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Brief history of group cohomology

Origin in number theory, algebra and topology;
led to homological algebra and algebraic K-theory.

H. Poincaré [1895 ff]: Homology, duality

I. Schur [1900s]: Schur multiplier

J.W. Alexander, S. Lefschetz [1920s]: cochains

O. Schreier [1926], R. Baer [1934]: group extensions

P.A. Smith [1930s]: Group actions on spheres

H. Whitney, E. Čech [1936/8]: Cup product

H. Hopf, W. Hurevicz, S. Eilenberg, S. MacLane, ... [∼1940]:
Groups ↔ Spaces

D. Quillen, J. Alperin, L. Evens, J. Carlson, D. Benson [1980s]:
Modular representations of groups
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Modular Group Cohomology

G finite group, p prime dividing |G |. H∗(G ) := H∗(G ;Fp)

Finitely presentable graded commutative Fp–algebra.

φ : G1 → G2  φ∗ : H∗(G2)→ H∗(G1),
 restriction rGU : H∗(G )→ H∗(U) for U ≤ G .

G determines H∗(G ) up to isomorphism.

Wanted:

Software, using general methods, to compute

minimal presentation of H∗(G ),

depth, Poincaré series, a–invariants, ...

higher structures (Massey products, Steenrod action)

for as many finite groups as possible.
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Computational results with our optional SPKG

All 267 groups of order 64 and all 2328 groups of order 128

Order 64 first done by J. Carlson [1997-2001, 8 months comp. time].
We need about 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

http://www.nuigalway.ie/maths/sk/Cohomology/rings/

Modular cohomology for different primes of (among others)

Co3: H∗(Co3;F2) is Cohen-Macaulay.

HS , Janko groups (not J4), Mathieu groups (not M24)

McL: correcting result of Adem-Milgram

Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.
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Approaches for computing cohomology

Topology

Construct Classifying spaces. Tailor made. Not algorithmic.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups [Quillen 1971]

Eilenberg–Moore: groups of order 32 [Rusin 1989]

But not general enough, and difficult to implement.

Ring approximations in increasing degree

Prime power groups: Projective resolutions, general
homological algebra.

Otherwise: Stable element method.
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Degree-wise approximation of cohomology

1. Case: G is a prime power group

D. Green [2001]: Initial segments of a minimal free FpG -resolution
can be computed using n. c. Gröbner basis techniques for finite
FpG -modules.

Negative monomial orders (for minimality)

Two-speed replacement rules: Type I precedes Type II

F3C3
∼= F3[t]/〈t3〉, M = (F3C3 · a⊕ F3C3 · b)/〈t · a− t2 · a + t · b〉

Type I rule: t3  0. Type II rule: t · a t2 · a− t · b.
Reduce t · a + t · b:  t2 · a− t · b + t · b = t2 · a
 t3 · a− t2 · b  −t2 · b (Type I precedes Type II!).
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2. Case: Stable element method (Cartan–Eilenberg)

For U < G : Transfer trGU : H∗(U)→ H∗(G ), with
trGU (rGU (x)) = [G : U] · x and trGU (rUG (y) · x) = y · trGU (x).

If U contains a Sylow p-subgroup of G , then rGU is injective.

Its image is characterised by stability conditions associated
with representatives g for double cosets U \ G/U.

Stability under g ∈ G

Let cg : H∗(U)→ H∗(Ug ) be induced by conjugation with g−1.
x ∈ H∗(U) is stable under g :⇐⇒ rUU∩Ug (x) = rU

g

U∩Ug (c∗g (x))

Implementation

FpP-Resolutions: C/Cython. Double cosets: GAP.
H∗(U), H∗(U ∩ Ug ), maps: Singular,
get Hn(G ) by solving linear equations (in Sage), for any n.
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Problem

Can compute resolution for Sylow p-subgroup P of G ,
thus get H≤n(P) for any n,
get H≤n(P) ⊃ ... ⊃ H≤n(U) ⊃ H≤n(G ) with stable elements.
 Degree n approximation αn : τnH∗(G )→ H∗(G ).
For what n is αn an isomorphism?
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Completeness criteria

J. F. Carlson [∼ 2000]

Complicated criterion that relies on a conjecture

D. J. Benson [2004]

If n is big enough, filter regular parameters P for H∗(G ) can
be constructed in τnH∗(G ), using Dickson invariants in the
cohomology of maximal p-elementary abelian subgroups.

Using the filter degree type of P, compute upper bound α for
the regularity of τnH∗(G ).

If n > α +
∑

ζ∈P (|ζ| − 1) then αn is isomorphism.

Problems: Computation of filter degree type; high parameter
degree
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Completeness criteria

D. Green, S. K. [2009]

For p-groups: Improved construction of filter regular
parameters.
Improve degree growth from prkp(G) to prkp(G)−rk(Z(G)).

Existence result for filter regular parameters P ′ of τnH∗(G ; k)
in small degrees, for some finite extension field k of Fp.

If n > α +
∑

ζ∈P ′ (|ζ| − 1) then αn is isomorphism.

Proof idea that αn is isomorphism

τnH∗(G ; k) ∼= τnH∗(G )⊗Fp k .
Filter degree types of P and P ′ coincide.
By Benson: τnH∗(G , k) ∼= H∗(G , k), thus τnH∗(G ) ∼= H∗(G ).
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Proving existence of parameters

If Q := τnH∗(G )/〈ζ1, ..., ζi 〉 is finite over deg-d elements:
There is a finite field extension k of Fp, so that H∗(G , k) has a f.r.
HSOP formed by ζ1, ..., ζi and elements of degree d .

Proof idea

Start with infinite alg. extension K/Fp; use Noether normalisation
on Q ⊗ K and show: ∃x ∈ Q ⊗ K with finite dim. annihilator.
Induction: Get filter regular parameters over K , and let k < K
contain the coefficients.

G = P = Syl2(Co3) (order 1024)

Benson: Parameter degrees 8, 12, 14, 15 (applies in degree 46).
Our construction: Parameter degrees 8,4,6,7 (applies in degree 22).
Existence proof: Parameter degrees 8,4,2,2 over finite extension
field. We detect completion in degree 14, which is perfect.
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Alternative completeness criteria

Problem

We still need to construct P and compute its filter degree type.
Depending on the example, this can be very difficult!

P. Symonds [2009]

Let P ⊂ τnH∗(G ) yield parameters for H∗(G ).
If n >

∑
ζ∈P (|ζ| − 1) and τnH∗(G ) is generated in degree ≤ n as

module over 〈〈P〉〉 then αn is isomorphism.

More freedom in construction of parameters

Could start with f. r. parameters, and improve degrees.

Prove that τnH∗(G ) contains parameters for H∗(G ), and let
P be formed by some generators.
No algebraic independence needed!
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... for non prime power groups

S. K. [2010]

1 If H∗(U) is generated in degree ≤ n as a module over
im(rG ,U ◦αn) then αn is surjective.

Benefit

No need to compute stable subspace in degree > n!

2 Let αn be surjective, ∃ parameters P ′ of τnH∗(G ; k),
n ≥ N =

∑
ζ∈P ′ |ζ| − depth(H∗(U)).

αn is isomorphism iff p (τnH∗(G ), t) ·
∏
ζ∈P ′ (1− t |ζ|) is a

polynomial of degree ≤ N.

Benefit

No algebraic dependence needed, and can use field extension.
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Proof sketch

Surjectivity

x ∈ H∗(G ) not in im(αn) ⇒ deg(x) > n by definition.

rGU (x) =
∑

yi rGU (αn(zi )) with yi ∈ H≥n(U) by assumption.

x = 1
[G :U] trGU (rGU (x)) =

∑
trGU (yi )αn(zi )

Since deg(yi ) ≤ n, we have yi ∈ imαn and thus x ∈ imαn.

Isomorphy — Basic idea due to P. Symonds

Param.degree di ⇒ q(H∗(G )) := p(H∗(G ); k) ·
∏

(1− tdi ) is polynomial.
deg(p(H∗(G ))) ≤ Reg(H∗(G ))− depth(H∗(G )) ≤ −depth(H∗(U)).,
thus, deg q ≤ N.
If deg q(τnH∗(G )) ≤ N: It determines τnH≤N(G ).
H≤N(G ) = τnH≤N(G ), so, it determines q(H∗(G )).
Thus, p(H∗(G )) = p(τn(H∗(G ))).
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Comparing the Criteria

Symonds / improved Benson criteria work very well for p-groups.
Non prime power groups: When using algebraically independent
parameters, Hilbert–Poincaré is usually the best.

Consider H∗(S9;F2). The ring can be presented in degree 12.

Benson: Filter-regular parameters in deg. 8, 12, 14, 15; applies in
deg. 46 (actually 45).

Green–K.: Exist filter-regular parameters in deg. 8, 12 14, 6 over
extension field; applies in deg. 36.

Symonds or Poincaré–Hilbert: Alg. indep. parameters in deg. 4, 12,
7, 6; applies in deg. 26.

There are alg. dependent parameters in degrees 1, 2, 3, 3, 4, 6, 7.
The Hilbert-Poincaré criterion applies in degree 23 =
1+2+3+3+4+6+7-3.
The Symonds criterion applies in degree 21.
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Thank you for listening, and
for reviewing #8667...
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