William Stein

(O @ (=»

4

Q>

Further motivation: http://shootout.alioth.debian.org/

Program Source Code CPU secs Elapsed secs Memory KB Code B = CPU Load

pidigits

Python CPython 6.17 6.17 4,260 476 0% 1% 0% 100%
C GNU gcc 2.72 2.71 1,012 541 0% 4% 0% 100%
regex-dna

Python CPython 25.48 25.48 195,188 342 0% 0% 0% 100%
C GNU geo 5.94 6.00 289,252 2579 0% 0% 0% 100%
reverse-complement

Python CPython 6.75 6.75 553,172 288 0% 0% 0% 100%
C GNU gcc 1.37 1.37 125,196 722 0% 0% 1% 99%
k-nucleotide

Python CPython 426.01 427.19 439,448 475 0% 0% 0% 100%
C GNU geo 51.86 51.87 153,692 2439 0% 0% 0% 100%
binary-trees

Python CPython 515.84 515.81 221,620 365 0% 0% 1% 100%
C GNU gcc 12.25 12.25 99,532 850 0% 0% 1% 100%
n-body

Python CPython 1,245.03 1,244.96 3,124 1105 0% 0% 0% 100%
C GNU gec 23.52 23.53 412 1429 0% 0% 0% 100%
spectral-norm

Python CPython 796.93 796.89 3,596 378 0% 0% 0% 100%
C GNU gcc 11.95 11.95 700 1139 0% 0% 0% 100%
mandelbrot

Python CPython 2,050.85 2,050.73 18,592 425 0% 1% 0% 100%
C GNU gec 24.31 24.32 30,204 822 0% 0% 0% 100%
fasta

Python CPython 186.55 186.54 3,056 779 0% 1% 1% 100%

C GNU gcc 1.75 1.75 376 1321 1% 1% 0% 100%

http://shootout.alioth.debian.org/

binary-trees:

x

1.3

Program Source Code
C GNU gcc #7
C++ GNU g++ #6
ATS #3
Java 6 steady state #2
ATS
C GNU gce #2
Scala #4
Java 6 -server #2
Haskell GHC
€ GNU gce
C++ GNU g++ #2
Lisp SBCL
Ada 2005 GNAT
Erlang HIPE
Clean #3
Pascal Free Pascal
Fortran Intel
ocCaml #2
ocCaml #5
Erlang HIiPE #2
Racket #2
C GNU gcc #5
F# Mono #3
Racket
C# Mono #2
JavaScript V8
Java 6 -Xint #2
Haskell GHC #4
Lua LualIT #2
Fi# Mono #2
Go 6g 8g
Ruby 1.9
Smalltalk VisualWorks
Python 3 #6
Lua #2

CPU secs Elapsed secs Memory KB Code B

12.60
15.95
16.58
16.80
17.58
17.99
18.48
18.90
22.01
33.25
34.57
36.51
37.40
42.75
44.51
44.51
44.77
50.90
51.95
62.10
62.18
65.12
74.18
77.31
89.39
93.68
128.49
131.81
133.98
152.24
192.14
274.92
5 min
8 min
10 min

12.61
15.95
16.59
16.81
17.58
18.00
18.58
19.01
22.01
33.25
34.57
36.52
37.40
42.75
44,51
44,52
44.77
50.90
51.96
62.10
62.21
65.20
75.35
77.30
90.19
93.68
128.63
131.81
133.98
152.90
192.14
274.79
5 min
8 min
10 min

149,584
296,220
296,564
855,760
198,368

99,268
572,604
563,476
345,764
131,640
187,840
404,612
198,136
374,284
262,688
131,420
131,544
157,648
228,556
349,432
380,620
560,376
236,456
445,204
463,044
393,884
538,544
439,984
888,484
262,652
348,036
599,568
208,980

1,225,120

1,579,792

850

= CPU Load
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 1% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
1% 3% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 1% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
1% 1% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 0% 100%
0% 0% 1% 100%
0% 0% 0% 100%

Conclusion: Python is perhaps the worst possible lan-
guage in which to implement mathematical software!

Options:

Ignore this fact, cross fingers, and forge ahead anyways. In
2005, at least two projects similar to Sage did just that:

s
[@ﬁ http://tnt.math.se.tmu.ac. jp/nzmath/

NG
[@Ahttp ://code.google.com/p/sympy/

Write a new fast open source math-oriented interpreter and
compiler. In 2002, a project started on that path:
http://wuw.mathemagix.org

Find a way to make Python fast.

http://tnt.math.se.tmu.ac.jp/nzmath/
http://code.google.com/p/sympy/
http://www.mathemagix.org

The Python/C API

m In 2004, | considered various languages in which to implement
an alternative to Magma for my use: GAP, Pari/GP, Perl,
Ocaml, C++, Ruby, Haskell, Python, etc.

http://shootout.alioth.debian.org/ was influential.

| read the Python/C API reference manual

C and the Python API resemble the Magma development
environment:

Magma = (a few millions lines of C) +
(a few hundred thousand lines of Magma scripts)

Maybe Python — which is a beautiful readable language — can
also be made fast (=faster than Magma)??7?7?

http://shootout.alioth.debian.org/

Example: Trial Division in Python with Sage Preparsing

def trial division_python(n):
if n == 1: return 1
for p in [2, 3, 5]:
if n%p == 0: return p
Algorithm: only trial divide by numbers that
are congruent to 1,7,11,13,17,29,23,29 mod 30=2#%3%5,
dif = (6, 4, 2, 4, 2, 4, 6, 2]
m=7; i=1
while m*m <= n:

if n%m == 0: return m
m += dif[i%8]
i+=1

return n

n = 2011%10000000019; n

20110000038209

625 loops, best of 3: 693 us per loop

Example: Trial Division in Python without Sage Preparsing

$python

def trial division python(n):
if n == 1: return 1
for p in [2, 3, 5]:
if n%p == 0: return p
Algorithm: only trial divide by numbers that
are congruent to 1,7,11,13,17,29,23,29 mod 30=2*3*5,
dif = [6, 4, 2, 4, 2, 4, 6, 2]
m=7; 1i=1
while m*m <= n:

if n%m == 0: return m
m += dif[i%8]
i+=1

return n

timeit('trial division python(20110000038209r)")

625 loops, best of 3: 283 us per loop

Example: Trial Division using Python/C API (trial.c)

static PyObject * trial division(PyObject *self, PyObject *args) {
unsigned long n, m=7, i=1, dif[8]={6,4,2,4,2,4,6,2};
if (!PyArg_ParseTuple(args, , &n)) return NULL;
if (n==1) return PyInt_FromLong(l);
if (n%2==0) return PyInt_FromLong(2);
if (n%¥3==0) return PyInt_ FromLong(3);
if (n%¥5==0) return PyInt_ FromLong(5);
// Algorithm: only trial divide by numbers that
// are congruent to 1,7,11,13,17,29,23,29 mod 30=2*3%5,
while (m*m <= n) {
if (n%m == 0) return PyInt_ FromLong(m);
m += dif[i%8]; 1 += 1;

}
return PyInth‘rnmLong [m) H
}
static PyMethodDef TrialMethods[] = {
{ , trial division, METH VARARGS, }r
{NULL, NULL, 0, NULL} /* Sentinel */
}i

PYMODINIT FUNC inittrial(void) {
(void) Py_InitModule(, TrialMethods);

}

Example: Trial Division using Python/C API (setup.py)

from distutils.core import setup, Extension

setup (name = , version = '
description = '
ext_modules = [Extension(, sources = [Nn

625 loops, best of 3: 6.16 us per loop
686/6.1
112.459016393443
trial.trial division(20110000038209)
Traceback (click to the left of this block for traceback)

TypeError: argument 1 must be integer<k>, not
sage.rings.integer.Integer

Orders of magnitude faster! But, note the problem with converting from
Sage integers to unsigned long. Sense the pain!

Pyrex

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

m Writing code using the Python/C API is very tricky to get
right. Automate it!

m SWIG, SIP, Boost::Python, etc. — | tried to use them for
months, but it was incredibly frustrating, due to the many
layers of wrapping that get generated. | want speed. They
solve a totally different problem.

m | found Pyrex, by Greg Ewing (of New Zealand). | was
hooked: the combination of Pyrex 4+ Python had potential to
let me build what | wanted without having to write a new
interpreter and/or compiler from scratch.

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

Cython

m Then | ran into all kinds of trouble with Pyrex and started
writing patches. Some got in... and some very important ones
got rejected with a statement that what | was fixing wasn't a
bug (it was).

m | forked Pyrex: thus Cython http://cython.org was born.

m At the time, the top Google hit for “cython” was for a punk
rocker in London...

http://cython.org

Cython!!

With Cython you can do the following:

Speed up Sage, often by a factor of about 100.
Use existing C/C++ code from Sage, with almost no penalty.
Write new code that is blazingly fast.

But using Cython takes great care and genuine understanding
— without both, you may write Cython code that is much
worse than pure Python. Careful benchmarking is essential.

More on the Cython fork

m A got two people to get involved: Robert Bradshaw (my
Ph.D. student) and Stefen Behnel. Both said they didn't want
to be "lead developer”, so | made them both the lead
developers on the website | put up.

m They worked very, very hard on Cython. Also, via a Google
Summer of Code, Dag S. got involved, and also works very
hard on Cython — now the three of them are the primary
developers.

m Example Additions:

make it so Cython compiles nearly any Python code, e.g., list
comprehension

a lot of important speed optimizations

important major extensions to the language: e.g., cpdef

Cython is now popular

m download numbers:

m 1749 from pypi in last 6 months

m 1500 visitors/week

m but most people get cython from their Linux distribution or
Sage.

m show website and list of contributors

m at euroscipy2010 nearly every talk mentioned Cython, and if
they didn't somebody asked: why not? Reportedly scipy2010
was similar.

Cython in the Sage Library

Sage is the world's largest Cython project...

cd SAGE_ROQT/devel/sage/sage/
- There are 659 Cython files in Sage:
flat:sage wstein$ find . -print |grep "pyx\l|pxi\l|pxd" |wc -1
659
- There are XX Cython modules in Sage
flat:sage wstein$ grep Extension ../module_list.py |wc -1
283
- There are XX lines of Cython files
flat:sage wstein$ find . -print |grep "pyx\l|pxi\l|pxd" | xargs
313548
- There are XX unique lines of Cython files
flat:sage wstein$ find . -print |grep "pyx\l|pxi\|pxd" | xargs
150991

In case you're interested — Python in Sage

- There are 1192 Python files in Sage:

flat:sage
1192

- There
flat:sage
635164

- There
flat:sage
309430

wstein$ find . -print |grep "

are XX lines of Cython files
wstein$ find . -print |grep "
are XX unique lines of Cython
wstein$ find . -print |grep "

.py$" lwec -1

.py$" | xargs cat | wc -1

files
.py$" | xargs cat | sortl|

Yeah... the Sage library is pretty daunting:
wstein$ find . -print |grep "pyx\lpxi\lpxd\|.py$" | xa

flat:sage
948712

flat:sage
453612

wstein$ find . -print Igrep "pyx\|pxi\lpxd\|.py$" | xa

Sample Enhancements

m Dependency checker: We (=Robert Bradshaw, Craig Citro,
Gonzalo Tornaria, me) each wrote a sophisticated dependency
checker just for Sage, so that if you modify one of these 659
Cython files, then type "sage -br”, exactly the right cython
files are rebuilt. Bradshaw is currently making this part of
Cython.

m Also, we have a parallel build system, so if you do
export MAKE="make -j8"
sage -b
then 8 cython files will be compiled in parallel.

Wrap C/CH+ libraries

$ cd SAGE_ROOT/devel/sage/sage/libs/; ls

__init__.py ecl.pyx libecm.c mpmath ratpoints.c
all.py flint libecm.pyx mwrank ratpoints.pxd
cremona fplll linbox ntl ratpoints.pyx

ecl.c ginac m4ri.pxd pari singular

ecl.pxd gmp mpfr.pxd polybori symmetrica

These define very fast C level bindings for many libraries, such as
NTL, Pari, Singular, etc.

How Cython is used in Sage

Look in

SAGE_RO0T/devel/sage/sage/rings/
polynomial/polynomial_zmod_flint.pyx

| tried benchmarking this last night, and it turns out that
arithmetic is very, very slow because of how it is written...

Benchmarking is CRITICAL. You can easily write code in Cython,
think you are very cool, and end up making Sage far slower. So
watch out.

Questions

O» «F»>» «Z» « > =] Q>

