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Asymptotics, Special Functions

Book: Roderick WongAsymptotic
Approximations of Integrals, SIAM, 2001.

Book: Gil et al. Numerical Methods for Special
Functions, SIAM, 2007.

Software survey: Lozier and Olver, Numerical
evaluation of special functions (1994). Updates
are available at
http://math.nist.gov/mcsd/Reports/2001/nesf/

Other books: Baker (1992), Moshier (1989),
Thompson (1997), Zhang & Jin (1996),
Numerical Recipes.

Software: many collections on the web.
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Asymptotics, Special Functions

ne NI ST Handbook of Mathematical Functions.

ne revision of Abramowitz & Stegutjandbook of
Mathematical Functions.

Free avalilable at http://dlmf.nist.gov/
Book edition: CUP, June 2010.
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Asymptotics, Special Functions
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Asymptotics, Special Functions

To compute: generalized forms? (Meljer, Fox, ...). For
example, the generalized hypergeometric function:

i, ,Q > (al)n...(a )n Zn
F ) » P — 14
’ q(blv"'qu7z> Z(bl)n"’(bq)nn!’

n=0

wherep < g + 1 and(a),, is the Pochhammer symbol,
also called the shifted factorial, defined by

(a)o=1, (a),=ala+1)---(a+n—1)(n=>1).

Use special cases and several methods: power series
asymptotic series, and in between?
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Some simple experiences

How to compute this integral ?

Another integral

Exponential integralEi(x) or Ei(z) ?

Take a special case

Scaling

Example: Confluent hypergeometric function
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How to compute this integral ?

Consider

F(\) = /OO ot H2AMWEHL gy

O

Maple 13, forA = 10, gives

F(10) = —.1837516481 + .5305342893i.
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How to compute this integral ?

Consider

F(\) = /OO ot H2AMWEHL gy

O

Maple 13, forA = 10, gives
F(10) = —.1837516481 + .5305342893:.
With Digits = 40, the answer is

F(10) = —.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020z.
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How to compute this integral ?

Consider

F(\) = /OO ot H2AMWEHL gy

O

Maple 13, forA = 10, gives
F(10) = —.1837516481 + .5305342893:.
With Digits = 40, the answer is

F(10) = —.1837516480532069664418890663053408790017+

0.5305342892550606876095028928250448740020z.

So, the first answer seems to be correct in all shown digits.
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How to compute this integral ?

Take another integral, which is almost the same:

F()\) _ / 6—t2—|—27j)\\/t2—|—1 dt — G()\) _ / 6—t2—|—2i)\t dt.

—0 —Oo0

Maple 13, withevalf(Int..., gives
G(10) = —1.249000903 x 10~1'¢
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How to compute this integral ?

Take another integral, which is almost the same:

F()\) _ / 6—t2—|—27j)\\/t2—|—1 dt — G()\) _ / 6—t2—|—2i)\t dt.

—0 —Oo0

Maple 13, withevalf(Int..., gives
G(10) = —1.249000903 x 10~1¢

With Digits = 40, the answer i6(10) = 1.2 x 107,
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How to compute this integral ?

Take another integral, which is almost the same:

0@

F()\) _ / 6—t2—|—27j)\\/t2—|—1 dt — G()\) _ / 6—t2—|—2i)\t dt.

—0 —Oo0

Maple 13, withevalf(Int..., gives
G(10) = —1.249000903 x 10~1¢

With Digits = 40, the answer i6(10) = 1.2 x 107,
The correct answer i§'(10) = 0.6593662989 x 10~
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How to compute this integral ?

Take another integral, which is almost the same:

0@

F()\) _ / €—t2—|—27j)\\/t2—|—1 dt — G()\) _ / 6—t2—|—2i)\t dt.

— O — O

Maple 13, withevalf(Int..., gives
G(10) = —1.249000903 x 10~1¢

With Digits = 40, the answer i6(10) = 1.2 x 107,
The correct answer i§'(10) = 0.6593662989 x 10~
Maple 13, with procedurant, givesG(10) = e~ 1%, /7.
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How to compute this integral ?

The message is: one should have some feeling about
the computed result.

Otherwise a completely incorrect answer can be
accepted.

Mathematica 7 Is more reliable here, and gives a
warning with answef. x 10716 + 0. x 10~17;.
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Another integral

Consider
. dt
F(u) :/ e .
0 t — 1 — 1

Mathematica 7 gives the correct expressiod’¢f;) in
terms of sine and cosine integrals, and gives the
correct numerical value

F(2) = —0.934349 ... — 0.70922.. .. 1.
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F(U) _ ()OO euitt_ait_i

In earlier days Mathematica 4.1 gave to& 2 in
terms of the Meljer G-function:

0 1
F(2) wG%;( 2 2-2@).
’ 07075

Mathematica 4.1 evaluated the false answer:
F(2) = —0.547745 — 0.532287i.

On the other hand, Mathematica 4.1 produced
F(u) = ™ "T(0,iu — u),

(which is also false) in terms of the incomplete
gamma function.
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F(U) _ ()OO euitt_ait_i

This gives the wrong answer
F(2) = —0.16114 — 0.3553551.

So, we had three numerical results:

Fy = —0.934349 — 0.70922s,

Fo = —0.547745 — 0.5322871,
F3 = —0.16114 — 0.355355s.

Observe thaty, = (F} + F3)/2.

F IS correct.
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F(U) _ ()OO euitt_ait_i

Maple 13 gives

F(u) = " "Ei(1,iu — u).

HereEi(z) is an exponential integral, which can be
written as the Mathematica 4.1 false answer

e (0, 1u — u).

When we use in Maplessume(u > 0), then we
obtain

F(u) = " "Ei(1,iu — u) + 2mi ™",

which IS, In some sense, correct.
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Fu) = fooo GUitt—?—z‘

Also, Maple 13 gives for the given value= 2
F(2) = e*°Fi(1,2i — 2) + 2mi e* 2,

giving F'(2) = —.9343493872 — .7092195102:, and
this Is the correct answer.

Maple 13 gives the correct numerical value for
F(-2).
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Exponential integralti(z), Ei(2)

The exponential integrals are defined by

t

oo —t T t
Ei(a:):—7/ %dt:f %dt, x> 0,

(principal value integrals)

oo —=zt oo —=zt
El(Z) — / € dt, En(Z) — / etn dt, ‘ph Z‘ < T,
1 1

oo —t
Ei(x) :—/ %dt:—El(—x), z < 0.

—X
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Exponential integralti(z), Ei(2)

Earlier Maple required real in Ei(x), asis in
agreement with this definition.

Unfortunately, Maple 13 uses

e—zt

tCL

Fi(a,2) = 2*"'T(1 —a,z2) = / dt, ¥z > 0.

It should use the notatiof,(z) for genearl complex
and|ph z| < 7.
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Exponential integralti(z), Ei(2)

Mathematica 7 (and earlier) accepts compiex
Ei(z).

However,The Mathematica Book (4th Ed., p. 765)
defineski(z) only for z > 0 by using a principal
value integral.

This Is confusing.
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Take a special case

Parabolic cylinder functions are special cases of the
1 F functions, Kummer functions or Whittaker

functions.
The Mathematica Book (4th Ed., p. 765) advises to
use the Whittaker function

Ula,z) = 2_61/2»7«’_1/2M/—a/z,—1/4 (%ZQ) ,

but this Is useless when< 0.

Mathematica 7 gives now the functidn, (z), which
seems to perform quite well.
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Take a special case

Mathematic 7 evaluates

ParabolicCylinderD[-300.14, 300.15]

in a split second6.83322814925 x 10~1925 the
correct answer being 833323122 x 1010226,

Maple 13 comes with the answer
7.05770276159934 * 107%%7, after 5 seconds.
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Scaling
The functionl*(z) defined by

['(2) = V2r2" 127 T*(2),

1 1
["(z) ~ 1 | S ,
(%) 122 ' 28822 T
can be computed within machine precision for almost
all complexz. The precision in the gamma function

itself follows from the evaluation of the elementary

function
VorzF V27,

To avoid underflow and overflow, and to control
accuracy, It is very important to have scaled functions

like I'*(z) available.
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The same holds for Bessel functions, parabolic
cylinder functions, and so on.

The scaled Airy functiomi(z) defined by

Ai(z) = e 3% Ai(z)

can be computed very accurate for compigxot
close to zeros oAi(z ))

The scaling factoe 52" completely determines the
accuracy Ifz Is large and complex.

Again, scaled functions are very useful to avoid
underflow and overflow, and to control accuracy.

Saae Davs 24 at RISC. Svmbolic Combutation in Differentimedra and Soecial Functions Julv 17 - 22. 2010. — p. 22/64



Kummer U —function

The standard solution of Kummer’s equation that is
singular at the origin can be written in the form

T 1Fi(a; ¢; 2)
U —
(a,¢2) sin e (F(l +a —c)['(c)

zl_chl(l +a—c2—c z))
['(a)['(2 — ¢) '

Also, forRa > 0, Rz > 0,

1

Ula,c, z) = [ (a)

/ e 1t 1+ 1) dt.
0
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KummerU —function

For smallz the series of theF; —functions can be
used for computations. For largahe F;—functions
become exponentially large, while the-function

becomesD(z~%).

Also, for integer values of, problems arise when we
use the representation in terms of {i#¢ —functions.

A careful analysis Is needed to avoid numerical
cancellations.
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KummerU —function
We can write

Ula,c,z) Eukz

7 1 I'(1—c)
Uy = p—
" sinmel(l+a—o)(c) T(l+a—c)

T a 2~ ¢

sin e {F(l +c)l'1+a—c) T(a)'(2—c)

Uy —

For small values ot the coefficient.; 1s difficult to
compute.
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Gauss hypergeometric functions

For many parameter valuesb, ¢ the Gauss function
IS an elementary function.

For example:
% l—a 2| cos((2a — 1)z)
2 r COS 2
2
21 “ima sin” z sin((2a — 1))

- (2a — 1)sinz
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Gauss hypergeometric functions

Maple 13 gives the second form, not the first one
(although it gives F(a, 1 — a;1/2; —2?)).

Mathematica 7 gives both forms.

When, Fi(a, b; c; z) is a simple function, all
oFi(a+ k,b+ {;c+ m; z) are simple for integer
k.0, m.

This follows from the recursion relations.

Maple 13 and Mathematica 7 don'’t give
oFi(a+ 1,1 —a;1/2; z); Mathematica gives this with
FunctionExpand.
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Asymptotic expansions
Maple 13 LaTeX output: viasympt
['(z) ~

(ffﬁ

5 V2T (27) +
s V2T (1) -
A VT (7)) 4
O(=)")) () @)

or more terms when requested.
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Asymptotic expansions

We like to see

[(z) ~ 2me ?2%"2 (1+ 527t + 555272

s+ O ()

or more terms when requested.

In this form It IS easler to see the structure and to
collect the coefficients.

The same happens with other well-known special
functions (for example, the complementary error
function, incomplete gamma functions, ...).
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Asymptotic expansions

When we ask the largeasymptotic expansion of
I'(z + a) we obtain in Maple13:
Error, (in asympj unable to compute series

The same happens when we ask the largeymptotic
expansion of'(z + a)/I'(z + b), which reads

N(z+a) . p(, (@=Dbla+tb—-1) 5
e~ (1 o)

Mathematica 7 gives the asymptotic expansion of
I'(z + a) (although not in a nice form), and the
expansion of'(z + a)/I'(z + b) in a better form.
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Asymptotic expansions
How to obtain?

The first form Is the Laplace transform

F(s) = / T etp(t) dt,

with, say, f analytic at the origin and far > 0; also,
f(t) = O(exp(at)) for larget.

In practical problems, first a transformation into this
standard form is needed.
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Asymptotic expansions
Then,

O

f(t) = Z a,t" (alocal expansion)

n=0
gives (Watson’s lemma)

O

n!
F(s) ~ ZanSnH, s — 0.

n=0
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Asymptotic expansions

A simple example:

00 . d
F(S) _ / 6_8 sinh u u
0

l+u

A transformation is needed to bring this into a
Laplace integral. Write

t =sinhw, or w = arcsinht.
Then

F(s) = / Tyt f(t) = —— 2

T 14udt
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Asymptotic expansions
We need to expand(t) = >~ a,t".

Becauselt/du = coshu = /1 + t2, we have

1 du 1 1
14 udt 1 + arcsinh ¢ /1 + 2’

f(t)

and it i1s not difficult to obtain the coefficiends and
the asymptotic expansion.
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Asymptotic expansions

This example is simple because the inversion of the
transformation: = sinh ¢ is explicitly known, and so
IS f(t), as a function of.

In the following example

> du
F _ —s ¢(u) | _ 1 37
(S)—/O e T gb(u)—u\/ +u

the inverse of the substitutian= ¢(u) is properly

defined foru > 0, but this inverse Is not explicitly
known.
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Asymptotic expansions
So, the functionf(t) in

> 1 d
Fs)= [ e a1 = 25

cannot straightforwardly be expanded in powers. of

We need extra computer algebra to do this.

Saae Davs 24 at RISC. Svmbolic Combutation in Differentilmedra and Soecial Functions Julv 17 - 22. 2010. — p. 36/64



Asymptotic expansions

First the relationt = u+/1 + «3 has to be inverted in
the form

u = bt", — = nb, t" 1

from which the expansion of(¢) easily follows.

Manipulating power series, inverting relations, and so
on, are needed here, and are easy to perform with the
help of computer algebra.
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Asymptotic expansions

Similar methods can be used for the integral
F(w) = / e U f(t)dt, as w — oo.

The pointt = 0 Is the dominant point for this integral.
The local expansioff(t) = >~ ¢, t" gives

F(w) ~ Z Con / €_wt2t2n dt,

n=0 o9

that iIs,

O
1

F(w) ~ ZCQnF(n + w2, as w — oo
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Asymptotic expansions

Integrals of this type arise in the saddle point method,
after transformation to this standard form.

The transformation may be defined properly, but it
may not have an explicit inverse.

This occurs in the following case

F(z):/ v* e ! dv.
0

A simple transformation = z(1 4+ u) gives

> d
['(z) = z%e /1 e 7o) - j:l’ d(u) = u—In(1+u).
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Asymptotic expansions

The main contribution comes from= 0, where

¢ (u) = u/(1 + u) vanishes® = 0 is called asaddle
point).
For smallu we have

d(u) = 3t°, sign(u) = sign(t).

This gives

S >0 _ 142 1 du
['(z) = 2% / e 27 f(t) dt, f(t):1+udt'
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Asymptotic expansions

From the mapping we can obtain the inverse in the

form
0. @)
u = Z b,t",
n=1

and hence the expansion

O

f(t) = cat”

n=0

In a similar way we can obtain the asymptotic
expansion of'(z + a).
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Asymptotic expansions

From linear forms

F(w) = /OOO e Y f(t)dt

and quadratic forms

P = [ e R f) i,

O

with w — oo, we can generalize further, but these are
the basic forms.

Other (more complicated) inversion problems arise In
so-calleduniform asymptotic expansions.
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Asymptotic expansions

In uniform expansions expansions two-point Taylor expamsi
of the type

@)

() =3 (an + bt (2 — £2)"

n=0

are needed. Typically:-t, are two relevant saddle points.

The coefficients can be expressed in terms of the derivabivés

at +t,.

But becaus¢g is usually obtained from a transformation of
which the inverse is not explicitly available (or difficudt t
handle), the computation of the coefficients is quite cooapéd.

Without computer algebra even impossible, sometimes.
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Uniform asymptotic expansions

A simple uniform expansion can be derived of the
generalized exponential integral

©
B, (z) = /1 e~ —

un
for the case that + n — +o0.

Write n = vz and obtain

E,(x) = /1 e W du,  ¢(u) =u+rvinu.
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Uniform asymptotic expansions

Because)' (u) = 1 + v/u > 0 we can substitute
t = ¢(u) — 1 and obtain

Buw) = [ e pan s =5 = o0

An Inversion procedure gives the required expansion

O

f(t) — Cm(y)tmv

m=0

from which the asymptotic expansion follows.
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Uniform asymptotic expansions

The incomplete gamma functi@p(a, z) defined by

Qa,x) = F(la)/ t* et dt

can be written in terms of the error function:

Q(a, ) = § erfe(ny/a/2) + Rq(n)

where

3

uniformly with respect ta: > 0.
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Uniform asymptotic expansions

Here,
f 2 /OO a
Cric £ — —— €
VT, ’
and
L =A—1-In)\, A=-.
a
We have
1
Coln) = 37— = —,
o(n) = 3=~ =
and

1 1 1 1
Cin) = » o (A—13 (A=12 1200—1)

Singularities appear when= 1 (and»n = 0), but all coefficients
are analytic at these points.
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Recursionsto compute SF’s

Many special functions coming from the family of
hypergeometric functions satisfy three-term
recurrence relations of the form

Anyn—l + Bnyn + Cnyn+1 = 0.

When we give two consecutive values, say the pair
{yo, 1}, other valueg,, can be generated by using the
recursion.
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Recursions to compute SF’'s

Examples are
Bessel functions,
Legendre functions,
Incomplete gamma and beta functions,
Gauss hypergeometric functions,

Confluent (or Kummer) hypergeometric
functions.
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Recursions to compute SF’'s

As Is usual in numerical computations: stability of
computations Is an important aspect here.
Choosing the direction of computation (that is,
choosing forward or backward recursion) is an
essential option.

For example, the Bessel functiof(z) should not be

computed with starting valuds/y(x), J1(x)}. There
are efficient algorithms, based on backward recursion,
to compute/, (x).
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Recursions to compute SF’'s

More generally: let f,,, g, } be a solution pair of
ApYn—1+ Buyn + Coyny1 = 0

with the property

lim & = 0,
n—+oo [,

then f,, Is called aninimal solutionand should not be
computed in the forward direction.

The computation of;,,, adominant solutionis stable
In the forward direction.
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Quadratureof integrals

A simple example is:

G(\) :/ gt 2N dtze_)‘2/ e~ ds.

©.9 O

This makes sense, because
The new integral is real, without oscillations

The dominant terra—" is in front of the new
Integral
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Trapezoidal rule

/f MF(a)+ FON+R S f )+ R = O

Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.
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Trapezoidal rule

/f Fla)+ OIS f(hf)+ R ="

Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.

Error term, for someé € (a, b):

n h3
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Trapezoidal rule

(i

/f Fla)+ OIS f(hf)+ R ="

g=1

Compared with Gauss quadrature: very flexible;
precomputed zeros and weights are not needed.

Error term, for someé € (a, b):

n h3

Adaptive algorithm: use previous function values
(h — h/2).
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Example: fast convergence

Example: the/—Bessel function{ = 7 /n, x = 5)

T Jo(xz) = /7T cos(xsint)dt = h+ h ”231 cos |z sin(h j)| + Ry,
0 =
n R,
—.12107°
8 | —.48 107
16 | —.111072
32 | —.13107%2
64 | —.13 107163
128 | —.53 1040
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The remainder can be very small

This Is much better than the estimatel%f.
Explanation: periodicity and smoothness.

In fact we have

Theorem

If fis periodic and has a continuok$ derivative,
and If the integral Is taken over a period, then

constant

R,| <

nk

Bessel function: we can take ahyand z,, may be
exponentially small for large.
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The trapezoidal rule ok

For integrals ovelR the trapezoidal rule may again be
very efficient and accurate.
Consider

[ swa=n 3> s+ a4 ran

j=—09

whereh > 0 and0 < d < h.
We use this for functions analytic in the strip:

Go={z=z+1y | xz€R, —a<y<a}.
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A class of analytic functions

Let H, denote the linear space of functions
f . G, — @, which are bounded 167, and for which

lim f(z+1y) =0

r— 100

(uniformly in |y| < a) and

Maalf) = | " \f (e % ia)| de =

O

O

II}THI \f(x T Zb)‘ dr < o0.

— 00
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The error Is exponentially small

Theorem
Let f € H, forsomea > 0, andf even. Then

—7a/h

Fa(h)] < sinh(wa/h)

foranyy with 0 < y < a.

Ma(f),

Pr oof

The proof Is based on residue calculus. See Gil et al.
(2007).

Saae Davs 24 at RISC. Svmbolic Combutation in Differentilmedra and Soecial Functions Julv 17 - 22. 2010. — p. 58/64



Example: K —Bessel function

Consider the modified Bessel function

1 00
KQ(ZC) _ 5/ e_xCOShtdt.

O

We have, withd = 0,
1 - —x(cos ) —
e’ Ko(x) = §h 4 hz e~ eleosh(h)=1) 1 R (B).

J=1
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Example: K —Bessel function

Forz = 5 and several values &fwe obtain (,
denotes the number of terms used in the series)

h | Jo Ro(h)

1| 2| —.18107!
1/2 | 5| —.24107°
1/4 | 12 | —.6510°1°
1/8 | 29 | —.4410 %
1/16 | 67 | —.1910°%°
1/32 | 156 | —.5510719°
1/64 | 355 | —.17 102"

Saae Davs 24 at RISC. Svmbolic Combutation in Differentimedra and Snec

ial Functions Julv 17 - 22. 2010. —

n. 60/64



Fast convergent; easy to program

We see In this example that, halving the value of
h gives a doubling of the number of significant
digits.

Roughly speaking, a doubling of the number of
terms needed in the series.

When programming this method, observe that

when halvingh, previous function values can be
used.
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Other numerical methods

For thebasic methods discussed earlier see Gil et al.
(2007). Other topics discussed are

Chebyshev expansions, Continued fractions
Zeros of special functions

Uniform asymptotic expansions

Pade approximants, Sequence transformations
Best rational approximation

Inversion of cumulative distribution functions
The Euler summation formula

Numerical inversion of Laplace transforms
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Concluding remarks

Last Friday | received the following email:

H, |I"’ma student from China. Recently, I'm
doi ng sone research on the special function:
Meijer G function. | want to ask you sonet hi ng
about: How to nunerical conmputing the function.

| nean that | want to wite a programto
conpute the function, although, Mple and
Mat hemat i ca can conpute it. Could you give
ne sone |Idea or material about 1t?

My first reaction was: poor student.
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Concluding remarks

For me computer algebra is important because of

Obtaining coefficients and saddle point contours
In asymptotic expansions.

Checking formulas and relations in new software
for special functions.

Checking the performance of new software for
special functions.

Maple and Mathematica are great tools for doing
this and for other applications.

But I’'m careful, and don’t trust or accept all
answers.
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