
Sage Days 24: Cython

William Stein

July 18, 2010

Further motivation: http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/

binary-trees:

Conclusion: Python is perhaps the worst possible lan-
guage in which to implement mathematical software!

Options:

1 Ignore this fact, cross fingers, and forge ahead anyways. In
2005, at least two projects similar to Sage did just that:

http://tnt.math.se.tmu.ac.jp/nzmath/

http://code.google.com/p/sympy/

2 Write a new fast open source math-oriented interpreter and
compiler. In 2002, a project started on that path:
http://www.mathemagix.org

3 Find a way to make Python fast.

http://tnt.math.se.tmu.ac.jp/nzmath/
http://code.google.com/p/sympy/
http://www.mathemagix.org

The Python/C API

In 2004, I considered various languages in which to implement
an alternative to Magma for my use: GAP, Pari/GP, Perl,
Ocaml, C++, Ruby, Haskell, Python, etc.

http://shootout.alioth.debian.org/ was influential.

I read the Python/C API reference manual

C and the Python API resemble the Magma development
environment:

Magma = (a few millions lines of C) +
(a few hundred thousand lines of Magma scripts)

Maybe Python – which is a beautiful readable language – can
also be made fast (=faster than Magma)????

http://shootout.alioth.debian.org/

Example: Trial Division in Python with Sage Preparsing

Example: Trial Division in Python without Sage Preparsing

Example: Trial Division using Python/C API (trial.c)

Example: Trial Division using Python/C API (setup.py)

Orders of magnitude faster! But, note the problem with converting from

Sage integers to unsigned long. Sense the pain!

Pyrex

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

Writing code using the Python/C API is very tricky to get
right. Automate it!

SWIG, SIP, Boost::Python, etc. – I tried to use them for
months, but it was incredibly frustrating, due to the many
layers of wrapping that get generated. I want speed. They
solve a totally different problem.

I found Pyrex, by Greg Ewing (of New Zealand). I was
hooked: the combination of Pyrex + Python had potential to
let me build what I wanted without having to write a new
interpreter and/or compiler from scratch.

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

Cython

Then I ran into all kinds of trouble with Pyrex and started
writing patches. Some got in... and some very important ones
got rejected with a statement that what I was fixing wasn’t a
bug (it was).

I forked Pyrex: thus Cython http://cython.org was born.

At the time, the top Google hit for “cython” was for a punk
rocker in London...

http://cython.org

Cython!!

With Cython you can do the following:

1 Speed up Sage, often by a factor of about 100.

2 Use existing C/C++ code from Sage, with almost no penalty.

3 Write new code that is blazingly fast.

4 But using Cython takes great care and genuine understanding
– without both, you may write Cython code that is much
worse than pure Python. Careful benchmarking is essential.

More on the Cython fork

A got two people to get involved: Robert Bradshaw (my
Ph.D. student) and Stefen Behnel. Both said they didn’t want
to be ”lead developer”, so I made them both the lead
developers on the website I put up.

They worked very, very hard on Cython. Also, via a Google
Summer of Code, Dag S. got involved, and also works very
hard on Cython – now the three of them are the primary
developers.

Example Additions:

1 make it so Cython compiles nearly any Python code, e.g., list
comprehension

2 a lot of important speed optimizations
3 important major extensions to the language: e.g., cpdef

Cython is now popular

download numbers:

1749 from pypi in last 6 months
1500 visitors/week
but most people get cython from their Linux distribution or
Sage.

show website and list of contributors

at euroscipy2010 nearly every talk mentioned Cython, and if
they didn’t somebody asked: why not? Reportedly scipy2010
was similar.

Cython in the Sage Library

Sage is the world’s largest Cython project...

cd SAGE_ROOT/devel/sage/sage/
- There are 659 Cython files in Sage:

flat:sage wstein$ find . -print |grep "pyx\|pxi\|pxd" |wc -l
659

- There are XX Cython modules in Sage
flat:sage wstein$ grep Extension ../module_list.py |wc -l

283
- There are XX lines of Cython files

flat:sage wstein$ find . -print |grep "pyx\|pxi\|pxd" | xargs cat |wc -l
313548
- There are XX unique lines of Cython files

flat:sage wstein$ find . -print |grep "pyx\|pxi\|pxd" | xargs cat |sort|uniq|wc -l
150991

In case you’re interested – Python in Sage

- There are 1192 Python files in Sage:
flat:sage wstein$ find . -print |grep ".py$" |wc -l

1192
- There are XX lines of Cython files

flat:sage wstein$ find . -print |grep ".py$" | xargs cat | wc -l
635164
- There are XX unique lines of Cython files

flat:sage wstein$ find . -print |grep ".py$" | xargs cat | sort|uniq |wc -l
309430

Yeah... the Sage library is pretty daunting:
flat:sage wstein$ find . -print |grep "pyx\|pxi\|pxd\|.py$" | xargs cat |wc -l
948712

flat:sage wstein$ find . -print |grep "pyx\|pxi\|pxd\|.py$" | xargs cat |sort|uniq|wc -l
453612

Sample Enhancements

Dependency checker: We (=Robert Bradshaw, Craig Citro,
Gonzalo Tornaria, me) each wrote a sophisticated dependency
checker just for Sage, so that if you modify one of these 659
Cython files, then type ”sage -br”, exactly the right cython
files are rebuilt. Bradshaw is currently making this part of
Cython.

Also, we have a parallel build system, so if you do

export MAKE="make -j8"
sage -b

then 8 cython files will be compiled in parallel.

Wrap C/C++ libraries

$ cd SAGE_ROOT/devel/sage/sage/libs/; ls

__init__.py ecl.pyx libecm.c mpmath ratpoints.c
all.py flint libecm.pyx mwrank ratpoints.pxd
cremona fplll linbox ntl ratpoints.pyx
ecl.c ginac m4ri.pxd pari singular
ecl.pxd gmp mpfr.pxd polybori symmetrica

These define very fast C level bindings for many libraries, such as
NTL, Pari, Singular, etc.

How Cython is used in Sage

Look in

SAGE_ROOT/devel/sage/sage/rings/
polynomial/polynomial_zmod_flint.pyx

I tried benchmarking this last night, and it turns out that
arithmetic is very, very slow because of how it is written...

Benchmarking is CRITICAL. You can easily write code in Cython,
think you are very cool, and end up making Sage far slower. So
watch out.

Questions

