
Computation
of p-torsion of
Jacobians of
hyperelliptic

curves

Rachel Pries

Intro - elliptic
curves

The p-rank

Newton
polygons

The a-number

Group
schemes

Tables

Questions

Computation of p-torsion of Jacobians of
hyperelliptic curves

Rachel Pries

Colorado State University
pries@math.colostate.edu

Sage Days 26
December 9, 2010



Computation
of p-torsion of
Jacobians of
hyperelliptic

curves

Rachel Pries

Intro - elliptic
curves

The p-rank

Newton
polygons

The a-number

Group
schemes

Tables

Questions

Abstract

An elliptic curve defined over k = Fp can be ordinary or
supersingular;

this distinction measures certain properties of its p-torsion.

The p-torsion of the Jacobian of a curve of higher genus can
be classified by interesting combinatorial invariants, such as
the p-rank, Newton polygon, a-number, and Ekedahl-Oort
type.

Algorithms to compute these invariants exist but some have
not been implemented.

I will explain how to compute these invariants and describe
the lag in producing explicit curves with given p-torsion
invariants.
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Complex elliptic curves and p-torsion

Let E be a complex elliptic curve.

E ' C/L for a lattice L = Zω1 +Zω2.
(Thus E is an abelian group).

Torsion points: E [p](C) = {Q ∈ E(C) | pQ = 0E}.

Then E [p](C)' 1
p L/L' (Z/p)2.

If X is a complex curve of genus g ≥ 2, its Jacobian JX is a p.p.
abelian variety of dimension g and JX [p](C)' (Z/p)2g .
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Elliptic curves - algebraic version

Let E : y2 = x3 +ax2 +bx +c be an elliptic curve over
k = Fp with algebraic group law.

The `-torsion of E is Ker[`] where [`] : E → E is mult.by-`.

E [`](k) := {Q ∈ E(k) | `Q = 0E} ' (Z/`)2 if p - `.
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Torsion points - example

Let E : y2 = x3 +ax2 +bx +c and ` = 3.

A point Q has order 3 iff x(2Q) = x(Q).

This occurs iff x(Q) is a root of the 3-division polynomial.

P. < a,b,c >= PolynomialRing(ZZ ,3)

E = EllipticCurve(P, [0,a,0,b,c])

d3 = E .division_polynomial(3,x = None)

3∗x4 +4∗a∗x3 +6∗b ∗x2 +12∗c ∗x−b2 +4∗a∗c

If p 6= 3, then d3(x) has 4 distinct roots so E has 8 points of
order 3 and |E [3](k)|= 9.
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Collapsing torsion points - example

What if p = 3?
d3 = 3∗x4 +4∗a∗x3 +6∗b ∗x2 +12∗c ∗x −b2 +4∗a∗c.

P3. < a,b,c >= PolynomialRing(GF (3),3)

r3 = d3.change_ring(P3)

+a∗x3−b2 +a∗c

Mod p binomial thm: In k [x ], (x +α)p = xp +αp.

So r3 = a∗x3−b2 +a∗c has{
one (triple) root a 6≡ 0 mod 3

no roots a≡ 0 mod 3

So |E [3](k)| divides 3 when p = 3.
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Reduction of division polynomials of
y2 = x3 +b ∗x +c

p rp

5 +2∗b ∗x10−b2 ∗c ∗x5 +b6−2∗b3 ∗c2−c4

7 +3∗c ∗x21 +3∗b2 ∗c2 ∗x14+

(−b7 ∗c−2∗b4 ∗c3 +3∗b ∗c5)∗x7

−b12−b9 ∗c2 +3∗b6 ∗c4−b3 ∗c6 +2∗c8

The number of roots of rp in k [x ] is at most:

(p−1)/2.
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Ordinary/Supersingular

The points of order p on E : y2 = h(x) collapse in char. p.

The p-torsion of an elliptic curve E/k contains either p
points or 1 point.

Def:

E is

{
ordinary if |E [p](k)|= p

supersingular if |E [p](k)|= 1

E is supersingular iff the coeff of xp−1 in h(x)(p−1)/2 is 0.
Igusa: y2 = x(x−1)(x−λ) is supersingular for (p−1)/2 choices
of λ ∈ k .
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Supersingular elliptic curves - revisited

If E/Fp is elliptic curve, then #E(Fp) = p +1−a.
The zeta function of E is Z (t) = (1−at +pt2)/(1− t)(1−pt).

Fact: a = 0 iff E supersingular.

E supersingular, Newton polygon of 1+pt2 has slopes 1/2.

called G1,1.

E ordinary, then Newton polygon has slopes 0 and 1.

called G0,1⊕G1,0.
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Sage - computing supersingularity

E = EllipticCurve(GF (5), [0,1,0,2,0])
Elliptic Curve defined by y2 = x3 +x2 +2∗x over Finite
Field of size 5
E .is_supersingular()
True
E .hasse_invariant()
0
E .trace_of_frobenius()
0
F = E .frobenius()
C = F .absolute_charpoly()
x2 +5
C.newton_slopes(5)
[1/2,1/2]
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Multiple meanings

For elliptic curves, supersingular means:

p-rank - no points of order p.

Newton polygon - slopes 1/2

group scheme -
E [p] is a group scheme of rank p2.
E [p]' Z/p⊕µp if E ordinary.
If E supersingular, then 0→ αp → E [p]→ αp → 0 (non-split).

a-number - presence of αp.

For curves of genus g ≥ 2, these are all different!
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Supersingular elliptic curves in cryptography

Due to Frey-Rück attack, supersingular elliptic curves are
weak for cryptography, Menezes-Okamato-Vanstone.

Rubin/Silverberg: "For some cryptographic applications
[identity based encryption, short signature schemes]
supersingular elliptic curves turn out to be very good."

Recent research in cryptography involves Jacobians of
(hyperelliptic) curves of larger genus.

Similar security phenomena occur for supersingular abelian
varieties, Galbraith.

There are open problems on security parameters for larger
genus.
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Jacobians of curves of higher genus

Let X be a smooth proj. conn. k -curve of genus
g = dim(H0(Ω1)).

Its Jacobian JX is p.p. abelian variety of dim. g.

JX [`] := Ker[`]' (Z/`)2g if p - `.

The p-torsion points collapse mod p.

Now Jx [p] is a group scheme of rank p2g .
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The p-rank of X

Fact:

If X is a k -curve of genus g,
then |JX [p](k)|= pf for some 0≤ f ≤ g.

Def. Call f the p-rank of X .

Also, f = dimFpHom(µp,JX [p]).
µp ' Spec(k [x ]/(xp−1)) is the kernel of Frobenius on Gm.

Def: X is ordinary if f = g and this happens generically.
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Hyperelliptic curves

Assume p odd.

Hyperelliptic curves are Z/2-covers φ : Y → P1
k .

If φ is branched at ∞ and Y is smooth of genus g,

then Y has an equation y2 = h(x) where h(x) ∈ k [x ] has
degree d = 2g +1 and no repeated roots.

Basis for H0(Y ,Ω1) is {dx/y ,xdx/y , . . . ,xg−1dx/y}.
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Project - implement algorithm

Let C be the Cartier (semi-linear) operator on H0(X ,Ω1).

The p-rank is f = dim(im(Cg)), Manin.

One can compute f given p, X , and a basis of H0(X ,Ω1).

Yui worked this out when X hyperelliptic.

Consider X : y2 = h(x) where deg(h(x)) = 2g +1.
Let cr be the coefficient of x r in the expansion of h(x)(p−1)/2.
Let Ag be the g×g matrix whose ij th entry is cip−j .

Yui:

X is ordinary if and only if det(Ag) 6= 0.

The p-rank of X is f = rank(M) where M = ∏g−1
i=0 (A(pi )

g ).

Voloch - algorithm for plane curves in terms of separating
variable.
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Theoretical results

For all p and g ≥ 3 and 0≤ f ≤ g, there exists:

1: curve X of genus g with p-rank f Faber/Van der Geer.

2: hyperelliptic curve X of genus g with p-rank f Glass/P,
Zhu/P

The proofs here are all geometric; there is no information
about the field of definition.
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Open questions

These questions could use some experimentation:
for g ≥ 4, p, 0≤ f ≤ g:

1: does there exist (hyperelliptic) X curve of genus g with
p-rank f defined over Fp?

2: over Fpa , how many are there?

This gives information about the number of components of
moduli space.

Nart = p = 2, g = 3.
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Definition of Newton polygon

Zeta function of Fq-curve X is Z (t) = L(t)/(1− t)(1−qt)

where L(t) = ∏2g
i=1(1−wi t) ∈ Z[t ] and |wi |=

√
q.

The Newton polygon of X is the Newton polygon of L(t).

Find p-adic valuation vi of coefficient of t i in L(t).
Draw lower convex hull of (i ,vi/a) where q = pa.

Example: The curve Y : yp−y = xp+1 has g = p(p−1)/2
and is maximal over Fp2 .

L(t) = (1+pt)2g = ∑2g
i=1

(2g
i

)
(pt)i .

Newton polygon is line through (i , i/2) for 1≤ i ≤ 2g.

All slopes equal 1/2 so Y is supersingular.
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More on Newton polygons

Facts: The NP goes from (0,0) to (2g,g).
There is a partial ordering on Newton polygons;
NP line segments break at points with integer coefficients;
If slope λ occurs with length mλ, so does slope 1−λ.

More abstract definition:
If X is a k -curve, look at the p-divisible group JX [p∞].
There is an isogeny JX [p∞]∼⊕λHmλ

λ .
Here λ ∈Q∩ [0,1] and λ = c/d and, by Manin,
Hλ is a p-divisible group of dimension c and height d .
The Dieudonné module Dλ for Hλ is a W (k)-module.
Over Frac(W (k)), there is a basis x1, . . . ,xd for Dλ s.t. F d xi = pcxi .
Newton polygon: lower convex hull made from line segments of
slope λ and length mλ.
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Sage - computing the NP and p-rank

P. < x >= PolynomialRing(GF (67))
X = HyperellipticCurve(x7 +x3 +x)
X .genus()
3
C = X .frobenius_polynomial()
x6 +57∗x4 +3819∗x2 +300763
C.newton_slopes(67)
[1,1,1/2,1/2,0,0]
So the p-rank is 2.
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A generic Newton polygon

Given g ≥ 3 and f = g−3, let νg,g−3 be the NP with slopes:
0 and 1 with mult. g−3 and 1/3 and 2/3 with mult. 3.

Also νg,g−3 = Gg−3
0,1 ⊕G1,2⊕G2,1⊕Gg−3

1,0 .

This is the most generic Newton polygon with p-rank
f = g−3.

g = 4, f = 1.

Corollary: Achter/P

If g ≥ 3, then there exists a curve X of genus g whose
Jacobian has Newton polygon νg,g−3.
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Supersingular

Let A be a p.p. abelian variety of dimension g.

Def: We say A is supersingular if its Newton polygon has all
slopes equal 1/2.

Def: An isogeny of abelian varieties is a group
homomorphism ∼ with finite kernel.

Fact:
Then A is supersingular iff A∼×g

i=1Ei ,
for some supersingular elliptic curves E1, . . .Eg .

This is ’smallest’ Newton polygon under partial ordering.
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Earlier results

Which Newton polygons occur for Jacobians of curves?

For g = 1 both, g = 2 all three, g = 3 all five.

For g ≥ 4 and f ≥ g−2, the p-rank determines the Newton
polygon, and thus this Newton polygon occurs.

Same for hyperelliptic curves (see Oort for g = 3).

Zhu: If p = 2 and g = 2n−1, then no supersingular
hyperelliptic curve exists.
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Supersingular versus p-rank 0

Fact: If A is supersingular then A has p-rank 0.

Fact: If g ∈ {1,2} and A has p-rank 0 then A is
supersingular.

Fact: If g ≥ 3, a generic abelian variety A of dimension g
and p-rank 0 is not supersingular.

Thm. (Oort) If g = 3, then the Jacobian of a generic
hyperelliptic curve of genus 3 and p-rank 0 has slopes
{1/3,2/3} (not supersingular).

Proof: study intersection of two codim 1 conditions in M 0
3 .
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Results and questions

Achter/P:

If g ≥ 3, there exists a (hyperelliptic) curve of genus g and
p-rank 0 which is not supersingular.

For g ≥ 4, p, f = 0:
Q1: Find example of non-supersingular curve.
Q2: Which Newton polygons occur?
Conj (Oort) Not all Newton polygons occur for Jacobians.
Q 3: If g ≥ 4, what is the Newton polygon of a generic
(hyperelliptic) curve of genus g and p-rank 0?
Expectation: slopes 1/g and (g−1)/g.
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Egregious open case

Case: Curves of genus 4 and p-rank 0.

Note: dim(M4)+1 = dim(A4).

Theorem: Achter/P

For all p, there exists a curve of genus 4 with Newton slopes
1/4, 3/4.

Proof: if p 6= 3, look at y3 = deg6. Look at moduli space of
abelian 4-folds with action by Z[ζ3] (Shimura variety).
Newton polygons understood when p splits in Q(ζ3)
(Montovan) or when p inert (Wedhorn).
What about p = 3?
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The search!

Find: curve of genus 4 defined over F3 whose Newton
polygon has slopes 1/4 and 3/4.

Try: y2 =
x9 +a8x8 +a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x .
P. < x >= PolynomialRing(GF (3))
V = VectorSpace(GF (3),8)
Z = matrix(P,4,4)
M = matrix(P,4,4)
L = []
Claim: There are 12 hyperelliptic curves of genus 4, p-rank
0, and a-number 1 defined over F3.
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search - 3-rank 0 and a-number 1

for a inV :
f = x9 +add(a[k ]∗xk+1for k in range(8))
if is_squarefree(f ) :

for i in range(4) :
for j in range(4) :

t = 3∗ i +3− j−1
if (t < 10)and(t >−1) :

M[i , j] = f .coeffs()[3∗ i +3− j−1]
d = M.determinant()
if (d == 0) :

M3 = M ∗M ∗M
if not (M3 == Z ) :

M4 = M3∗M
if (M4 == Z ) :

L.append(f )
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Candidates for y2 = f (x) with slope 1/4, 3/4

L is a list of 24 polynomials.
L[0]
x9 +x7 +x6 +x5 +2∗x3 +2∗x2 +2∗x
L[1]
x9 +x7 +x6 +2∗x5 +x4 +2∗x3 +x2 +x
The change of variables x → 1/cx permutes these.
There are 12 candidates for a hyperelliptic curve of genus 4
defined over F3 with slopes 1/4 and 3/4.

X=HyperellipticCurve(L[0])
Hyperelliptic Curve over Finite Field of size 3 defined by
y2 = x9 +x7 +x6 +x5 +2∗x3 +2∗x2 +2∗x
F=X.frobenius_polynomial()
ValueError: In the current implementation, p must be
greater than (2g+1)(2N-1) = 117
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Search - matching zeta function

R. < T >= PolynomialRing(Integers())
var(′a,b,c,d ′)
g = 1+a∗T +b ∗T 2 +c ∗T 3 +d ∗T 4 +3∗c ∗T 5 +9∗b ∗
T 6 +27∗a∗T 7 +81∗T 8

z = g/((1−T )∗ (1−3∗T ))
z4 = taylor(z,T ,0,4).truncate()

(40∗a+13∗b +4∗c +d +121)∗T 4 +(13∗a+4∗b +c +
40)∗T 3 +(4∗a+b +13)∗T 2 +(a+4)∗T +1

S. < t >= PowerSeriesRing(Integers())
zeta = X .zeta_series(4, t)
p4 = zeta.truncate(5).subs(t = T )

184∗T 4 +58∗T 3 +16∗T 2 +4∗T +1
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search - finding the slopes

coeff = [], for i inrange(5) :
coeff .append(z4.coeffs()[i][0]−p4.coeffs()[i])

[0,a,4∗a+b−3,13∗a+4∗b +c−18,40∗a+13∗b +4∗
c +d −63,0,a,4∗a+b−3,13∗a+4∗b +c−18,40∗a+
13∗b +4∗c +d −63]

h = solve([coeff [1] == 0,coeff [2] == 0,coeff [3] ==
0,coeff [4] == 0],a,b,c,d)[0]
[a == 0,b == 3,c == 6,d == 0]

g0 = g.subs(h[0]).subs(h[1]).subs(h[2]).subs(h[3])
gp = g0.polynomial(Integers())
gp.newton_slopes(3))
Slopes are 1/3, 1/2, 2/3.
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Automating slope computation

for i in range(23):
X=HyperellipticCurve(L[i])
zeta=X.zeta_series(4,t).truncate(5).subs(t=T)
diffpoly=zeta-z4
eqns=[diffpoly.expand().coeff(T,j)==0 for j in
range(diffpoly.degree(T)+1)]
h=solve(eqns,a,b,c,d)[0]
g0=g.subs(h[0]).subs(h[1]).subs(h[2]).subs(h[3])
gp=g0.polynomial(Integers())
print(i, gp.newton_slopes(3))

Slopes 1/4, 3/4 or 1/3, 1/2, 2/3, or supersingular all occur.
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A new invariant

Example when g = 2
X : y2 = x(x −1)(x −λ1)(x−λ2)(x−λ3)

There are 3 variables λi ∈ k to choose.

The parameter space M2 for choices of X has dimension 3.

There are 4 possibilities for JX [p].
Look at subspace of M2 such that:

The p-rank f is 2 1 0 0
Dimension in M2 3 2 1 0

What distinguishes between the last two columns?
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The a-number

The a-number is the dimension of the kernel of the Cartier
operator on H0(Ω1).

The a-number measures the intersection of the images of F
and V on the Dieudonné module.

Now a+ f ≤ g. If f < g, then a≥ 1.

Unlike the p-rank, the a-number is not an isogeny invariant.

Let E1,E2 be supersingular elliptic curves.

If A' E1×E2, then a = 2.

If A isogenous to E1×E2 but A 6' E1×E2 then a = 1.
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An example of the Cartier operator when p = 2.

Let X : y2 +y = h(x) with h(x) ∈ k [x ] of odd degree j .

All hyperelliptic curves with 2-rank 0 have this form.
This includes some supersingular curves whose security
parameters are as good as possible.
Galbraith: y2 +y = x5 +x3, y2 +y = x9 +x4 +1.

Then g = (j−1)/2.
A basis for H0(X ,Ω1) is {dx ,xdx , . . . ,xg−1dx}.

C(x2bdx) = 0 and C(x2b+1dx) = xbdx .

C nilpotent so f = 0, and a = b(g +1)/2c.
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Superspecial ⇒ Supersingular ⇒ f = 0

Def: An abelian variety A is superspecial if A'×g
i=1Ei

where Ei are supersingular elliptic curves.

Then a = g iff A superspecial.

Superspecial curves are rare.
They occur only if g ≤ (p2−p)/2, Ekedahl.

Def: A is supersingular if A is isogenous to ×g
1Ei where Ei

are supersingular elliptic curves.

A supersingular iff the slopes of Newton polygon are all 1/2.

If A is superspecial, then A is supersingular.
The converse is false for g ≥ 2.

If A is supersingular, then the p-rank of A is 0.
The converse is false for g ≥ 3.
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More examples

The curve X : yp−y = xp+1 is maximal over Fp2 ;

(number of points in X (Fp2) realizes Hasse-Weil bound).

It can be used to construct a good error-correcting code.

This curve has g = p(p−1)/2 by Riemann-Hurwitz, f = 0 by
Deuring-Shafarevich, and a = g.

If p ≡ 1 mod j instead, then yp−y = x j has
g = (j−1)(p−1)/2 and f = 0 and (P):

a =

{
(p−1)j/4 if j even

(p−1)(j−1)(j +1)/4j if j odd
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Open questions

Expect a-number is usually small

Conj. A generic curve of genus g and p-rank f has
a-number 1 if f ≤ g−1.

The conditions p-rank f and a-number 1 determine a unique
group scheme of rank p2g . Its covariant Dieudonné module has
relation F r = V r .

[P] proved conj. when f ≥ g−3 and reduced proof in other
cases to the base case f = 0.

Analogous result for hyp. curves when f = g−2 if p > 2.

Question: find explicit equations for curves with p-rank 0
and given a-number.
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Method to construct curves with f = g−2 and
a = 1.

Goal: produce X genus g with fX = g−2 and aX = 1.

Start with Y genus 2 with fY = 0 and aY = 1. (i.e. JY is a
supersingular non-superspecial abelian surface).

Ex: p = 2, look at y2 +y = x5.
p = 3, look at y2 = x6 +x +2.
p = 5, look at y2 = x5 +2x4 +x3 +x +3.

Find points of order ` = g +1 on JY (ok if p - `).

Each of these yields an unramified Z/`-cover X → Y s.t. X
has genus g and JY ⊂ JX .

By a result of Raynaud about theta divisors, one of these
curves X has p-rank g−2.
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Group schemes

If A is a p.p. abelian variety, then A[p] is a group scheme.

Then f = dimFpHom(µp,A[p]) where µp ' Spec(k [x ]/(xp−1))
is the kernel of Frobenius on Gm;
and a = dimk Hom(αp,A[p]) where αp ' Spec(k [x ]/xp) is the
kernel of Frobenius on Ga.

The p-rank and the a-number do not determine the
isomorphism class of A[p] if g ≥ 3.

The group schemes A[p] can be classified by Dieudonné
modules, Ekedahl-Oort types ν, Young diagrams µ, or cycle
classes.

Classification by Newton polygon does not match up well.
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g = 1:

A[p] codim f a ν µ cycle class

L 0 1 0 [1] /0 λ0

I1,1 1 0 1 [0] {1} (p−1)λ1

Group schemes:
L = Z/p⊕µp.
I1,1 given by 0→ αp → I1,1 → αp → 0 (non-split).

Occur as p-torsion:
If E is an ordinary elliptic curve then E [p]' L.
If E is a supersingular elliptic curve, then E [p]' I1,1.

Dieudonné modules:
D(Z/p⊕µp)' k [F ,V ]/(F ,1−V )`⊕k [F ,V ]/(V ,1−F )`.
D(I1,1)' k [F ,V ]/(F +V )`.
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g = 2:

A[p] codim f a ν µ cycle class

L2 0 2 0 [1,2] /0 λ0

L⊕ I1,1 1 1 1 [1,1] {1} (p−1)λ1

I2,1 2 0 1 [0,1] {2} (p−1)(p2−1)λ2

I2
1,1 3 0 2 [0,0] {2,1} (p−1)(p2 +1)λ1λ2

Group scheme:
Here αp ⊂ H ⊂ I2,1 where H/αp ' αp⊕αp, and I2,1/H ' αp.

Dieudonné module:
D(I2,1)' k [F ,V ]/(F 2 +V 2)`.

Newton polygons:
2G1,1 (supersingular) occurs for both (I1,1)

2 and I2,1.
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g = 3:

A[p] codim f a ν µ

L3 0 3 0 [1,2,3] /0
L2⊕ I1,1 1 2 1 [1,2,2] {1}
L⊕ I2,1 2 1 1 [1,1,2] {2}
L⊕ I2

1,1 3 1 2 [1,1,1] {2,1}
I3,1 3 0 1 [0,1,2] {3}
I3,2 4 0 2 [0,1,1] {3,1}
I1,1⊕ I2,1 5 0 2 [0,0,1] {3,2}
I3
1,1 6 0 3 [0,0,0] {3,2,1}

If A[p]' I3,1, then NP(A) = G1,2 +G2,1 (slopes 1/3 and 2/3)
usually but NP(A) = 3G1,1 (supersingular) also occurs.
D(I3,1)' k [F ,V ]/(F 3 +V 3)`.
D(I3,2)' k [F ,V ]/(F 2−V )`⊕k [F ,V ]/(V 2−F )`.
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g = 4:

There are 16 possibilities for A[p] if g = 4.
Here are the ones with f = 0.

g = 4, f = 0 codim f a ν µ

I4,1 4 0 1 [0,1,2,3] {4}
I4,2 5 0 2 [0,1,2,2] {4,1}
I1,1⊕ I3,1 6 0 2 [0,1,1,2] {4,2}
I2,1⊕ I2,1 7 0 2 [0,0,1,2] {4,3}
I1,1⊕ I3,2 7 0 3 [0,1,1,1] {4,2,1}
I4,3 8 0 3 [0,0,1,1] {4,3,1}
I2
1,1⊕ I2,1 9 0 3 [0,0,0,1] {4,3,2}

I4
1,1 10 0 4 [0,0,0,0] {4,3,2,1}

It is not known if these occur for all p as the p-torsion JX [p]
of a curve X of genus 4.
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Open questions

For a p.p. abelian variety of dimension g, there are 2g

possibilities for the group scheme A[p].
Let G be one of these.

Q1: Does G occur as the p-torsion of a Jacobian JX ?

Q2: If G occurs, describe the corresponding sublocus of
Mg : how many components? what are their dimensions?

If f = g, then JX [p]' (Z/p⊕µp)g and aX = 0.
If f = g−1, then JX [p]' (Z/p⊕µp)g−1⊕ I1,1 and aX = 1.

For g ≥ 4 and f ≥ g−3, all occur, P
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Egregious open case

Hyperelliptic curves with g = 3 and f = 0.

Note: dim(H3)+1 = dim(A3).

The moduli space H 0
3 has dimension 2.

Is it irreducible?

Yes, when p = 3, Elkin/P
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Open questions - arithmetic

Q 1: For all g ≥ 3 and 0≤ f ≤ g, does there exist an
Fp-curve X with genus g and p-rank f?

Note: earlier application shows slopes are not all 1/2.

Note: the case f = 0 is crucial; can reduce the calculation of
generic Newton polygon of M f

g to that of M 0
g−f .
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Open questions - geometric

Q 3: How many irreducible components does M f
g have?

Known that M f
g is irreducible for all p when g = 2 and f ≥ 1

and when g = 3.

If g > 3 and f = g, then M f
g is irreducible for all p.

Q 4: How many irreducible components does H f
g have?

The case g = 3, f = 0 could improve results on H 0
g , H g−3

g .

Already the case g = 3, f = 0 with p ≥ 5 is unknown.
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