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1. INTRODUCTION 

It is well known that an Abelian variety X of dimension g defined over a 
field K of characteristic p > 0 yields a p-divisible group X(p) of dimension g 
and of height 2g. Let I’ be the formal group obtained by expansion into power 
series of the group law of X relative to some system of local parameters at the 
origin. Then I’ is nothing but the connected p-divisible group in X(p) and r has 
any height between g and 2g (cf. Tate [14]). 

In the present paper, we confine ourselves to the study of the Jacobian variety 
J(C) of a hyperelliptic curve C over a field of characteristic p > 2. Our aims 
here are (i) to determine the structures of the p-divisible group J(p) and of the 
formal group r of J(C) (up to isogeny) with the help of the Cartier-Manin 
matrix A of C, and (ii) to investigate how much information about the algebraic 
(global) structure of J(C) (up to isogeny) can be recovered from the formal 
(local) structure. 

We shall give a brief survey of the paper here. In Section 2, we define the 
Cartier-Manin matrix A of a hyperelliptic curve C over a perfect field of charac- 
teristic p > 2 following Cartier [I] and Manin [S]. We then show that A coin- 
cides with the Hasse-Witt matrix of C. Some basic but important properties of A 
are also discussed. After this, throughout the forthcoming sections, we assume 
that k is a finite field with pa (a 3 1) elements. In Section 3, we give a complete 
characterization of the “ordinary” Jacobian variety J(C) of C. When j(C) is 
ordinary, the Cartier-Manin matrix A of C completely determines the formal 
structure J(p), and in certain cases the algebraic structure as well (up to isogeny). 
In the rest of the paper, we study the Jacobian variety J(C) of the hyperelliptic 
curve C whose Cartier-Manin matrix has determinant zero in R. In Section 4, 
we observe that the Cartier-Manin matrix A of C no longer provides enough 
information; it is the p-adic exponents of the eigenvalues of the characteristic 
polynomial of the Frobenius endomorphism of J(C) relative to k that determine 
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the isogeny class of j(p). In Section 5, we characterize the “supersingular” 
Jacobian variety j(C) of C. It is shown that, in this case, the formal group of J(C) 
completely determines the algebraic structure of J(C). We also show that the 
condition A = (0) in K is sufficient but not necessary for J(C) to be super- 
singular. In Section 6, we discuss the Jacobian variety J(C) whose formal 
group I’ is isogenous to the symmetric formal group of dimension g. Finally, 
in Section 7, we consider the Jacobian variety J(C) with the formal structure 
of the mixed type. It turns out that there is a k-simple Jacobian variety J(C) 
with J(p) isogenous to the mixed type rGi,s + (g - r)G,,, . We remark here 
that the Newton polygon %(Pn) of the characteristic polynomial of the Frobenius 
endomorphism m of J(C) relative to K, is a very useful tool for finding the local 
decomposition of J(C) into isotypic (unfortunately not simple) components. 

All formal groups and p-divisible groups discussed in this paper are 
commutative. 

This paper is the result of my attempt to understand Manin’s works [6,7]. 
In the present paper, we deal only with the hyperelliptic curves, but we shall 
consider more general cases (algebraic curves) in the forthcoming paper [16]. 

2. THE CARTIER-MANIN MATRIX OF A HYPERELLIPTIC CURVE OVER A PERFECT 

FIELD OF CHARACTERISTIC p > 2 

Let K be a perfect field of characteristic p > 2 and let C be a complete non- 
singular curve over k defined by the equation 

c : y2 = f(X), (1) 
where f(x) is a polynomial over K without multiple roots of degree 2g + 1. 

Denote by K = K(x, y) the algebraic function field of C of one variable over K. 
Then K has the unique subfield KP = @(xP, yp) = K(x”, yp) over which K is 
separably generated, e.g., K = K~(x) f or a separably generating transcendental 
element x E K - Kp. Let P(K) be the space of all differential forms of degree 
1 on K and d : K + @(K) the canonical derivation of K. Since dx # 0 for 
a separating element x, every element w E G(K) can be expressed uniquely 
in the form 

w = d+ + +’ dxjx with 4, #I E K, 4” E KP. (2) 

DEFINITION 2.1. Let LP(Kp) be the space of all differential forms of degree 
1 on Kp and dp : Kp -+ fP(KP) the corresponding derivation of KB to d. We 
define the Curtier operator % : D(K) + @(Kp) by letting, for w given as (2), 

%?(a~) = $“(d”x”/x”). 

V is a well-defined Kp-linear operator and %?(d+) = 0. 

481/52/W 
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Sometimes it is convenient to use the following expression for w E P(K): 

w = d$ + q’xp-l dx with 4, 77 E K, 7” E K”. (2’) 

DEFINITION 2.1’. The modified Cartier operator V : G(K) + Ql(K) is 
defined for w given as (2’) by 

W(w) = 7 dx. 

PROPOSITION 2.1. The basic properties of the modified Cartti operator Q’ are 
summarized as follows : 

(a) W(W + w’) = V(W) + V(W’). 

(b) %?‘(+%I) = @Z’(w) for 4 E K. 

(c) V($++-l d$) = d# if n = p, and 0 otherwise, for + E K. 

(d) U’(U) = 0 c> w = d$ with some 4 E K. 

If this is the case, w is called exact. 

(e) V(w) = w e w = d# with some 4 E K. 

lf this is the case, w is called logarithmic. 

Proof. They are immediately derived from the definition except (e). For (e) 
see Cartier [I]. Q.E.D. 

Now the differential forms of degree 1 and of the first kind on K form a 
K-vector space, denoted, ID,(K), of dimension g with a system of the canonical 
basis 

99= I 
xi-1 & 

wi = - , i = l,..., g/. 
Y 

The images of the q’s under the modified Cartier operator V’ are determined 
in the following way due to Manin [8]. Rewrite wi as 

xi--l dx N 
WI=-= 

Y 
xi-ly-PyP-l dx = y-Pxi-l c cjxj dx, 

GO 

where the coefficients cj E k are obtained from the expansion 

f (q-1)/2 = 
5 +, 
GO 

N = + (2g + 1). 
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Then we get for i = I,..., g, 

( c 
x(Z+lh’ dx 

wi zzz y-P cjx+l dx 

i+j $0 :modp, 

+ c c(~+~)~-~ --+z,- x 
1 

Note here that 

c(~+,),~~ $ xp-l dx. 

Thus we have 

L 

8-l 

v(%) = c c$!$,-~ f dx. 
Z=O 

This shows that ID,(K) is closed under the modified Cartier operator v’. Thus 
we can represent v’ by a matrix. Indeed, if we write w = (wr ,..., w,,), we have 

V(0) = A(lIPklJ, 

where A is the (g x g) matrix with elements in k given as 

(Correspondingly, under the Cartier operator %, we have 

and hence 

9-l x(Z+1)2, dpx'Xp 
Q%Ji) = c C(Z+lh-i yp -y$- 

z=o 

W(w) = AUP.) 

DEFINITION 2.2. The matrix A obtained above is called the Car&r-Ma&s 
matrix of the hyperelliptic curve C of genus g defined over K (with respect to 
the canonical basis w of D,(K)). We denote it by H(C, or). 

PROPOSITION 2.2. The Cartier-Manin matrix A of C is determined up to 
transformation of the form S(p) AS-l, where S = (Q), sij E k is a (g x g) non- 
singular matrix and 5”“’ = (s;), independently of the choice of the basis of D,(K). 
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Proof. Let 8 = (0, ,..., 0,) be any system of the first kind of differential 
forms of degree 1 on K. Then there exists a (g x g) nonsingular matrix S = (s,.J 
with elements in k such that 

ei = i sijwj (i = l,..., g), 
j-1 

and there is a commutative diagram 

0 = (WI ,...) w,) - --% H(C, W)WP 

s 
1 1 

$20 

8 = (e, )..., S,) --L H(C, qep 

Hence A is transformed to S(P) AS-l. This shows that A is determined up to 
transformation of the form S(P) AS-’ independently of the choice of the basis 
of 13,(K). Q.E.D. 

THEOREM 2.1. Assume that k is algebraically closed. Let A = H(C, w) be the 
Cartier-Manin matrix of the hyperelliptic curve C over k of genusg, with respect 
to the canonical basis w of Q,(K) given as (3). Denote by a = “(aI ,..., a,) a 
g-column vector with elements in k and let us put 

H = {aw E Q,(K) ( A A(P) 1.. A@‘-‘)ap’ = 0} 

and 

G = {aw E 3,(K) 1 A ap = a}. 

Suppose that the matrix A A(p) ... A(~*-‘) has rank Y. Then H is a k-vector 
subspace of D,(K) of dimension g - Y and G generates a k-vector subspace [q 
of dimension Y. Moreover, ID,(K) is isomorphic to a direct sum of H and [G$ 

Proof. Let us denote by 

M = {a = *(aI ,..., a,), ai E k for every i} 

the set of all g-column vectors with elements in k. Then M becomes a k[%?]- 
module of rank g over k by defining the operation %a = A up and V401 = c&2 
forolEk.Put 

and 
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Suppose now that the matrix A A(r) ... A(p’-‘) has rank Y. Then it is easy to 
see that MI is a k[fl-submodule of M of rank g - r over K. While Ma itself is 
not a k-module (because %?(cla) = A(ola)p = @A UP = 018 a # cua for o( E k), but 
it generates a li[q-submodule [Ms] of M of rank t, say over k. So there exists a 
system of k-basis {al , . . . , at} of [MJ which consists of the solutions of the equation 
%‘a = A a” = a. Now an element &, aiai E [MJ is the solution of the equation 
%?a = a, if and only if %7(&r aiai) = &, @ai = C:=, aiai , if and only if o+ 
are elements of the prime field IF, of characteristic p > 0. Therefore there are pt 
solutions for A a” = a in M and we have 

[J&l = ($ aiai I c~~[F,anda~~Ma . 
> 

It is easy to see that Ml n [M,] = (0) and M 2 Ml @ [MJ. 
Now we claim that t = r = the rank of the matrix A A(*) ..a A(n’-l), whence 

M + Ml @ [M.J. For this take an arbitrary element a, of M and let /+$]a,, 
be the principal module generated over k by a,, , Va, , Va,, ,.... /@]a0 is finite 
dimensional over k, say of rank g,, , where g, is the degree of the minimal poly- 
nomial P(X) of % over k: 

Then a,, , %‘a, ,..., @o-la, constitute a system of k-basis for k[%?]a,, , with 

go Gg* 
Now we put Ml0 = {b E k[‘ifja,, j Y@ b = O}. Then Ml0 is a k[Vj-submodule 

of k[Vja, of finite rank, say to over k. Denote by [MS01 the k[Vj-submodule of 
k[Vja, generated by the solutions of the equations Vb = b in k[%]ao , with 
finite rank, say so over k. Then we have go 3 to + so . 

Suppose now that ,&, is the coefficient of P(X) such that pn, # 0 for no the 
smallest index with this property. Put 

Then, k being algebraically closed, we see that 

has pgo-no solutions in k. While, by noting that @?/Ii = pi%?, we have 

(1 - W) 
(Z > 

c &(A) vi + $4,(h) Vo = xp(%z) = 0. 

Hence we see that (1 - %Y)b = 0, i.e., Vb = b has pgo-no solutions in k[‘iFJao . 
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This implies that s,, > g,, - n, , This together with the inequality g,, > s,, + t,, 
gives n, > t,, . On the other hand, we have 

0 = P(W) = F”Q(g) with Q(g) = c &l,$W. 
i=O 

Then Q(%?)a, , gQ(Gf?)a, ,..., 90-l Q(‘Z)ao are linearly independent elements 
of 4410. so to > no . Therefore to = zzo and K[%]a, = M,‘J @ [Ms”]. 

a, being an arbitrary element of M and Mi and [Ms] being /@‘]-modules, 
the assertion t = Y follows from 

The assertions of the theorem are immediately derived from the above 
discussion. In fact, H (resp. G) is canonically isomorphic as a group to Mi 
(resp. Ma) and H becomes a K-vector subspace of B,(K) of dimension g - Y, 
while G generates a K-vector subspace [Gl of B,(K) of dimension r. Q.E.D. 

THEOREM 2.2. Assume that k is algebraically closed. Let G and r be as in 
Theorem 2.1. Then G is canonically isomorphic to the group of classes of divisors 
of order p of K. In other words, the number of divisor classes of order p of K 
is precisely pr. 

Proof. By Artin-Schreier theory, a cyclic extension of K of degree p can be 
obtained by adjoining a root 9% of the polynomial 9X - x = 0, .s E K and 
BX = Xp - X. Put 2 = K(.Y-?z). Then 2 is unramified over K, if and only 
if Z is unramified at every place P of K, if and only if z E B Kp for every P, 
where Kp denotes the completion of K at P, if and only if z ~9k ((up)) for 
every P, where k((ur)) is the power series field over K in a local parameter U, , 
if and only if z E U/gK where U = np (9’Kp n K) (note that z ELK o 
Z = K). Furthermore, we have the following lemmas. 

LEMMA A. Let x E UI9K be as above. Then 

where {PI ,..., P,} is a set of distinct k-rational points on C such that the divisor 
zig_1 Pi is nonspecial and 9(p & PJ is the k-vector space of fumtions 0 # [ E K 
such that the divisor (5) > -p & Pi . 

Proof of Lemma A. There exists a nonspecial system of points Pi, i = 
1 ,..., g, on C, corresponding to the first kind differentials wi , i = I,..., g, in Kin 
the following way. Let 0 # wi E D,(K) and PI be a point which is not a zero of 
wi. Now the Riemann-Roth theorem says that the space of the first kind 
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differentials having zero at PI has dimension g - 1. Let 0 # wa E ID,(K) be in 
it and let Pz be a point which is not a zero of wa . Continuing this process g 
times to get g points PI ,..., P, with the index of speciality i(Cfzl Pi) = 
z(CiGl piJ - d(Cic, pi) -g + l-I-g+g-l=OwhereZ=dimension - 

and d = degree of 2 $r) Pi). 

Now if an element ZE K is integral at P # Pi, i = l,...,g, then a root 01 
of the polynomial f(X) = XP - X - z = 0 is integral at the place P’ over 
Pin 2 = K(a) (because +,(a) > 0 if and only if v,(Norm,,,(a)) = ~~(-2) > 0). 
so (1, a,..., 01”“) is an integral basis of 2 at P. Moreover, 01 is unramified at P, 
since the differential exponent is +(fl(c~)) = ~~(-1) = 0. This shows that 

dip pi Pi nBK,,CU 
( 1 

for i = l,..., g. 
i=l 

If I E Z(p ‘&, PJ n 9K, then there is X E K such that z = XP - X. Hence 
X is integral for all P # Pi, i = l,..., g and at Pi, X has a pole of order at 
most 1. Thus X is constant and so is z. So we have the injection 

Finally, we want to show that for a given z E U, there exist (zr ,..., z,), zj E 
d;p(pxzW1 Pi) n 9Kp, such that z = (zi ,..., zs) (mod YK). Let z E U = 
nP (9’Kp n K). Suppose that z is not integral at P # Pi , i = l,..., g, then z 
has a pole at P of order pm with some positive integer m >, 1 and z has a power 
series expansion by a local parameter u, as x zz (a/~;~) (mod l/z+!“-‘) with 
a E k. Now by applying the Riemann-Roth theorem, there exists wr E 
z(mP + C:=, Pi) ( w h ose dimension is 1 + m) such that wr G (ul/p/z+.m) (mod 
1 /up-’ ). Hence we see that .z E 9’w, (mod l/u;“-‘) and z - Bw, has a pole 
of smaller order than that of z at P. Repeating this procedure, we may assume, 
without loss of generality, that z has poles only at Pi , i = l,..., g. Hence 
.zE.~K,,~ n K, j = l,..., g. Now we must show that z E 64 (p& Pi). Since 
z E 9’Kpi n K, z has an expansion of the form by the local parameter up, at 
Pi : .z = (u&,Zy) (mod I/z$‘+~) with some integer mj > 1 and a, E k. If 
m, = 1 for everyj = l,..., i, then x E -Y(p g=, P,). If m3 > 1, again by the 
Riemann-Roth theorem, there exists wi E 8(mjPj) such that w, = (ujl’“/$$ 
(mod l/z@-‘). Hence z - Bwi has a pole of smaller order than that of z at Pj . 
Continuing this process, we finally get zj E 9 (p C%, Pi) n 9Kpj for each 
j=l , . . . , g with the required property and hence z E 9 (p X:=1 Pi). Q.E.D. 

An immediate consequence of Lemma A is that we have 

z+x- “& - --$- (mod u”p,) with bi ok for i = l,..., g. 
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If we write u = (z+, ,..., up,) and b = (b, ,..., b,), we have 

bp x---.- 
UP 

4 (mod ~8). 

LEMMA B. [2, Staz 41. Let Pi, i = 1 ,..., g be a nonspecial system of points 
on C and upI a local parameter at Pi (taken as same as in Lemma A). Then there 
exist functions vi E 9 (p& P,), j = l,..., g such that 

edi 
-7 I 

- -$ (mod r&J, 

where eij = 1 zf i = j and 0 otherwise and dii E k. If we write o = (vl ,.., , II*), 
I = (eci), and D = (dii), we have 

u E -$- - G (mod ~0). 

DEFINITION 2.3. The matrix D obtained in Lemma B is called the Hasse- 
Witt matrix of the hyperelliptic curve C (cf. [2]). 

LEMMA C [2, Hauptstaz]. Let z be as in Lemma A and u as in Lemma B. 
Then z (mod k) is in one-to-one correspondence with the vectors b = (bl ,. .., b,), 
bi E k for all i, satisfying D b’ = b mod&o multiplication by elements in the prime 
field of characteristic p > 0. 

LEMMA D. The Hasse-Witt matrix D obtained in Lemma B is identified 
with the Cartier-Manin matrix A. Moreover, the group 

{b = (4 ,..., b,), bi E k for all i 1 Db” = b) 

is canonically isomorphic to G in Theorem 2.1. 

Proof of Lemma D. Let 9.l be the space of adeles f = (.*. & ..a) in K. For a 
divisor X in K, we denote by a(X) the k-vector space (5 E ‘$I 1 v,,(.$ > --Q(X) 
for all P}. Then we see that dim,(‘%/(%(X) + K)) = the index of speciality of X. 
In particular, take X = tin1 Pc : the nonspecial divisor. Then 2l= ‘%(&r Pi) + 
K and the factor space ‘%/(‘%(O) + K) is g enerated by the adeles & = (* *. 1 /uPi . . .) 
and (II ,..., to‘,) is the canonical basis for %/(2l(O) + K). The k-vector spaces 
3,(K) and %/(Ql(O) + K) are dual and there is a pairing between them given 
in the following fashion. Let W be the canonical divisor. Then there is a sequence 
of k-vector spaces: 
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with l(W-~P~)-lJW-~IP~)=l. 

Hence it follows from the choice of Pi and from the Riemann-Roth Theorem 
that 

where G(X) = {W EP(K)/(co) >, X} and that (wr ,..., w,) is a dual basis to 
(6, ,*-a, &). 

Now let S be the matrix of scalars (wi , &) =: the residue of wi[j at Pi . We 
may take S to be the (g x g) identity matrix by identifying the local parameters 
up, with xi/y for i = l,..., g (note that xi/y, i = I,..., g can be local parameters, 
since wi = (&l/y) dx, i = I,..., g are linearly independent). Hence we get 

While we have for the functions uj , j = l,..., g in Lemma B, 

(0) = (6% , 4 = (6% , Q)) - D((Wi ) (j)) = A - D. 

Hence A = D and the group {b = (b, ,..., b,), bi E K for all i satisfying D 
bp = b} is canonically isomorphic to G. Q.E.D. 

LEMMA E. The number of classes of divisors of order p of K is precisely pr 
where r is the rank of the matrix A A(P) **. A@-‘). 

Proof of Lemma E. As an immediate consequence of Lemma D and of 
Theorem 2.1, we know that there are pF solutions for the system of equations 
D bp = b in k. Hence there are pr divisor classes of order p of K. Q.E.D. 

This completes the proof of Theorem 2.2. Q.E.D. 

COROLLARY 2.3. The notations and the hypothesis being as in Theorems 2.1 
and 2.2, we have 

(a) The following statements are equivalent: 

(ai) r = g. 
(aii) 1 A A(@ ... A(p’-‘) 1 # 0. 



388 NORIKO YUI 

(aiii) A has ranlz g. 
(aiv) B,(K) does not posess any exact dzgerentiuls. 

(b) All d#erentiak of ID,(K) are exact, if and only if A = (0). When this 
is the case, A A(“) ... A(“‘-l) has rank 0 and there are no classes of divisors of 
order p of K 

Pyoof. (4 t ) ( 3 ( 1 ai o au o aiii are clear, since determinant is multiplicative. 
(ai) e (aiv). Suppose (ai), then Q,(K) = [G] and g0 = 8 for every 6 E Q-,(K), 
whence (aiv). The converse is clear. 

(b) The equivalence follows from the definition of A and from Theorem 
2.1. The last assertion is a trivial consequence of Theorem 2.2. Q.E.D. 

3. ORDINARY JACOBIAN VARIETY J(C) OF C 

From here on, let k be a jinite jield of characteristic p > 2 with pa (a 2 1) 
elements and k its algebraic closure. 

Let C be the hyperelliptic curve defined over k by the equation (1) and J(C) 
its Jacobian variety. We may assume that J(C) and its canonical embedding 
C -+ J(C) are also defined over k. Let r be the Frobenius endomorphism of 
J(C) relative to k with the characteristic polynomial P,(X) E@] of degree 2g. 
P,(h) = Cft, adhi, a, = pus, agg = 1. P,(h) is the characteristic polynomial 
of the l-adic and also of thep-adic representation of the Frobenius endomorphism 
m and it is of special interest, because (1) it determines the isogeny class of J(C) 
[13] and (2) the p- a d ic values of its characteristic roots determine the formal 
structure of J(C) up to isogeny [6j. Thus P,(h) determines the formal and algebraic 
structure of J(C) up to isogeny. 

Henceforth, there remains the main task of determining P,,(h) explicitly. 
Its dependence on the Cartier-Manin matrix A of C has been illuminated by 
Manin [7]. That is, P,,(h) is linked to the Cartier-Manin matrix through the 
congruence 

P,(X) = (-l)g Xg 1 A, - xr, / (mod PIT (4) 

where 1 A, - & 1 is the characteristic polynomial of the matrix A, = 
A A(P) . . . A(P”-‘) and 1, is the (g x g) identity matrix. 

THEOREM 3.1. Let C be the hyperelliptic curve of genus g defined by (1) over k: 
a Jinite jield of pa (a > 1) e ements, p > 2 and J(C) its Jacobian variety defined 1 
over k. Let rr be the Frobenius endomorphism of J(C) relative to k and P,,(X) its 
characteristic polynomial. Then the following statements are equivalent: 

(9 I 4 I # 0. 
(ii) A has rank g, i.e., / A 1 # 0. 



JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES 389 

(iii) A AtP) ..* A(pg-l) has rank g. 
(iv) The p-rank of J(C) is g, that is, there UY~ pg points on J(C) killed by 

p in R. 

(v) P,,(h) has g p-udic unit roots in the algebraic closure a-, of Q, . 

(vi) The Newtonpoljgon %(P,,) has the segments S, , S, with slopes 0 and --a, 
respectively, and looks like Fig. 1. 

(vii) The p-divisible group J(p) of J(C) is isogenous to gGI,O . 

(viii) The formal group I’ of J(C) has height g and is isogenous to G,,@)g 
where G,,,(p) denotes the multiplicative group of height 1 and of dimension 1. 

w 
!n (P,) h s, ‘Y’Q 

S2 s* y = --Ox + og 

St 

0 9 29 

FIGURE 1 

DEFINITION 3.1. When J(C) satisfies any one of the conditions in Theorem 
3.1, J(C) is called ordinary. 

Remarks. (1) By the Newton polygon ‘%(P,) of P,,(h) = xi”, a# E Z[X], 
we mean the lower convex envelope of the set of points ((i, v,(q)) 1 i = 0,. . . ,2g} C 
R x R where vD is the p-adic valuation of Q, . (2) We denote by vg the unique 
extension of the p-adic valuation vP to the algebraic closure aD of Q, , normalized 
so that v,(p) = 1. (3) Th e f ormal group r of J(C) is the connected component 
of the p-divisible group J(p) of J(C). 

Proof of Theorem 3.1. (i) o (ii) Q (iii) and (v) o (vi) are obvious. 

(iii) * (iv). Since the classes of divisors of order p of K correspond to 
the points on J(C)(k) of order p, (iii) * (iv) follows from Corollary 2.3a and 
(iv) 3 (iii) from Theorem 2.1 and 2.2. 

(i) o (v). By the Manin congruence (4), a, = (-l)g 1 A,, 1 (modp). Now 
assume (i). Then ~,(a,) = 0. Noting also that v~(u~~) = 0, the Newton polygon 
‘%(P,,) has a segment S, of length g and with slope 0. Therefore P,,(h) has 
exactly g p-adic unit roots in aD , whence the assertion (v). Conversely, assume 
(v) and let 7r ,..., TV be the p-adic unit roots of P,(h). As P=(X) has always together 
with roots 7i , the roots p4/7{ , we have 

P&y = fi (A - TAX - P%), V,(TJ = 0 for all i = l,..., g. 
i=l 

So ~,(a~) = & v,(T~) = 0. Hence again by the congruence (4), we get 
) A, j + 0 (modp). This proves (v) + (i). 
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(vii) o (viii). Assume (vii). The p-divisible group G,,, is isogenous to 

GdP) x wwP>k where G,&) is the multiplicative group of height 1 and 
(Q&J, is the &tale group of height 1. Hence j(9) N gG1,O = G,(p)g x 
(U2,/;Z,)~ . The assertion (viii) follows from the facts that the connected compo- 
nent of J(p) is the formal group of J(C) and G,(p)0 is connected of height g. 
The converse (viii) 2 (vii) is easy, because if J(p) has the component G,(p)g, 
J(p) also has its dual (a;S,/Z,)i as its component. 

(v) 9 (vii). F’ u-st v + vu is the Manin fundamental theorem 4.1 in [6]. ( ) ( “) 
To show the converse, we consider the Dieudonne module 7’,(j) = TJG,(p)g) @ 
TP((~$&) corresponding to the p-divisible group J(p). Since P,,(h) is the 
characteristic polynomial of the p-adic representation T,(n) of the Frobenius 
endomorphism T of J(C) on T,(J), we may write P,,(h) = P,(h) P,,(X) where 
P,(h) (resp. P,,(h)) is the characteristic polynomial of the restriction of T,(r) 
to TJG,(p)g) (resp. to T,((U2,/2!,)~)). Both P,(A) and P,(h) have the same degree 
g. Moreover, we have 

P&) = fi 0 - Ti), “,(7-J = 0 for all i = l,..., g. 
i=l 

In fact, (~,/Z& being &ale, T3)( T m ) ’ d uces an automorphism of T,((Q,/Z,))i) 
and hence all the characteristic roots of P,(h) must have the p-adic value 0. 

Q.E.D. 

THEOREM 3.2. With the notation as in Theorem 3.1, suppose that J(C) is 
elementary and ordinary. Then we have 

(a) P,(h) is Q-irreducible. 

(b) The endomorphism algebra ~22 = End,( J(C)) @Q is commutative and 
coincides with its center 0 = a(n). 

(c) @ = Q(T) is a CM-jield of degree 2g. Let /I = r + + where + denotes 
the complex conjugate of rr. Then /3 is totally real and [Q(V) : Q] = g and 1 B / < 
2pa/2, (/3, p) = 1, and P,,(h) = A2 - ,t?A + p” E O@)[A]. 

(d) J(C) is k-simpZe. 

Proof. It is well known that if J(C) is elementary, P,(h) = P(A)G for some 
integer e with P(h) Q-irreducible and P(x) = 0 and that zz? is a division algebra 
of dimension e2 over its center Q, = Q(m). 

Now suppose that J(C) is elementary and ordinary. Then by Theorem 3.1, 
P,,(h) has the p-adic decomposition 

P,(A) = fi (A - Ti)(h - P”/T,), V&i) = 0 for every 1 < i < g. 
i=l 
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Hence at every prime v over p in @‘, ord,(rr) = 0 or a. Thus the local invariant 
i, of & at v (defined by Tate [13] as i, = ord,(r) .fJa where f,, is the residue 
degree at V) is an integer for every v over p. Noting that there are no real primes, 
(because if w is real, 7~ = &pal2 and ord,(r) = a/2), we see that the least 
common denominator of all the i, is 1. Since e is the period of & in the Brauer 
group of @ and so is the least common denominator of all the i, , we get e = 1, 
whence the assertions (a), (b), and (d). 

Now we shall prove (c). Since r is imaginary with deg(m) = 2g, Q(r) is a 
CM-field of degree 2g. Put ,G = n + +. In every embedding @ = Q(W) into @, 
1 n / = pai by the Riemann hypothesis, so p = v + p”/rr is real and Q(p) 
becomes totally real with [O(p) : Q] = g and Q(n) becomes imaginary over it 
(i.e., r satisfies the equation P,(n) = ~2 - flrr + pa = 0 over Q(p)). As J(C) 
is ordinary by the hypothesis, P,(h) must split. Hence at every prime v over p, 
we have ord&3) = 0, whence (fi, p) = 1. Q.E.D. 

EXAMPLE 3.3. Consider the curve C: y2 = 1 - x5 defined over the prime 
field F, where p is a prime of the form 10n + 1, 71 E N. C has genus 2 and the 
Cartier-Manin matrix A of C is given by 

( (P - 1)/2 
A = (P - I)/5 1 0 

with (:) binomial coefficient. 
0 ( 

(P - 1w 
2(P - I)/5 ) 

It is easy to see that [ A 1 # 0 in IF, . So J(C) is ordinary by Theorem 3.1. 
We have 

P&i) E A* - (g 1 ii’,: I 1 ( + (p - 1)'2)1 A3 + [ A j A2 
2(P - I)/5 (mod P>- 

So P,,(h) must split with roots of orders 0 and 1. Hence half the places have 
ord,(m) = 0 and the other half have ord,(rr) = 1. So i, is an integer for every 
prime v over p, and hence J(C) is simple over F, . 

This is a rather special example (cf. Honda [3]). Let [ be the endomorphism 
of J(C) corresponding to the birational automorphism (x, y) -+ ({x, y) of C. 
PutL = Q(c). Then L is the decomposition field ofp = 10n + 1 with [L : Q]=4 
and moreover L = Q(a). Since ~2 contains a field L of degree 4, J(C) is isoge- 
nous to a product of a simple abelian variety. But p splits in @ and the local 
invariants of &’ are all integers. Hence JZZ = @ = L = Q(c). This shows that 
for all primes p of the form 1On + 1, rz E lV, J(C) are of the same CM-type (L) 
and hence are isogenous to each other. 
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4. THE JACOBIAN VARIETY J(C) OF C WITH [ A 1 = 0 

THEOREM 4.1. With the notation as in Section 3, suppose that the Cartier- 

Manin matrix A of C has the determinant 1 A 1 = 0 in k. Then we have (a) If the 
matrix A A(D) ..- A(F’ ) has rank 0, then the matrix A A(p) ... A(fl-l) also 

has rank 0. 

(b) When (a) is the case, the following statements are equivalent: 

(bi) The p-rank of J(C) is 0, that is, there are no points on J(C) 

defined over k, killed by p. 

(bii) The characteristic polynomial P,,(h) has the p-adic &composition 

P,(h) = I$:, (h - T{) with 0 < v,(T$) < a. 

(biii) The formal group J? of J(C) has height 2g and coincides with the 

p-divisible group J(p) of J(C). 

Proof. (a) Let 12 1 be an integer and let us denote by p, the rank of the 
matrix Al = A A(“) ... A(p’-‘), and A, = I,. 

Suppose now that A, = A A(p) ... A@-‘) has rank 0. If a < g, there is 

nothing to prove. So we assume now that a >g. Let R, be the k-vector space 
of the roots of the system of equations $Px = 0 in k, i.e., R, = {x 1 Wx = 
A,& = 0}, R, = (0) and R, = II (in Theorem 2.1). We know that the rank 
of R, is g - pr . First we shall prove the following lemma. 

LEMMA. Put 6, = pl_l - p1 . Then 6, is the rank of the k-vector space R1/R,_, 

and 

6, > 62 >, ... > 6, > s,,, = .‘. = 6, = 0 forany n>g+ 1. 

Proof of Lemma. It is easily seen that R, 1 R,_, and 6, = (g - pz) - (~-PI-~) 

is the rank of the space R,/R,_, . Let up),..., uLg) be a basis of R,IR,_, . Applying ~ 
the Cartier operator V, we get 

Sip,..., %&R _ I17 

and modulo R,_, , they are linearly independent. Hence we get the inequality 

8, + g - Ps-2 G i? - Pg-1 9 whence 8,-r > 8, . Continuing the same discussion, 
we have 6, > 6, > ~~~~6,.1tremainstoshowthat8,~6,+,=~~~=6,=0. 
But this is an immediate consequence of Theorem 2.1, because R, = R, for 
every n >g + 1. Q.E.D. 

Now we shall prove the theorem. The assertion (a) follows immediately 
from the lemma. In fact, take n = a, then pa = 0 by the hypothesis and pg = 

PO+1 = .‘. = pa = 0. 



JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES 393 

(b) We shall prove (a) 3 (bi) * (bii) 3 (biii) * (bi). 

(a) * (bi). See Corollary 2.3 b. 

(bi) * (bii). We first note that the p-rank of J(C) coincides with the 
rank of the toroidal component G,,, of J(p). As we have seen in the proof of 
Theorem 3.1(v) o (vii), the characteristic roots of P,(X) corresponding to the 
toroidal component have the p-adic values 0 and a. Now assume (bi). Then (bii) 
follows from the above fact and from the Riemann hypothesis that all the charac- 
teristic roots must have the absolute value pa12. 

(bii) 3 (biii). Assume (bii). Then by the Manin theorem 4.1 in [6l, 
the p-divisible group J(p) of J(C) h as no toroidal component. So J(p) is con- 
nected. Hence the formal group I’ of J(C) has height 2g and coincides with the 
p-divisible group J(p). 

(biii) =X (bi). This is a trivial consequence of the fact that the p-rank 
of J(C) is equal to the rank of the toroidal component of J(p). Q.E.D. 

Remarks 4.2. (1) The Cartier-Manin matrix A of C in Theorem 4.1 
provides us merely a connected p-divisible group of height 2g. So in order to 
determine the local structure of J(C) up to isogeny, we must classify the con- 
nected p-divisible groups of height 2g into isogeny classes. Manin [6j is the 
first to observe that the local decomposition of J(C) parallels the p-adic factoriza- 
tion of the characteristic polynomial P,(h) of rr. 

(2) Let 2s (resp. r) be th e number of the p-adic roots 7i of P,.,(h) with 
v,(TJ = a/2 (resp. 0). Th en we can factor P,,(h) into the form 

pm 
= fi (A - Tf) - fi (A - Ti)(h -p/T,) - g--8--7 

(A - Ti>(X - P/w. 
id i-1 

E 
v&‘)=a/2 Yp(Ti)=O O<v,(T,)<a12 

(Note that J(p) is connected, if and only if Y = 0.) 

In the forthcoming sections, we shall determine, up to isogeny, the type of the 
formal group r, of the p-divisible group J(p) and then the algebraic structure of 
J(C) up to isogeny, in the cases, [s = g, r = 01, [s = 0, r = 01, and [0 < s < g, 
0 < T < g], respectively. 

(3) In principle, the characteristic polynomial P,,(X) can be explicitly 
determined by making use of the well-known Lefsechtz formulas for the hyper- 
elliptic curve C over k (cf. [5]). 
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5. SUPERSINGULAR JACOBIAN VARIETY J(C) OF C 

THEOREM 5.1. Suppose that the Cartier-Manin matrix A of C has the deter- 

minant 1 A 1 = 0 in k and that the matrix A, has rank 0. Then we have 

(a) The following statements are equivalent: 

(ai) s = g, i.e, all the characteristic roots of P,(h) have thep-adic value a/2. 

(aii) The Newton polygon 91(Pr) h as only one nonvertical segment with 

slope -a/2 and looks like Fig. 2. 

ag 
W(P,) r---- s 

s: y=-+x+ag 

0 29 

FIGURE 2 

(b) When (a) is th e case, the p-divisible group J(p) of J(C) is isogenous to 

gG,,, and so is the formal group I’ of J(C). 

(c) The following statements are equivalent: 

(ci) The p-divisible group J(p) of J(C) has the isogeny type gG,,, . 

(cii) The Newton polygon of the characteristic polynomial of rrn for some 

integer n >, 1 has only one nonvertical segment with slope -an/2. 

DEFINITION 5.1. When J(C) has the p-divisible group J(p) isogenous to 

gG,,, , J(C) is called supersingular. 

Proof of Theorem 5.1. (a) (ai) 3 (aii). By the hypothesis, 

P*(h) = fi (X - Q) = ; a#. 
i=l i=O 

v,(si)=o12 

So we have v,(aJ = (2g - i) 42 for every 0 < i < 2g. Hence the equation 

the nonvertical segment of !X(Pfl) is given by y = -(a/2)x + ag. 

(aii) * (ai). Clear. 

for 

(b) This follows from the Manin theorem 4.1 in [6j, and Theorem 4.lb. 

(c) First note that over any finite extension k, of k of degree n > 1, 

there exists an Abelian variety B, of dimension g whose all the characteristic 

roots of the Frobenius endomorphism relative to k, have the p-adic value an/2. 
(For example, B, = EQ where E is an elliptic curve with vanishing Hasse 

invariant.) Then by Manin’s Theorem 4.1 in [6], B, has the p-divisible group 
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B,(p) isogenous to gG,,, . There is a one-to-one correspondence due to Tate 
(see Waterhouse [15]) and to Manin: 

(ci) + (cii) Now suppose (ci). Then there exists an element 4(p) E 
Hoq,UW, &LP)) C Hom,dgG.l , gG,d = J+4Wl~d = ~gPWl.d> 
(M, denotes the (g x g) matrix algebra.) By the above correspondence, we get 
the element 4 E Homkn(J(C), B,). H ence the characteristic polynomial of 
7&, = 79 coincides with that of the Frobenius endomorphism ns of B, 
relative to k, . Therefore the p-adic exponents of the eigenvalues of + ire an/2. 
Thus (cii) follows from by applying the argument (ai) * (aii) with rrn for 7~. 

(cii) * (ci). Suppose (cii). Then th ere are 2g characteristic roots with 
p-adic value an/2. Hence by applying the Manin Theorem 4.1 in [6j with k, 
for k and nn for n, the p-divisible group J(p) of J(C) is isogenous to gG,,, . 

Q.E.D. 

THEOREM 5.2. A supersingular Jacobian variety J(C) of C over k is isogenous 
over somefinite extension of k to a product E x *.. x E (g copies)of a supersingular 
elliptic curve E (cf. Oort [9]). 

Proof. Recall that an elliptic curve is called supersingular if its endomorphism 
algebra is noncommutative. We employ the same notation as in Theorem 3.2: 
JZZ the endomorphism algebra of J(C) and d, = Q(V) the center of &. The 
algebraic integer 7~ satisfying the Riemann hypothesis 1 r 1 = paI2 in all embed- 
ding of 0 into C, are called the Weil numbers. As the notation suggests, we may 
identify the Frobenius endomorphism with a Weil number. 

Now by the assumption, all the characteristic roots of P,(X) have the p-adic 
value u/2. 

I. Suppose that there are real primes in @. 

Case Ia. If u is even, v = &pal2 is rational. Hence @ = Q, P,,(X) = 
(h -J-paj2)?g, [JZZ : Q] = (2g)2, and L&’ = M,(Q,J : a (g x g) matrix algebra 
over the quaternion algebra QBlm over Q which is ramified only at p and co. 
Then by Tate [13], J(C) is isogenous over k to g copies of a supersingular 
elliptic curve over k, all of whose endomorphisms are defined over k and whose 
characteristic polynomial is (X & p~l~)~. 

Case Ib. If a is odd, r = -J-pal2 $ Q, but 9 becomes rational. We have 
@ = Q(P~/~), [@ : a] = 2. So there are two infinite primes with local invariants 
3, and only one prime over p with local invariant 0. Thus the least common 
denominator of all the local invariants is 2. Hence we obtain a k-simple con- 
stituent X of J(C) with dim X = + . 2 * deg(w) = 2. Passing to the quadratic 
extension k, of k, we have a(?~~) = Q and X becomes isogenous to the product 

481/52/2-g 
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of a supersingular elliptic curve. Hence by applying the same argument as in 
Case Ia, the algebra &’ (+a) attached to J(C) relative to k, becomes a matrix 
algebra over Q,,m and the characteristic polynomial of 7T2 is given by P,+(h) = 
(X - pa)‘“. Hence J(C) is isogenous over K, to g copies of a supersingular 
elliptic curve over k, . 

II. Suppose now that there are no real primes in @. So Q(r) is totally 
imaginary. Put j3 = rr + pa/n. Then B is real and Q(p) becomes totally real and 
&P(r) is imaginary quadratic over it. We can write P,(h) = X2 - j3A + p5 E 
Q@)[X] with 1 B 1 < 2palz. The solution of P,,(X) = 0 is a Weil number. Now 
the hypothesis that all the characteristic roots of P,(h) = 0 have the p-adic 
value a/2 implies that (/I, p) # 1 and hence p ramifies or stays prime in Q(p). 
Write p = -@‘a with b EQ and 01 = 0 or an algebraic integer satisfying 
(Norm(a), p) = 1. 

Case IIa. If 01 = 0, then p = 0 and UZ@?) = Q, Q(m) = Qg((-~~)l/~) with 
[Q(n) : Q] = 2. Hence we get Weil numbers v = -J-pal2 .2/z, whose second 
powers become rational. So if a is odd or a is even andp f 1 (mod 4), they give 
supersingular elliptic curves whose all endomorphisms are not defined over k, 
but are defined over k, . Hence the characteristic polynomial of f is given by 
P+(A) = (h + pa)?g, and hence J(C) is isogenous over k, to g copies of a super- 
singular elliptic curve over k, . 

Case IIb. If ol # 0 and 2b <a, then we have n = -J-(pb~ & p”(c~” - 4~~-*~)~/~)/2. 
Since 01~ - 4p@-2b = 0~~ (mod 4p), we have v~(v) = b < a/2. But this contradicts 
to our hypothesis. So we can suppose that 2b > a. As $ - 4~” = 
pa(p2b-%a - 4) < 0 and p # 2, we must have / pbVQi2 1 < 2. So it follows that 
n zz -&M(pb-W2 a & i I p2b-=a2 - 4 I”“)/2 with Norm((pb-ak. -J= 
i 1 p2b-aa2 - 4 /lj2)/2) = 1. Hence V=(T) = a/2. Since I pb--alza ] < 2, we have 
1 pb-a/%/2 j < 1 and I pab-5~~ - 4 /llL/2 < 1. Hence(pb-a/2a f i] p2b-a~2 - 4 /‘j2)/2 
is a root of unity. Therefore some powers of n becomes rational, say 7~~ = 
ipta/Z E Q. So if a is even (resp. odd), the characteristic polynomial of rt 
(resp. n-2”) is given by P+(h) = (h f pta/2)2g (resp. P,# = (h & pot)*g), whence 
j(C) is isogenous over the extension k, of degree t (resp. k,, of degree 2t) of k 
to g copies of a supersingular elliptic curve over kt (resp. k2t). 

A typical example of Case IIb is when the characteristic polynomial P,(h) 
of 7r of J(C) relative to k is given by P,(h) = A29 + pas. Q.E.D. 

It is a classical result that an elliptic curve E over k is supersingular if and 
only if the Hasse invariant of E is zero. In the following, we shall give a gene- 
ralization of this fact to higher-dimensional cases. 

THEOREM 5.3. Suppose that the Cartier-Manin matrix A of C is (0) in k. 
Then J(C) is supersingular and is isogenous over some jinite extension of k to g 
copies of a supersingular elliptic curve. 
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Proof. A = (0) certainly satisfies the hypothesis of Theorem 4.1(a), so 
that J(p) has no toroidal components o J(C) has no p-torsion points -+ The 
Tate group of the dual of l(C) is 0. First we shall prove the following two lemmas. 

LEMMA A. Let F be the Frobenius morphism of K = k(x, y) onto K” = 
kp(x”, yp), J(C) onto J(C)(“) end J(p) onto J(p)(n) induced by the pth power map 
a - ap of k and F’ = V its dual morphism. Then for the canonical basis w = 

(W 1 ,..., wg) of D,(K) (SD,(J(C))) given as (3), we have 

g-w zzz ” 0 v Yzz A(li~), %?~=woF=Aw”. 

Proof of Lemma A. Let D be the ring of integers in the absolutely unramified 
extension L of Q, with residue field k = [F,. . So p generates the maximal ideal 
of 53. We can lift the equation for C to L, which we write C : y2 = J(X) wheref” 
is a polynomial over D without multiple roots of degree 2g + 1 such that C 
modp = C. Let ti = xi/y, i = l,..., g and t = (tl ,..,, tg). As we have seen in 
Section 2, t is a system of local parameters of C at the origin and the canonical 
basis wi , i = l,..., g of D,,(K) can be written as 

wi = d& + i 
Z=l 

&EK. 

Now the differential forms of degree 1 and of the first kind on the algebraic 
function field of C can have the form 

i& = d& $ i with O+ modp = wi for i = l,..., g. 
I=1 

Let f = (pi), i = l,... ,g be the formal group of J(C) with respect to the local 
parameters t, so that p mod p = I’. We consider the isogeny of r (resp. f) of 
multiplication by p. On f = (Fi) over 0, there exist systems of power series 
6(t) = (Us(t)), W(t) = (Wi(t)) in D[[t]] such that 

air(t) = 1 + ..., 

t 0 (plp) = p\iir(t) + 6(F). 

So by reducing modulo p, we get 

t o (pl,) = U(t’) = (Ui(t”)), where U = 0 mod p. 

Now we know that in characteristic p > 0, the multiplication by p can be 
expressed as the product of F and V taken in either order: pl, = FV = VF 
(cf. Manin [6, Proposition 1.41). So we have 

toF = t=, t 0 V = t 0 (plJF) = (bit,..., b,t), 
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where bit = C$ blitr with b,, the coefficient of t,” in U,(tp). Expanding Bi 
into power series oft = (tl,...,tu), we have 

Gi = f &(& + * .* + &&+l + a..) = i Ii,, & , 
I=1 kl 

where ZLi = 1 (mod p) for all i, 1. So it follows that 

On the other hand, we also have 

Hence we get the equality 

i Ali dt2 = i R,,(Ui(t,“) + pl@i(t,)) . (Ui’(tl”) tf-lf Wi(tl)) dt, . 
1=1 24 

Read it modulo p and compare the coefficients of tf-’ of both sides for each 
1 = l,..., g. Since 

and 

h”,,(Oi(t,“) + pFVi(t,)) s R,,( D*(tJ”)) G 1 (mod P), 

Ud’(tlP) = bli , 

we get cL9_-i = bzi for i, I = l,...,g. This proves that 

WWI = i c;giwr = wi 0 v. 
1=1 

By duality, we also get 

wq = i c~~_~w,P = UJ~ 0 F. Q.E.D. 
1=1 

LEMMA B. The hypothesis and the notation are as in Theorem 5.3 andLemma A. 

Then ply) = ~1, , F and V are purely inseparable and moreover, we have 

F2 = vs = -PI&-, . 

Proof of Lemma B. Since J(C) has no points of order p in k, pl,(,) is purely 
inseparable of degree p2g (cf. [12, Chap. I, Proposition 71). According to Serre 
[I I], every purely inseparable isogeny is the product of elementary isogenies of 
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height 1, of one of two types ;r , 2 i defined as follows. Let W be the p-Lie 
algebra of differentiations of J(C). The isogeny of type ir corresponds to the 
subspace {a E ‘3 j 8’ = 0} of % and that of type & to the subspace (8 E % j 8’ = a} 
of ‘iR. The dual (or the transpose) of type ir is again of type ir and has kernel 0, 
while that of type ia becomes separable and has kernel of order p. Since the 
Cartier-Manin matrix A of C is the matrix of the map 8 -+ @ in %, A = (0) 
implies that V is the g product of the isogenies of type ir . So it is purely in- 
separable of degree pg. It follows that F is also the g product of the dual of the 
isogenies of type ir . Hence F is also purely inseparable of degree pg. Therefore, 
F2, V2, and pl,(,) are purely inseparable of degree p2g and they differ only by an 
automorphism. Let u be an automorphism of K (modulo translation auto- 
morphism). a has the form: x0 = EX, y” = my where E, 7 roots of unity (cf. 
[lo]). It has the matrix representation M(o) of degree g with respect to the 
canonical basis ui , i = l,..., g of n,,(K): 

(f@,..., wgo) = M(U)(W, ,...) cog). 

M(a) can be put into the form 

where ci roots of unity. In particular, the hyperelliptic automorphism is re- 
presented by the matrix 

Now if A = (0), then wi , i = l,..., g are given by 

wi = d y-” c 
j+i $0 (moda 

0 <&+2g+ 1). 

Under the automorphism u, wi is transformed to 

@.o = d y-P,,-P * ( 
c 

I+i $0 (mods) 

,j+$ z). 
I+2 

But the identity wiu = cfui for i = 1 ,..., g must hold. Thus the only possibility 
iswhenr) = Al andc = 1, whence ci = fl for every i. Thus all the nontrivial 
automorphisms have order 2. Hence we have F2 = -pl,(,) and Va = pa/P = 
-PLw * Q.E.D. 
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The end of theproof of Theorem 5.3. n = Fa, n’ = pa/Fa are purely inseparable 
isogenies of J(C). The characteristic polynomial of 1~~ is given by P,,*(h) = 
(A + pa)*g. Hence yP(rr) = a/2 and j(p) -gG,,, . Thus J(C) is supersingular 
by Theorem 5.1. Q.E.D. 

EXAMPLE 5.4. A = (0) is a sufficient condition for J(C) to be super- 
singular, but it is not a necessary one. We shall illustrate some examples that 

J(C) with A # (0) b ecomes supersingular. 
Let C be the hyperelliptic curve of genus 3 with the equation y2 = 1 - x7 

defined over the prime field IF, of characteristic p > 2. The Cartier-Manin 

matrix A of C is given by A = (c~,&+~,~,~ , where 

%n = i 
(p - 1)/2) . (_l)(rnP-d/7 

(w - 4/7 
with c,,, = 0 if 7+mp - n. 

Let 5 be a primitive seventh root of unity and put L = Cl({). So [L : Q] = 6. 
Now for any prime p # 7, there exists the smallest positive integer f such that 
pf E 1 (mod 7) and fr’ = 6 where r’ is the degree (over Q) of the decomposition 

field K, of p. 

Case I. If p = 3 or 5 (mod 7), then ps = 1 (mod 7), so f = 6, r’ = 1. 
Hence p stays prime in L. For primes p = 3 (mod 7), the Cartier-Manin matrix 

A of C has the form 

c1 3 = ( (P - 1)/2 
(P - 3)/7 ) . (_l)'P-3'17 

c3,2 = ($-‘2’;; . (-1)-Q/7, and Cm,, = 0, otherwise. 

For primes p = 5 (mod 7), the Cartier-Manin matrix A of C has the form 

C3,3 = ;;I:)i/27 . (_1)'3~-3117, 

C 3,1 = (2 1 y; . (_1)'3P-1'/7, 
( 1 

and c,,, = 0, otherwise. 

In both cases, 1 A [ = 0 and A # (0), A A(p) # (0), but A A( = (0). 

Case II. If p E 6 (mod 7), we have $ = 1 (mod 7), so f = 2, r’ = 3. 
Hence p decomposes in the real cubic field K,, = Q([ + c-l). In this case, the 
Cartier-Manin matrix A of C is A = (0). 
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Now let n be the pth power endomorphism of J(C) relative to IF, . Then 
,f E K, and the characteristic polynomial of nf is given as follows: 

PJ(4 = (A + P”)” if Case I, 

= (A + PI” if Case II. 

(Cf. Honda [3].) Hence J(p) is isogenous to 3G,,, in both cases. In Case I 
(resp. Case II), J(C) is isogenous over the extension of IF, of degree 6 (resp. 
over the quadratic extension of F,) to 3 copies of a supersingular elliptic curve. 

6. THE JACOBIAN VARIETY J(C) OF C WITH THE SYMMETRIC FORMAL GROUP 

THEOREM 6.1. Suppose that the Cartier-Manin matrix A of C has the 
determinant / A ( = 0 in k and that the matrix A, = A A(“) ... A@-‘) has rank 
0. Then we have 

(a) The following statements are equivalent: 

(ai) s = 0 and P,(X) = nbl (h - T&I - pa/~,) with ri simple roots, 
and v,(T~) = ac, 0 < c < 8 for every 1 < i <g. 

(aii) P,,(X) = ~~~,, a# is a distinguished polynomial over Z, and the 
CoefJicients ai satisfy the conditions: 

v&i> 
a$& a(2g - i) 

2d&Lc= nc 
ag n, + m, ’ 

where n,, m, are positive integers such that 1 < n, < m, , (n, , m,) = 1, and 

n, + m, = g. 
(aiii) 

where n, , 
The p-divisible group J(p) of J(C) is isogenous to G,s,c + Gm,,n, 

m, are integers such that 1 < n, < m, , (n, , m,) = 1, and n, + m, = g 
and so is the formal group r of J(C). 

(b) When (a) is th e ccEse, the Newton polygon Yl(P,,) of P,,(h) has two segments 
S, , S, indexed from the right with slopes -ac, -a(1 - c), respectively. The 
vertices of %(P,) are (2g, 0), (g, v,(a,)), and (0, ag) and it looks like Fig. 3. 

S I : y = -acx + 2acg 

S2 : y = -at I-c)x + ag 

0 Q 29 

FIGURE 3 
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(c) If the Newton polygon %(P,) has the shape as (Fig. 3), then thep-divisible 
group J(p) of J(C) is isogenous to t(G,.,# + G,#,,o) where n, , m, are positive 
integers such that 1 < n, < m, , (n, , m,) = 1, and n, f m, = d =: the number 
of distinct characteristic roots ri of P,(h) with v,(ri) = ac, 0 < c < 4, and td = g. 
In other words, ‘%(P,,) determines the isotypic components of J(p) (rather than its 
simple components). 

DEFINITION 6.1. The formal group of the type G,,, + G,,, where n, m 
are positive integers such that 1 < n < m, (n, m) = 1, and n + m = g is called 
the symmetric fmmal group of dimension g. 

Proof of Theorem 6.1. (a) (ai) 3 (aii). Put pa/ri = 7rr+i for i = I,..., g. 
Then v,(ri) = ac, v,(T,+~) = a(1 - ) f c or every 1 < i <g, from which we have 
immediately that v,(a,,) = 0, v,(a,,-J > aci for every 1 < i < g, vl)(a,J = acg, 
and v,(a,-0 > acg + ia(1 - c) for every 1 < i < g. Hence it follows that 

v&4 3 c, v&J 
ai 

- = c, and vp(ag-t) , c 
ag a(g + i) H * 

Therefore, we get 

v&t) 
&% a(2g - i) 

-&.LLc* 
ag 

Now put n, = cg and m, = g - n, = (1 - c)g. Then n, , m, are positive 
integers satisfying 1 < n, < m, , n, + m, = g, (n, , m,) = 1, and c = n,/(n, + m,). 
(In fact, if (n, , m,) # 1, then n, = dn,’ with nC’ = cg/d. This implies that 
P,(h) has g/d distinct roots with v,(TJ = ac, which contradicts to the hypothesis 
of (ai).) 

(aii) =S (aiii). See Manin [6, Theorem 4.1’1. 

SUPP ose that P,(h) has no such decomposition as (ai). 

Min v&i) tl + no 
a(2g - i) = t, no + m. 

or 

v&i) 
Mm a(2g - i) = 

v&t) no 
4% - 4 = no-km0 

for 1 > g. 

In the first case, J(p) is isogenous to the formal group of the type Gtl,tB-t, + 
which is obviously nonisogenous to Gn,,m + G,l,,,O . In the latter case, 

IS lsogenous to G,,.,z + G,C,n + G’ with d&ension of G’ > 1. But this is 
impossible, because no + ‘m, + dii G’ > g. 
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(b) The assertion follows immediately from the proof of (ai) 3 (aii) and 
from the hypothesis 0 < c < 4. 

(c) Corresponding to the segment S, , we get g roots 7i with Ye = UC, 
0 < c < + for every 1 < i < g. If there are d distinct roots 7r ,..., 7d among 
them, then nf=, (h - TJ E Z,[h] and P,(X) has the p-adic decomposition as 

P,(h) = ( fi (A - Ti)(h -Pa/q’“. 
v,bi)=ac 

Hence J(p) is isogenous to t(Gn,,,,,,, + Gmc:,,,*) with 1 <n,’ <m,‘, (ni, m,‘) = 1, 
and m,’ + n,’ = d. So %(P,) determine the lsotypic component of J(p). Q.E.D. 

THEOREM 6.2. Suppose that J(C) is elementary and that the p-divisible group 

J(P) of J(C) is iso g enous to the symmetric formalgroup of dimension g : G,,, -/- G19L,n 
1 < n < m, (n, m) = 1, and n + m = g. Then the following statements are 
equivalent: 

(i) g divides the residue degree at every prime v in @ lying over p. 

(ii) P,,(h) is Q-irreducible, but P,,(A) = P&I) P&I) where 

P,,(X) = fi (h - TJ and PJX) = fi (h - TV) are Q,-irreducible. 
i=l i=l 

v,h+anlg v&,km/g 

(iii) J(C) is k-simple. 

(iv) ~2 = Q, = Q(r) is a CM-Jield of degree 2g. @ has the imaginary 
quadratic field K,, in which p splits. 

Proof. (i) 9 (ii) o (iii). As J(C) is elementary, P,(h) = P(h)e with P(h) 
Q-irreducible and P(r) = 0. Corresponding to the primes v in @ = &p(n) overp, 
P(h) is decomposed into the product of Q,-irreducible factors P,(h). Now we 
shall compute the local invariants of & = End,( J(C)) @ Q at primes v in 
@ = Q(r). First note that there are no real primes in @. Now by Manin [6], 
P,(h) has the p-adic factorization in the ring W(k) [pi/g] where W(k) denotes the 
ring of Witt vectors over K, as 

P,(A) = fi (A - pQn’gxi) * fi (A - pam’gYP>, 
i=l i=l 

where x1 , yI are invertible elements in W(k) [p’lg]. So P,(h) splits in the ring 
W(k) [pl’“] * t 1 m o inear factors (h - pan/gxi), (X - p”“/gyJ. So the local invariants 

are 

iv = ord,(m) * [Qy : Q,]/a = ord,(n) * f,,/a = ‘“‘5’ ‘fv or (-‘i) ‘fV , 
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where f,, is the residue degree at v with 1 < fv < g. Hence e = 1, if and only if 
all the i, are integers, if and only if PVi(h), i = 1, 2 are QP,-irreducible, if and 
only if fvi = g for i = 1, 2. This proves the equivalences (i) o (ii) o (iii). 

(ii) 3 (iv). Since rr is imaginary with deg(r) = 2g, @ = Q(r) is a 
CM-field of degree 2g. Corresponding to the p-adic decomposition (ii) of 
P,(h), there are two valuations v, , v2 in @ over p with ord,Jr) = an/g and 
ord,Jr) = am/g. In other words, there are two prime ideals vr , v2 over p such 
that (~9) = v~“v~“. Now the Riemann hypothesis j n 1 = gd2 implies that 
(p) = vlv2 and v i , v2 are complex conjugates. Since fyi = g for i = 1, 2, p splits 
in an imaginary quadratic subfield K,, of @, whence the assertion (iv). 

(iv) * (i). Suppose that the CM-field Q, = Q(r) has an imaginary 
quadratic subfield K, in which p splits: (p) = vv’ where v, v’ are complex 
conjugates. Take an ideal 9l such that ‘%g = valEvfam with 1 < 12 < m, (a, m) = 1 

and n + m = g. Then 2l satisfies 9I9I’ = (pa) where ‘8 denotes the conjugate 
of ‘$I, and hence we can find an algebraic integer r E @ such that (T) = ‘$I 
(cf. Honda [4]). Thus (+) = FV’~* and ord,(rr) = an/g, ord,(rr) = am/g, 
and we see that P,,(X) has g p-adic roots 7i with order an/g together with g 
p-adic roots 7i with order am/g. Hence the local invariants are i, = (n/g) . fv 
and (m/g) . f,, (mod Z). But the commutativity hypothesis of LX? implies that 
i, = 0 (mod Z). This holds true if and only iff,, and fv, are divisible byg. Q.E.D. 

EXAMPLE 6.3. We again consider the curve y2 = 1 - x7 defined over the 
prime field IF, where p is a prime such that p = 2 or 4 (mod 7). The Cartier- 
Manin matrix A of C is given by 

A = (cm,n)m*n=1.2.3 where for p = 2 (mod 7), 

Cl.2 = ( {i 1 ,$ ) * (-l)‘p-2”‘, c,,, = 0 otherwise, 

and for p I 4 (mod 7), 

c 2,1 = 
( 

(($1 iyg 
1 

. (- 1)(2p-1)‘7, c,,, = 0 otherwise. 

So 1 A 1 = 0 and A A(") = (0) in both cases. 
Now it is easy to see that the primesp = 2 or 4 (mod 7) satisfyp3 = 1 (mod 7). 

So in the notations of Example 5.4, we have f = 3 and T’ = 2. Hence p splits 
in the unique subfield K,, = Q((-7)1/2) of L = Q(l). Moreover, Honda [3] 
has shown that for any s > 1, a(+) = K,, . Hence 2 < [@ : Q] < 6 and 
[ZZ’ : Q] < 32 . 2. As ~2 contains the subfield L = Q(c) of degree 2 * 3, & is a 
simple algebra over K, . Now note that K,, = Q((-7)l12) has the basis (1, 

(1 + (-7)““)/2>. 
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So we have 

n3 = a, + a2 
i 

1 + (-7)1’s 
1 2 ’ 

a, , us E Z with N(n3) = p3. 

Hence the characteristic polynomial of n3 is given by 

Pm,(h) = (A2 - (2u, + u,)X + p”)” =: Q(h)3, 

where Q(h) is Q-irreducible and (2~2, + uJ2 - 4p3 = -7~~~ < 0. Since p splits 
in Ku , the polynomial Q(X) must factor p-adicly, giving two primes v1 , v2 with 
ordJ9) = 1 and ordJx3) = 2. Hence ordJrr) = 4 and ordJrr) = 6. Hence 
over some finite extension of Q, , P,(h) has three roots ri with the order + and 
hence we get n1,3 = 1, m1,3 = 3 - 1 = 2. So J(p) is isogenous to G,,, + G,,, . 

What is the algebraic structure of J(C) ? First we know that there are no real 
primes in @. The local invariants are i, = 1,2 and hence LZZ’ is commutative 
with [JZZ : a] = 6. Thus J(C) is simple over IF, . 

7. THE JACOBIAN VARIETY J(C) OF C WITH THE FORMAL STRUCTURE OF 

MIXED TYPES 

THEOREM 7. I. Suppose that the Cartier-Munin matrix A of C is such that 
A # (0), but 1 A 1 = 0 in h. Let ) A, - Ug 1 = CI=, b,P, b, = 1 be the churuc- 
teristic polynomial of A, = A A(p) *.* A(r”-l). Then we have 

(a) The following statements are equivalent: 

(ai) There is an integer 1 < t <g such that (b, , p) = 1 and bj = 0 
(mod?) for all j = O,..., t - 1. 

(aii) There exist the polynomials P,,(h), P,(X), and g(h) over Z, such that 
PO(A) = I-g:; (A - Ti), P,(X) = I$:: (h - pa/ri) with v,(TJ = 0 for every 
1 < i < g - t, g(h) = P (modp) and that P,(X) = P,,(X) P,(X) g(h). 

lxs (aiii)2The p-divisible group J(p) of J(C) has the component (g - t)G,,, . 
The formal group r of J(C) has height g + t. 

(aiv) The p-rank of J(C) is g - t. 

ag .\ 
‘sj... 

‘-i 

s, : y =o 

*..* W(P,) 
%\ s, 2 y =-+x++(g+t) 

s‘;-.. . 
‘... s, : y =-ox + ag 

-s 1 . 
0 g-t g g+t 29 

FIGURE 4 
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(b) Assume that (a) is true; then the following statements are equivalent: 

(bi) g(h) = &il (h - TV) with ~~(7~) = a/2 for every 1 < i < 2t. 

(bii) The Newton polygon %(P,) of P,,(h) has the shape of Fig. 4. 
When the above is true, the p-divisible group J(p) of J(C) is isogenous to 
(g - t)G,,, + tG,,, and I’ to G,&)g-t + tG,,, . 

(c) Assume that (a) is true; then the following statements are equivalent: 

(ci) g(h) = nizl (h - T&A - p5/7$) with 7i simple roots but v,(Ti) = ac, 
0 < c < 4 for every 1 < i < t. 

(cii) Write g(h) = CiL, dihi. Th en g(h) is a distinguished polynomial 
over Z, and the coeficients di satisfy the conditions: 

Min %sdi) %idt) n _ 
O@i(zt a(2t - i) at 

=-, 
n-l-m 

where n, m are positive integers satisfying 1 < n < m, (n, m) = 1, and n + m = t. 

(ciii) The p-divisible group J(p) of J(C) is isogenous to (g - t)G,,, + 

G,.m -+- Gm where n, m are positive integers satisf$ng 1 < n < m, (n, m) = 1 
and n + m = t, and I? to G,(p)gdt + G,,, + G,,, . 

When the above is true, the Newton polygon %(Pn) of P,(h) has the shape of 
Fig. 5. 

S3 : y =-o(l-cl3 + act 

S 4 : y =-a* + ag 

0 g-t (I g+f zg 

FIGURE 5 

Proof. (a) (ai) z= (aii). Assume (ai). Then 

P,(X) z (-l)g+thg+t {(-l)g-W-t + a** + b,) (mod p), 

where hg+t and (-l)g-thg-t + **. + b, are relatively prime. So by Hensel’s 
lemma, there exist polynomials P,,(h), h(h) over Z, such that 

P,(h) s (- I)~-t&‘-t + .a. + b, (modp), deg P,(h) = g - t, 
h(h) EE (- l)g+thg+t (mod PI- 

Moreover, in the algebraic closure aD of Q, , P,(X) = nf14 (h - T1)Vwith 
v,(T$) = 0 for every 1 < i <g - t, because b, is a p-adic unit. Since P,,(h) 
has always together with a root Ti , the root P”/T~ , h(h) contains the factor 
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P,(h) = l--J::; (A - p/Q) with v,(v-~) = 0 for every 1 < i <g - t. So there 
exists g(X) E &[A] such that g(X) z (-1)2thst (modp) and that h(h) = P,(X) g(h). 

(aii) * (aiii). The first part follows from the Manin theorem 4.1 in [6]. 
The formal group r of J(C) is the connected component J((p)/(Q,/Z,)$- of J(p), 
whence it has height 2g - (g - t) = g + t. 

(aiii) 3 (aiv). This f 11 o ows from the fact that the p-rank of J(C) 
coincides with the rank of the component G,,, in J(p). 

(aiv) * (ai). The Dieudonne module corresponding to the J(p) contains 
the factors TJG,(p)@) @ T,((Q,/Z,)~-t). Hence we can write P,(h) = 
P,(h) P,(h) g(h) where P,(h) (resp. P,,(h): resp. g(A)) is the characteristic 
polynomial of the restriction of the p-adic representation T,(V) of the 
Frobenius endomorphism v to T,(G,(p)8pt) (resp. Z’,((Q,/Z&-“): resp. 
~kWl(g - WmN- Both pa@) and P,(h) have the same degree g - t 
and moreover, P,,(h) = nirl (h - TJ with v,(TJ = 0 for every 1 < i <g - t, 
since (Q&J, is &ale. As PJX) satisfies the congruence (4) in Section 3: 

P,(h) = (-l)ghg I A, - Mg I (modp), 

we have 1 A,, - hI, / z htP,(h) (modp). Here take b, = P,,(O) (modp). Then 
(b, , p) = 1 and bj = 0 (modp) for all j = 0 ,..., t - 1. 

(b) (bi) * (bii). Putting P,,(X) = P,,(X) P,(h)g(X) = Cf”, a,%, we have 
immediately that ~~(a~+) = 0 for every 0 < i < g - t, zr,(~,+,-~) = (a/2)i for 
every 1 < i < 2t, et,(Uq-,-i) = a(t + i) for every 1 < i <g - t. Hence the 
Newton polygon %(P,,) of P,,(X) has the segments S, , S, , S, with slopes 0, 
---a/2 and --a, respectively, and looks like Fig. 4. 

(bii) * (bi). Any segment (j, ~,(a,)) t) (I, ~~(a~)) with I > j of ‘R(P,) 
with slope -m gives the roots or ,..., 7Z-j of P#) in a, with v,(T~) = m for 
every 1 < i < I- j. Moreover, l$ii (A - Ti) with v,(T~) = m, is in Z,[h] and 
divides P,(h). Hence the segments S, , Ss , and S, correspond respectively to 
the factors P,(h), g(X), and P,(h). Therefore, the p-divisible group J(p) is 
isogenous to (g - t) G,,, + tG,,, , and r to G,(p)g-* + tG,,, . 

(c) Since g(h) is the characteristic polynomial of the restriction of 
Z’,(m) to the Dieudonnh module T,(J(p)/(g - t)G,,,), we have g(h) = 
n:=l (A - Ti) (A - pa/Ti) with 0 < v,(Ti) < u/2. Hence the same proof as 
Theorem 6.la for g(h) yield the equivalences (ci) 9 (cii) d (ciii). 

Now the factorization P,,(X) = Cfz, a$ = P,(X) P,(X) g(h) gives w~(u~~-~) = 0 
for every 0 < i <g - t, v,(u,+t-i) > ad for every 1 < i < t, o,(u,) = act 
and a,(& > act + a(1 - c)z’ for every 1 < i < t, ~,(a,-,) = at and 
z)~(u~-~-~) >, u(t + i) for every 1 < i <g - t. Hence the Newton polygon 
%(P,,) has the segments Si , i = l,..., 4 with slopes 0, -UC, -a(1 - c), and 
--a, respectively, and looks like Fig. 5. Q.E.D. 
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THEOREM 7.2. Let r be a Weil number of order a and suppose that the center 
@ = Q(W) of & = End,(J(C)) @ &p is a CM-fzeld of degree 2g. Put j3 = r + 
ii = x f pa/r. Then we have 

(a) J(C) is elementary. 

(b) P,(A) = P - PA + pa E Q@)[h]. Moreover, we have 

(bl) (&p) = 1 0 J(C) is ordinary. 

(b2) Assume that (/3, p) # 1 and Zetf(X) = xi=, dihi, d, = 1 be the minimal 
polynomial of /3. Then we have 

(b2.1) If /3 = -&pa12a! with 01 an algebraic integer satisfying (Norm(a), 
p) = 1, then J(C) is supersingular. 

(b2.2) If there exists the integer t such that (dt , p) = 1, but dj = 0 
(modp) for every 1 < j < t (take the smallest t if there are more than one such 
integers), then the p-divisible group J(p) contains the component (g - t)GISo . 
Moreover, if there is a valuation Y over p in Q@) such that ord#) = a/2 and that 
Y is unramified in @, then the p-divisible group ](p) is isogenous to (g - t)G,,, + 

t%, 9 but J(C) is k-simple. 

Proof. (a) This is the main theorem of Honda [4]. 

(b) For (bl), see Theorem 3.2 and for (b2.1), see Theorem 5.2. 

(b2.2) It follows from the hypothesis that f(h) = ht(hg-t + ... + dt) 
(mod p). Hence f(h) gives (g - t) p-adic roots with order 0. At these places Y, 
we have ord,(/3) = 0 and the equation h2 - j?A + pa = 0 must split, giving 
roots of orders 0 and a. Hence the local invariants iV are integers, so satisfies 
the commutativity condition for &. This argument also shows that the p- 
divisible group J(p) contains the component (g - t)G,,, . Now we have a 
distinguished polynomial over Z, corresponding to the factor ht off(h) modulo p. 
Suppose that there is a valuation y2 in Q(B) over p such that ord@) = a/2. 
Then we may write /I = -J-P/~& with LY an invertible element in a,(/$ such that 
(01, p) = 1. The equation h2 - PX + pa = 0 gives rr = pa12Y where Y satisfies 
the equation Y2 - oiY + 1 = 0. In modulo y2 (i.e., in [F, , since v2 is ramified) 
if Ya - aY + 1 = 0 has no solution, then it must be irreducible over O&3). 
Hence Y generates an unramified quadratic extension over Q&3) and hence we 
get the unique extension of ordVz to @ = &e(r) with residue degree 2. So w has 
ord,Jn) = a/2 for the unique extension (again denoted) ordVl in @ over ord, . 
This shows that P,,(X) has 2t p-adic roots with order a/2 and hence J(p) contai& 
the factor tG,,, . Thus J(p) is isogenous to (g - t)G,,, + tGl,, . Now we compute 
the local invariant iV, ; i, = ((a/2) ’ 2)/a EZ. Hence & = @ with [&’ : Q] = 2g 
and hence J(C) is k-simble. Q.E.D. 

EXAMPLE 7.3. For hyperelliptic curves C of genus 2 over k, we have more 
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complete classification theorem for the p-divisible group J(p) of J(C). The 
notation in Theorem 7.2 remains in force. 

(a) IAifO*(B,P)=l- 

2a 
W(P,) 

*Ill 
0 2 4 

0 J(P) - 2G.o o J(C) is ordinary. 

(b) [I A j = 0, but A A(P) # 0] o [(/I$ p) # 1, but (Tr@), p) = l] o 

20 

h-l 

I 

01234 

(c) [I A 1 = 0 and A A(p) = (0)] o [(/I, p) # 1, (Tr@), p0j2) # 1 and 

(Norm(i% ~9 + 11 0 (8, pa12) f 1 * 

20 cn(PJ 

IIll 
0 4 

0 J(p) - 2Gr,, 0 J(C) is supersingular. 

Proof. p being a real quadratic over Q and ,t? = .$ + 7(H)li2 with 5, r] E Q, 
and d square free, we have P,(h) = h2 - /3h + pa E Q@)[X] and P,(h) = 
h* - Tr@)h3 + (2~” + Norm@))hs - Tr@) pah + p*a E Q[h] and 1 A, 1 z 

Norm@) (mod p). Hence the assertions follow immediately. Q.E.D. 

EXAMPLE 7.4. We shall give an example of k-simple Abelian variety of 
dimension 2 equipped with the mixed type of formal structure G,,, + G,,, . Let 
k = F,z and let /I = 6 + (29)1/2 in Q((29)lj2). Then ] /I 1 < 2 . 7 and yr2 - 
/%T + 72 = 0 gives a Weil number of order 2 and @ = &p(r) is a CM-field of 
degree 4. Since (/3, 7) # 1, the Abelian variety X determined by V, up to isogeny, 
is nonordinary. Then the minimal polynomial of /3 over Q is given by f(h) = 
A2 - 12X + 7 and f(h) = /\(A + 2) (mod 7). So there are two valuations over 7 
in Q(p): ord#) = 0 and ordye@) = 1. At ordVa., X2 - /3X + 72 = 0 splits, 
giving roots with orders 0 and 2. Hence the p-dtvuible group X(p) of X has 
the component G,,, . At ordVz , 7 1 /I in Q, and hence h2 - /3A + 72 = 0 has 
the solution n = 7 . OL where 01 satisfies the equation 012 - 301 + 1 = 0. This 01 
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generates an unramified quadratic extension over Q, . So there is a unique 
extension (again denoted) ordYp of ordVz to bi with ord,Jm) = 1. Hence X(p) is 
isogenous to G,,, + GI,l . The characteristic polynomial of 7 over Q is P,(h) = 
A4 - 12h + 105X - 588A + 74, which is easily seen to be Q-irreducible. 
Thus X is k-simple. Q.E.D. 
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