorphism({'a':'abcab','b':'cb','c':'ab'}) print m /// WordMorphism: a->abcab, b->cb, c->ab }}} </li> <li><p class="first">from a string:</p> {{{id=13| m = WordMorphism('a->abcab,b->cb,c->ab') print m /// WordMorphism: a->abcab, b->cb, c->ab }}} </li> </ul> <h2>Word Morphisms methods</h2> <p>Image of a word under a morphism:</p> {{{id=14| m('a') /// word: abcab }}} {{{id=15| m('abcabc') /// word: abcabcbababcabcbab }}} <p>Power of a morphism:</p> {{{id=16| print m ^ 2 /// WordMorphism: a->abcabcbababcabcb, b->abcb, c->abcabcb }}} <p>Incidence matrix:</p> {{{id=17| matrix(m) /// [2 0 1][2 1 1][1 1 0] }}} <h2>Fixed point of a morphism</h2> <p>Iterated image under a morphism:</p> {{{id=18| print m /// WordMorphism: a->abcab, b->cb, c->ab }}} {{{id=19| m('c') /// word: ab }}} {{{id=20| m(m('c')) /// word: abcabcb }}} {{{id=21| m(m(m('c'))) /// word: abcabcbababcabcbabcb }}} {{{id=22| m('c', 3) /// word: abcabcbababcabcbabcb }}} <p>Infinite fixed point of morphism:</p> {{{id=23| m('a', Infinity) /// word: abcabcbababcabcbabcbabcabcbabcabcbababca... }}} <p>or equivalently:</p> {{{id=24| m.fixed_point('a') /// word: abcabcbababcabcbabcbabcabcbabcabcbababca... }}} <h1>S-adic sequences</h1> <h2>Definition</h2> <p>Let $w$ be a infinite word over an alphabet $A=A_0$.</p> <blockquote> $w\in A_0^*\xleftarrow{\sigma_0}A_1^*\xleftarrow{\sigma_1}A_2^*\xleftarrow{\sigma_2} A_3^*\xleftarrow{\sigma_3}\cdots$</blockquote> <p>A <strong>standard representation</strong> of $w$ is obtained from a sequence of substitutions $\sigma_k:A_{k+1}^*\to A_k^*$ and a sequence of letters $a_k\in A_k$ such that:</p> <blockquote> $w = \lim_{k\to\infty}\sigma_0\circ\sigma_1\circ\cdots\sigma_k(a_k)$.</blockquote> <p>Given a set of substitutions $S$, we say that the representation is $S$ <strong>-adic standard</strong> if the subtitutions are chosen in $S$.</p> <h2>One finite example</h2> <p>Let $A_0=\{g,h\}$, $A_1=\{e,f\}$, $A_2=\{c,d\}$ and $A_3=\{a,b\}$. Let $\sigma_0 : \begin{array}{l}e\mapsto gh\\f\mapsto hg\end{array}$, $\sigma_1 : \begin{array}{l}c\mapsto ef\\d\mapsto e\end{array}$ and $\sigma_2 : \begin{array}{l}a\mapsto cd\\b\mapsto dc\end{array}$.</p> <blockquote> $\begin{array}{lclclcl} g \\ gh & \xleftarrow{\sigma_0} & e \\ ghhg & \xleftarrow{\sigma_0} & ef & \xleftarrow{\sigma_1} & c \\ ghhggh & \xleftarrow{\sigma_0} & efe & \xleftarrow{\sigma_1} & cd & \xleftarrow{\sigma_2} & a\end{array}$</blockquote> <p>Let's define three morphisms and compute the first nested succesive prefixes of the s-adic word:</p> {{{id=25| sigma0 = WordMorphism('e->gh,f->hg') sigma1 = WordMorphism('c->ef,d->e') sigma2 = WordMorphism('a->cd,b->dc') /// }}} {{{id=26| words.s_adic([sigma2],'a') /// word: cd }}} {{{id=27| words.s_adic([sigma1,sigma2],'ca') /// word: efe }}} {{{id=28| words.s_adic([sigma0,sigma1,sigma2],'eca') /// word: ghhggh }}} <p>When the given sequence of morphism is finite, one may simply give the last letter, i.e. <tt class="docutils literal">'a'</tt>, instead of giving all of them, i.e. <tt class="docutils literal">'eca'</tt>:</p> {{{id=29| words.s_adic([sigma0,sigma1,sigma2],'a') /// word: ghhggh }}} <p>But if the letters don't satisfy the hypothesis of the algorithm (nested prefixes), an error is raised:</p> {{{id=30| words.s_adic([sigma0,sigma1,sigma2],'ecb') /// Traceback (most recent call last): ValueError: The hypothesis of the algorithm used is not satisfied: the image of the 3-th letter (=b) under the 3-th morphism (=WordMorphism: a->cd, b->dc) should start with the 2-th letter (=c). }}} <h2>Infinite examples</h2> <p>Let $A=A_i=\{a,b\}$ for all $i$ and Let $S = \left\{ tm : \begin{array}{l}a\mapsto ab\\b\mapsto ba\end{array}, fibo : \begin{array}{l}a\mapsto ab\\b\mapsto a\end{array} \right\}$.</p> <blockquote> $\begin{array}{lclclcl} a \\ ab & \xleftarrow{tm} & a \\ abba & \xleftarrow{tm} & ab & \xleftarrow{fibo} & a \\ abbaab & \xleftarrow{tm} & aba & \xleftarrow{fibo} & ab & \xleftarrow{tm} & a \end{array}$</blockquote> <p>Let's define the Thue-Morse and the Fibonacci morphism and let's import the <tt class="docutils literal">repeat</tt> tool from the <tt class="docutils literal">itertools</tt>:</p> {{{id=31| tm = WordMorphism('a->ab,b->ba') fib = WordMorphism('a->ab,b->a') from itertools import repeat /// }}} <p>Fixed point are trivial examples of infinite s-adic words:</p> {{{id=32| words.s_adic(repeat(tm), repeat('a')) /// word: abbabaabbaababbabaababbaabbabaabbaababba... }}} {{{id=33| tm.fixed_point('a') /// word: abbabaabbaababbabaababbaabbabaabbaababba... }}} <p>Let's alternate the application of the substitutions $tm$ and $fibo$ according to the Thue-Morse word:</p> {{{id=34| tmwordTF = words.ThueMorseWord('TF') words.s_adic(tmwordTF, repeat('a'), {'T':tm,'F':fib}) /// word: abbaababbaabbaabbaababbaababbaabbaababba... }}} <p>Random infinite s-adic words:</p> {{{id=35| from sage.misc.prandom import randint def it(): while True: yield randint(0,1) words.s_adic(it(), repeat('a'), [tm,fib]) /// word: abbaabababbaababbaabbaababbaabababbaabba... }}} {{{id=36| words.s_adic(it(), repeat('a'), [tm,fib]) /// word: abbaababbaabbaababbaababbaabbaababbaabba... }}} {{{id=37| words.s_adic(it(), repeat('a'), [tm,fib]) /// word: abaaababaabaabaaababaabaaababaaababaabaa... }}} <h1>Language</h1> <p>Soon in Sage...</p>