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Asymptotics, Special Functions
• Book: Roderick Wong,Asymptotic

Approximations of Integrals, SIAM, 2001.
• Book: Gil et al.Numerical Methods for Special

Functions, SIAM, 2007.
• Software survey: Lozier and Olver, Numerical

evaluation of special functions (1994). Updates
are available at
http://math.nist.gov/mcsd/Reports/2001/nesf/

• Other books: Baker (1992), Moshier (1989),
Thompson (1997), Zhang & Jin (1996),
Numerical Recipes.

• Software: many collections on the web.
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Asymptotics, Special Functions
The NIST Handbook of Mathematical Functions.
The revision of Abramowitz & Stegun,Handbook of
Mathematical Functions.

Free available at http://dlmf.nist.gov/
Book edition: CUP, June 2010.
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Asymptotics, Special Functions
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Asymptotics, Special Functions
To compute: generalized forms? (Meijer, Fox, ...). For
example, the generalized hypergeometric function:

pFq

(
a1, · · · , ap

b1, · · · , bq
; z

)
=

∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
,

wherep ≤ q + 1 and(a)n is the Pochhammer symbol,
also called the shifted factorial, defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1) (n ≥ 1).

Use special cases and several methods: power series,
asymptotic series, and in between?
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Some simple experiences
• How to compute this integral ?
• Another integral
• Exponential integral:Ei(x) or Ei(z) ?
• Take a special case
• Scaling
• Example: Confluent hypergeometric function
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 13, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 13, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.

• With Digits = 40, the answer is

F (10) = −.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020i.
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How to compute this integral ?
Consider

F (λ) =

∫ ∞

−∞
e−t2+2iλ

√
t2+1 dt.

• Maple 13, forλ = 10, gives

F (10) = −.1837516481 + .5305342893i.

• With Digits = 40, the answer is

F (10) = −.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020i.

• So, the first answer seems to be correct in all shown digits.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞

e−t2+2iλ
√

t2+1 dt =⇒ G(λ) =

∫ ∞

−∞

e−t2+2iλt dt.

• Maple 13, withevalf(Int..., gives

G(10) = −1.249000903 × 10−16
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞

e−t2+2iλ
√

t2+1 dt =⇒ G(λ) =

∫ ∞

−∞

e−t2+2iλt dt.

• Maple 13, withevalf(Int..., gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞

e−t2+2iλ
√

t2+1 dt =⇒ G(λ) =

∫ ∞

−∞

e−t2+2iλt dt.

• Maple 13, withevalf(Int..., gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.

• The correct answer isG(10) = 0.6593662989 × 10−43.
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How to compute this integral ?
Take another integral, which is almost the same:

F (λ) =

∫ ∞

−∞

e−t2+2iλ
√

t2+1 dt =⇒ G(λ) =

∫ ∞

−∞

e−t2+2iλt dt.

• Maple 13, withevalf(Int..., gives

G(10) = −1.249000903 × 10−16

• With Digits = 40, the answer isG(10) = 1.2 × 10−43.

• The correct answer isG(10) = 0.6593662989 × 10−43.

• Maple 13, with procedureint, givesG(10) = e−100
√

π.
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How to compute this integral ?
The message is: one should have some feeling about
the computed result.

Otherwise a completely incorrect answer can be
accepted.

Mathematica 7 is more reliable here, and gives a
warning with answer0. × 10−16 + 0. × 10−17i.
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Another integral
Consider

F (u) =

∫ ∞

0

euit dt

t − 1 − i
.

Mathematica 7 gives the correct expression ofF (u) in
terms of sine and cosine integrals, and gives the
correct numerical value

F (2) = −0.934349 . . . − 0.70922 . . . i.
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F (u) =
∫ ∞

0 euit dt
t−1−i

In earlier days Mathematica 4.1 gave foru = 2 in
terms of the Meijer G-function:

F (2) = πG2,1
2,3

(
0, 1

2

0, 0, 1
2

; 2 − 2i

)
.

Mathematica 4.1 evaluated the false answer:
F (2) = −0.547745 − 0.532287i.

On the other hand, Mathematica 4.1 produced

F (u) = eiu−uΓ(0, iu − u),

(which is also false) in terms of the incomplete
gamma function.
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F (u) =
∫ ∞

0 euit dt
t−1−i

This gives the wrong answer
F (2) = −0.16114 − 0.355355i.

So, we had three numerical results:

F1 = −0.934349 − 0.70922i,

F2 = −0.547745 − 0.532287i,

F3 = −0.16114 − 0.355355i.

Observe thatF2 = (F1 + F3)/2.

F1 is correct.
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F (u) =
∫ ∞

0 euit dt
t−1−i

Maple 13 gives

F (u) = eiu−uEi(1, iu − u).

HereEi(z) is an exponential integral, which can be
written as the Mathematica 4.1 false answer
eiu−uΓ(0, iu − u).
When we use in Mapleassume(u > 0), then we
obtain

F (u) = eiu−uEi(1, iu − u) + 2πi eiu−u,

which is, in some sense, correct.
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F (u) =
∫ ∞

0 euit dt
t−1−i

Also, Maple 13 gives for the given valueu = 2

F (2) = e2i−2Ei(1, 2i − 2) + 2πi e2i−2,

giving F (2) = −.9343493872 − .7092195102i, and
this is the correct answer.

Maple 13 gives the correct numerical value for
F (−2).
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Exponential integral:Ei(x), Ei(z)
The exponential integrals are defined by

E1(z) =

∫ ∞

1

e−zt

t
dt, En(z) =

∫ ∞

1

e−zt

tn
dt, |ph z| < π,

Ei(x) = −−
∫ ∞

−x

e−t

t
dt = −

∫ x

−∞

et

t
dt, x > 0,

(principal value integrals)

Ei(x) = −
∫ ∞

−x

e−t

t
dt = −E1(−x), x < 0.
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Exponential integral:Ei(x), Ei(z)

Earlier Maple required realx in Ei(x), as is in
agreement with this definition.

Unfortunately, Maple 13 uses

Ei(a, z) = za−1Γ(1 − a, z) =

∫ ∞

z

e−zt

ta
dt, ℜz > 0.

It should use the notationEa(z) for genearl complexa
and|ph z| < π.
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Exponential integral:Ei(x), Ei(z)

Mathematica 7 (and earlier) accepts complexz in
Ei(z).

However,The Mathematica Book (4th Ed., p. 765)
definesEi(z) only for z > 0 by using a principal
value integral.

This is confusing.
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Take a special case
Parabolic cylinder functions are special cases of the
1F1 functions, Kummer functions or Whittaker
functions.
The Mathematica Book (4th Ed., p. 765) advises to
use the Whittaker function

U(a, z) = 2−a/2z−1/2W−a/2,−1/4

(
1
2
z2

)
,

but this is useless whenz < 0.

Mathematica 7 gives now the functionDν(z), which
seems to perform quite well.
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Take a special case
Mathematic 7 evaluates

ParabolicCylinderD[-300.14, 300.15]

in a split second:6.83322814925 ∗ 10−10526, the
correct answer being6.833323122 ∗ 10−10526.

Maple 13 comes with the answer
7.05770276159934 ∗ 109807, after 5 seconds.
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Scaling
The functionΓ∗(z) defined by

Γ(z) =
√

2πzz−1/2e−zΓ∗(z),

Γ∗(z) ∼ 1 +
1

12z
+

1

288z2
+ . . . , z → ∞,

can be computed within machine precision for almost
all complexz. The precision in the gamma function
itself follows from the evaluation of the elementary
function √

2πzz−1/2e−z.

To avoid underflow and overflow, and to control
accuracy, it is very important to have scaled functions
like Γ∗(z) available.
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The same holds for Bessel functions, parabolic
cylinder functions, and so on.
The scaled Airy functioñAi(z) defined by

Ai(z) = e−
2

3
z3/2

Ãi(z)

can be computed very accurate for complexz (not
close to zeros ofAi(z)).

The scaling factore−
2

3
z3/2

completely determines the
accuracy ifz is large and complex.
Again, scaled functions are very useful to avoid
underflow and overflow, and to control accuracy.
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Kummer U−function
The standard solution of Kummer’s equation that is
singular at the origin can be written in the form

U(a, c, z) =
π

sin πc

(
1F1(a; c; z)

Γ(1 + a − c)Γ(c)
−

z1−c 1F1(1 + a − c; 2 − c; z)

Γ(a)Γ(2 − c)

)
.

Also, forℜ a > 0,ℜ z > 0,

U(a, c, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)c−a−1 dt.
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KummerU−function
For smallz the series of the1F1−functions can be
used for computations. For largez the1F1−functions
become exponentially large, while theU−function
becomesO(z−a).

Also, for integer values ofc, problems arise when we
use the representation in terms of the1F1−functions.

A careful analysis is needed to avoid numerical
cancellations.
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KummerU−function
We can write

U(a, c, z) =
∞∑

k=0

ukz
k,

u0 =
π

sin πc

1

Γ(1 + a − c)Γ(c)
=

Γ(1 − c)

Γ(1 + a − c)
,

u1 =
π

sin πc

[
a

Γ(1 + c)Γ(1 + a − c)
− z−c

Γ(a)Γ(2 − c)

]
.

For small values ofc the coefficientu1 is difficult to
compute.
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Gauss hypergeometric functions
For many parameter valuesa, b, c the Gauss function
is an elementary function.

For example:

2F1


a, 1 − a

1

2

; sin2 z


 =

cos((2a − 1)z)

cos z
,

2F1


a, 1 − a

3

2

; sin2 z


 =

sin((2a − 1)z)

(2a − 1) sin z
.
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Gauss hypergeometric functions
Maple 13 gives the second form, not the first one
(although it gives2F1(a, 1 − a; 1/2;−z2)).

Mathematica 7 gives both forms.

When2F1(a, b; c; z) is a simple function, all
2F1(a + k, b + ℓ; c + m; z) are simple for integer
k, ℓ,m.

This follows from the recursion relations.

Maple 13 and Mathematica 7 don’t give
2F1(a + 1, 1 − a; 1/2; z); Mathematica gives this with
FunctionExpand.
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Asymptotic expansions
Maple 13 LaTeX output: viaasympt

Γ(z) ∼(√
2
√

π
√

z−1+

1
12

√
2
√

π
(
z−1

)3/2
+

1
288

√
2
√

π
(
z−1

)5/2 −
139

51840

√
2
√

π
(
z−1

)7/2
+

O
((

z−1
)9/2

)) ((
z−1

)z)−1
(ez)−1

or more terms when requested.
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Asymptotic expansions
We like to see

Γ(z) ∼
√

2πe−zzz− 1

2

(
1 + 1

12z
−1 + 1

288z
−2−

139
51840z

−3 + O
(
z−4

))
,

or more terms when requested.

In this form it is easier to see the structure and to
collect the coefficients.

The same happens with other well-known special
functions (for example, the complementary error
function, incomplete gamma functions, ...).
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Asymptotic expansions
When we ask the largez asymptotic expansion of
Γ(z + a) we obtain in Maple13:
Error, (in asympt) unable to compute series

The same happens when we ask the largez asymptotic
expansion ofΓ(z + a)/Γ(z + b), which reads

Γ(z + a)

Γ(z + b)
∼ za−b

(
1 +

(a − b)(a + b − 1)

2z
+ O

(
z−2

))
.

Mathematica 7 gives the asymptotic expansion of
Γ(z + a) (although not in a nice form), and the
expansion ofΓ(z + a)/Γ(z + b) in a better form.
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Asymptotic expansions
How to obtain?

The first form is the Laplace transform

F (s) =

∫ ∞

0

e−stf(t) dt,

with, say,f analytic at the origin and fort > 0; also,
f(t) = O(exp(αt)) for larget.

In practical problems, first a transformation into this
standard form is needed.
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Asymptotic expansions
Then,

f(t) =
∞∑

n=0

ant
n (a local expansion)

gives (Watson’s lemma)

F (s) ∼
∞∑

n=0

an
n!

sn+1
, s → ∞.
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Asymptotic expansions
A simple example:

F (s) =

∫ ∞

0

e−s sinhu du

1 + u
.

A transformation is needed to bring this into a
Laplace integral. Write

t = sinh u, or u = arcsinh t.

Then

F (s) =

∫ ∞

0

e−stf(t) dt, f(t) =
1

1 + u

du

dt
.
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Asymptotic expansions
We need to expandf(t) =

∑∞
n=0 ant

n.

Becausedt/du = cosh u =
√

1 + t2, we have

f(t) =
1

1 + u

du

dt
=

1

1 + arcsinh t

1√
1 + t2

,

and it is not difficult to obtain the coefficientsan and
the asymptotic expansion.

Sage Days 24 at RISC. Symbolic Computation in Differential Algebra and Special Functions July 17 - 22, 2010. – p. 34/64



Asymptotic expansions
This example is simple because the inversion of the
transformationu = sinh t is explicitly known, and so
is f(t), as a function oft.

In the following example

F (s) =

∫ ∞

0

e−s φ(u) du

1 + u
, φ(u) = u

√
1 + u3,

the inverse of the substitutiont = φ(u) is properly
defined foru ≥ 0, but this inverse is not explicitly
known.
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Asymptotic expansions
So, the functionf(t) in

F (s) =

∫ ∞

0

e−stf(t) dt, f(t) =
1

1 + u

du

dt
,

cannot straightforwardly be expanded in powers oft.

We need extra computer algebra to do this.
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Asymptotic expansions

First the relationt = u
√

1 + u3 has to be inverted in
the form

u =
∞∑

n=1

bnt
n,

du

dt
=

∞∑

n=1

nbnt
n−1,

from which the expansion off(t) easily follows.

Manipulating power series, inverting relations, and so
on, are needed here, and are easy to perform with the
help of computer algebra.
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Asymptotic expansions
Similar methods can be used for the integral

F (ω) =

∫ ∞

−∞
e−ωt2f(t) dt, as ω → ∞.

The pointt = 0 is the dominant point for this integral.
The local expansionf(t) =

∑∞
n=0 cnt

n gives

F (ω) ∼
∞∑

n=0

c2n

∫ ∞

−∞
e−ωt2t2n dt,

that is,

F (ω) ∼
∞∑

n=0

c2n Γ(n + 1
2)ω

−n− 1

2 , as ω → ∞.
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Asymptotic expansions
Integrals of this type arise in the saddle point method,
after transformation to this standard form.

The transformation may be defined properly, but it
may not have an explicit inverse.

This occurs in the following case

Γ(z) =

∫ ∞

0

vz−1e−v dv.

A simple transformationv = z(1 + u) gives

Γ(z) = zze−z

∫ ∞

−1

e−zφ(u) du

u + 1
, φ(u) = u−ln(1+u).
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Asymptotic expansions
The main contribution comes fromu = 0, where
φ′(u) = u/(1 + u) vanishes (u = 0 is called asaddle
point).
For smallu we have

φ(u) = 1
2u

2 − 1
3u

3 + . . . ,

and we transform

φ(u) = 1
2t

2, sign(u) = sign(t).

This gives

Γ(z) = zze−z

∫ ∞

−∞
e−

1

2
zt2f(t) dt, f(t) =

1

1 + u

du

dt
.
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Asymptotic expansions
From the mapping we can obtain the inverse in the
form

u =
∞∑

n=1

bnt
n,

and hence the expansion

f(t) =
∞∑

n=0

cnt
n.

In a similar way we can obtain the asymptotic
expansion ofΓ(z + a).
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Asymptotic expansions
From linear forms

F (ω) =

∫ ∞

0

e−ωtf(t) dt

and quadratic forms

F (ω) =

∫ ∞

−∞
e−ωt2f(t) dt,

with ω → ∞, we can generalize further, but these are
the basic forms.
Other (more complicated) inversion problems arise in
so-calleduniform asymptotic expansions.
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Asymptotic expansions
In uniform expansions expansions two-point Taylor expansions

of the type

f(t) =
∞∑

n=0

(an + bnt)(t2 − t20)
n

are needed. Typically,±t0 are two relevant saddle points.

The coefficients can be expressed in terms of the derivativesof f

at±t0.

But becausef is usually obtained from a transformation of

which the inverse is not explicitly available (or difficult to

handle), the computation of the coefficients is quite complicated.

Without computer algebra even impossible, sometimes.
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Uniform asymptotic expansions
A simple uniform expansion can be derived of the
generalized exponential integral

En(x) =

∫ ∞

1

e−xu du

un

for the case thatx + n → +∞.

Write n = νx and obtain

En(x) =

∫ ∞

1

e−xφ(u) du, φ(u) = u + ν ln u.
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Uniform asymptotic expansions
Becauseφ′(u) = 1 + ν/u > 0 we can substitute
t = φ(u) − 1 and obtain

En(x) = e−x

∫ ∞

0

e−xtf(t) dt, f(t) =
du

dt
=

1

φ′(u)
.

An inversion procedure gives the required expansion

f(t) =
∞∑

m=0

cm(ν)tm,

from which the asymptotic expansion follows.
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Uniform asymptotic expansions
The incomplete gamma functionQ(a, z) defined by

Q(a, x) =
1

Γ(a)

∫ ∞

x

ta−1e−t dt

can be written in terms of the error function:

Q(a, x) = 1

2
erfc(η

√
a/2) + Ra(η),

where

Ra(η) ∼ e−
1

2
aη2

√
2πa

∞∑

n=0

Cn(η)

an
, a → ∞,

uniformly with respect tox ≥ 0.
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Uniform asymptotic expansions
Here,

erfc z =
2√
π

∫ ∞

z

e−t2 dt,

and
1

2
η2 = λ − 1 − ln λ, λ =

x

a
.

We have

C0(η) =
1

λ − 1
− 1

η
,

and

C1(η) =
1

η3
− 1

(λ − 1)3
− 1

(λ − 1)2
− 1

12(λ − 1)
.

Singularities appear whenλ = 1 (andη = 0), but all coefficients
are analytic at these points.
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Recursions to compute SF’s
Many special functions coming from the family of
hypergeometric functions satisfy three-term
recurrence relations of the form

Anyn−1 + Bnyn + Cnyn+1 = 0.

When we give two consecutive values, say the pair
{y0, y1}, other valuesyn can be generated by using the
recursion.
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Recursions to compute SF’s
Examples are

• Bessel functions,
• Legendre functions,
• Incomplete gamma and beta functions,
• Gauss hypergeometric functions,
• Confluent (or Kummer) hypergeometric

functions.
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Recursions to compute SF’s
As is usual in numerical computations: stability of
computations is an important aspect here.
Choosing the direction of computation (that is,
choosing forward or backward recursion) is an
essential option.

For example, the Bessel functionJn(x) should not be
computed with starting values{J0(x), J1(x)}. There
are efficient algorithms, based on backward recursion,
to computeJn(x).
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Recursions to compute SF’s
More generally: let{fn, gn} be a solution pair of

Anyn−1 + Bnyn + Cnyn+1 = 0

with the property

lim
n→+∞

fn

gn
= 0,

thenfn is called aminimal solutionand should not be
computed in the forward direction.

The computation ofgn, adominant solution, is stable
in the forward direction.
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Quadrature of integrals
A simple example is:

G(λ) =

∫ ∞

−∞
e−t2+2iλt dt = e−λ2

∫ ∞

−∞
e−s2

ds.

This makes sense, because
• The new integral is real, without oscillations

• The dominant terme−λ2

is in front of the new
integral
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Trapezoidal rule

∫ b

a

f(t) dt =
1

2
h[f(a)+f(b)]+h

n−1∑

j=1

f (h j)+Rn, h =
b − a

n
.

• Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.
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Trapezoidal rule

∫ b

a

f(t) dt =
1

2
h[f(a)+f(b)]+h

n−1∑

j=1

f (h j)+Rn, h =
b − a

n
.

• Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.

• Error term, for someξ ∈ (a, b):

Rn = −nh3

12
f ′′(ξ).
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Trapezoidal rule

∫ b

a

f(t) dt =
1

2
h[f(a)+f(b)]+h

n−1∑

j=1

f (h j)+Rn, h =
b − a

n
.

• Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.

• Error term, for someξ ∈ (a, b):

Rn = −nh3

12
f ′′(ξ).

• Adaptive algorithm: use previous function values
(h → h/2).
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Example: fast convergence
Example: theJ−Bessel function (h = π/n, x = 5)

π J0(x) =

∫ π

0

cos(x sin t) dt = h + h
n−1∑

j=1

cos [x sin(h j)] + Rn,

n Rn

4 −.12 10−0

8 −.48 10−6

16 −.11 10−21

32 −.13 10−62

64 −.13 10−163

128 −.53 10−404
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The remainder can be very small
This is much better than the estimate ofRn.
Explanation: periodicity and smoothness.

In fact we have
Theorem
If f is periodic and has a continuouskth derivative,
and if the integral is taken over a period, then

|Rn| ≤
constant

nk
.

Bessel function: we can take anyk andRn may be
exponentially small for largen.
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The trapezoidal rule onIR
For integrals overIR the trapezoidal rule may again be
very efficient and accurate.
Consider

∫ ∞

−∞
f(t) dt = h

∞∑

j=−∞
f(hj + d) + Rd(h)

whereh > 0 and0 ≤ d < h.

We use this for functions analytic in the strip:

Ga = {z = x + iy | x ∈ IR, −a < y < a}.
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A class of analytic functions
Let Ha denote the linear space of functions
f : Ga → C, which are bounded inGa and for which

lim
x→±∞

f(x + iy) = 0

(uniformly in |y| ≤ a) and

M±a(f) =

∫ ∞

−∞
|f(x ± ia)| dx =

lim
b↑a

∫ ∞

−∞
|f(x ± ib)| dx < ∞.
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The error is exponentially small
Theorem
Let f ∈ Ha for somea > 0, andf even. Then

|Rd(h)| ≤ e−πa/h

sinh(πa/h)
Ma(f),

for anyy with 0 < y < a.

Proof
The proof is based on residue calculus. See Gil et al.
(2007).
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Example:K−Bessel function
Consider the modified Bessel function

K0(x) =
1

2

∫ ∞

−∞
e−x cosh t dt.

We have, withd = 0,

exK0(x) =
1

2
h + h

∞∑

j=1

e−x(cosh(hj)−1) + R0(h).
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Example:K−Bessel function
Forx = 5 and several values ofh we obtain (j0

denotes the number of terms used in the series)

h j0 R0(h)

1 2 −.18 10−1

1/2 5 −.24 10−6

1/4 12 −.65 10−15

1/8 29 −.44 10−32

1/16 67 −.19 10−66

1/32 156 −.55 10−136

1/64 355 −.17 10−272
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Fast convergent; easy to program
• We see in this example that, halving the value of

h gives a doubling of the number of significant
digits.

• Roughly speaking, a doubling of the number of
terms needed in the series.

• When programming this method, observe that
when halvingh, previous function values can be
used.
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Other numerical methods
For thebasic methods discussed earlier see Gil et al.
(2007). Other topics discussed are

• Chebyshev expansions, Continued fractions

• Zeros of special functions

• Uniform asymptotic expansions

• Padé approximants, Sequence transformations

• Best rational approximation

• Inversion of cumulative distribution functions

• The Euler summation formula

• Numerical inversion of Laplace transforms
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Concluding remarks
Last Friday I received the following email:

Hi, I’m a student from China. Recently, I’m

doing some research on the special function:

Meijer G function. I want to ask you something

about: How to numerical computing the function.

I mean that I want to write a program to

compute the function, although, Maple and

Mathematica can compute it. Could you give

me some idea or material about it?

My first reaction was: poor student.
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Concluding remarks
For me computer algebra is important because of

• Obtaining coefficients and saddle point contours
in asymptotic expansions.

• Checking formulas and relations in new software
for special functions.

• Checking the performance of new software for
special functions.

• Maple and Mathematica are great tools for doing
this and for other applications.

• But I’m careful, and don’t trust or accept all
answers.
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