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Elementary Functions

Definition
Let F be a field of functions. Then f is elementary over F if one of
the following holds:

I f = eg for some g ∈ F

I f = log g for some g ∈ F

I f is algebraic over F

Stefan T. Boettner Extensions for the Risch-Norman Algorithm



Introduction
Extensions

Integration in Finite Terms
Differential Fields
The Risch-Norman Algorithm

Elementary Extensions

Definition
Let F be a field of functions and K an extension of F . Then K is
called an elementary extension if there exist t1, . . . , tn ∈ K such
that K = F (t1, . . . , tn) and tk is elementary over F (t1, . . . , tk−1)
for each k ∈ {1, . . . , n}.

Definition
An elementary function is a function of any elementary extension
of C(x).

Remark
Trigonometric functions and their inverses are elementary functions
because they can be expressed using complex exponentials or
logarithms.
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Integration in Finite Terms

Definition
An (indefinite) integral is elementary if it is contained in some
elementary extension of the function field that contains the
integrand.

Problem
Determine in finitely many steps whether a given (indefinite)
integral is elementary, and if so compute it.
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The Risch Algorithm

The problem of integration in finite terms is solved by the Risch
algorithm. However, due to its complexity, no complete
implementation is known to exist.

The Parallel Risch or Risch-Norman algorithm is a simpler heuristic
method for computing integrals. While it cannot prove that an
integral is non-elementary, it has the advantage that it can be
generalized to a much larger class of functions.
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Differential Fields

Definition
Let R be a ring (field). A map D : R → R such that

I D(a + b) = Da + Db and

I D(ab) = aDb + bDa

is called a derivation on R. The pair (R,D) is called a differential
ring (field).

If the derivation D is clear from the context, we will just refer to R
as a differential ring/field. The set

C (R) = {c ∈ R|Dc = 0}

is called the ring (field) of constants of R.
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Differential Field Examples

Example

Let R be any ring. Define D by Dx = 0 for all x ∈ R. Then (R,D)
is a differential ring, and every element of R is a constant.

Example

Let F = C(x) be the field of rational functions. The map D
defined by the usual derivative

Df =
df

dx

is a derivation.
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Differentiation Rules

All the usual differentiation rules follow from the definition of
differential rings/fields:

Theorem
Let (R,D) be a differential ring (field). Then

1. D(ca) = cDa for a ∈ R and c ∈ C (R).

2. If R is a field, then

D
a

b
=

bDa− aDb

b2

for any a, b ∈ R, b 6= 0.

3. D(an) = nan−1Da for any a ∈ R, a 6= 0 and integer n > 0
(any integer n if R is a field).
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Differential Extension

Definition
Let (F ,D) and (K ,∆) be differential fields such that K is a field
extension of F . If ∆f = Df for all f ∈ F , then (K ,∆) is a
differential extension of (F ,D).

Example

Let F = C with Dx = 0 for all x ∈ F . Let K = C(x) be the field
of rational functions with ∆ = d/dx the usual derivative. Then
(K ,∆) is a differential extension of (F ,D).
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Transcendental Differential Extension

If t is transcendental over F , then we can freely choose Dt in F (t):

Theorem
Let (F ,D) be a differential field, and let t be transcendental over
F . Then for any w ∈ F (t) there exists a unique derivation ∆ on
F (t) such that ∆t = w and (F (t),∆) is a differential extension of
(F ,D).
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Transcendental Differential Extension

Example

Let (F ,D) be a differential field, f ∈ F and t transcendental over
F . Extend D to ∆: F (t)→ F (t) by defining ∆t = (Df )t. Then t
models ef .

Example

Let (F ,D) be a differential field, f ∈ F and t transcendental over
F . Extend D to ∆: F (t)→ F (t) by defining ∆t = (Df )/f . Then
t models log f .
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Tower of Extensions

The Risch and basic Risch-Norman algorithms work with a tower
of extensions of the rational function field:

K ⊂ K (x) ⊂ K (x , θ1) ⊂ . . . ⊂ K (x , θ1, . . . , θn)

Here K is a computable field of constants (usually Q) and θk is

I an exponential over K (x , θ1, . . . , θk−1),

I a logarithm over K (x , θ1, . . . , θk−1) or

I algebraic over K (x , θ1, . . . , θk−1) (full Risch algorithm only).

The recursive nature of the Risch algorithm relies on this tower
structure, while the Risch-Norman method handles all extensions in
parallel. It uses K (x , θ1, . . . , θn) directly without intermediate field
extensions.
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Liouville’s Theorem

Liouville’s theorem gives us a strong hint how a closed form
expression of an integral looks if it exists:

Theorem
Let (F ,D) be a differential field, C = C (F ), and f ∈ F . If there
exist an elementary extension K of F and g ∈ K such that
Dg = f , then there are v0 ∈ K , λ1, . . . , λn ∈ C̄ and
v1, . . . , vn ∈ K (λ1, . . . , λn) such that

f = Dv0 +
n∑

i=1

λi
Dvi

vi
.
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Liouville’s Theorem

According to Liouville’s theorem, we may expect an integral, if it
exists in closed form, to have the form∫

f dx = v0 +
n∑

i=1

λi log vi .

with v0, . . . , vn functions from the same field as f , possibly
extended by some algebraic constants, and λ1, . . . , λn constants.

It consists of a rational part (v0) and a logarithmic part (the sum
of the λi log vi ).

Stefan T. Boettner Extensions for the Risch-Norman Algorithm



Introduction
Extensions

Integration in Finite Terms
Differential Fields
The Risch-Norman Algorithm

Basic Idea of the Risch-Norman Method

If the denominator of v0 and the polynomials v1, . . . , vn in

f = Dv0 +
n∑

i=1

λi
Dvi

vi
,

can be predicted, then it is possible to determine the numerator of
v0, which is written as the sum of “all possible” monomials with
unknown coefficients, and λ1, . . . , λn by writing the equation over
the common denominator and solving a system of linear equations.

Stefan T. Boettner Extensions for the Risch-Norman Algorithm



Introduction
Extensions

Integration in Finite Terms
Differential Fields
The Risch-Norman Algorithm

Prediction of Denominator and Logarithms
Let q be the denominator of the integrand and

q =
m∏

j=1

q
νj

j

its factorization into irreducibles. Define

ν∗j =

{
νj if qj is an exponential
νj − 1 otherwise

Then

q0 =
m∏

j=1

qν∗
j

is the prediction for the denominator of the integral. Moreover,
every qj may give rise to a term log qj .
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A Complete Example

Consider the integral ∫
x

(a + ex2)2
dx

where a is a parameter.

We have to construct the field K (x , θ) where

I K = Q(a) is the field of constants,

I Dx = 1 and

I Dθ = 2xθ.
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A Complete Example

The integral is now written as∫
x

(a + θ)2
dx .

Unless a = 0, the factor a + θ is not an exponential, so we make
the ansatz ∫

x

(a + θ)2
dx =

u(x , θ)

a + θ
+ λ log(a + θ)

where u(x , θ) is a polynomial in x and θ.
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A Complete Example

Now let

u(x , θ) =
n∑

i=0

m∑
j=0

βijx
iθj

with the coefficients βij to be determined. The degree bounds n
and m are customarily taken one higher than the highest occuring
power in the integrand, so n = 2 and m = 1 in this case, but no
rigorous bound is known.

Alternatively, one may bound the total degree:

u(x , θ) =
∑

i+j≤n

βijx
iθj
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A Complete Example

We now have to determine the coefficients βij and λ such that∫
x

(a + θ)2
dx =

u(x , θ)

a + θ
+ λ log(a + θ).

Apply D on both sides to obtain

x

(a + θ)2
=

(a + θ)Du(x , θ)− 2xθu(x , θ)

(a + θ)2
+ λ

2xθ

a + θ
.

Multiplying this with the common denominator (a + θ)2 yields

x = (a + θ)Du(x , θ)− 2xθu(x , θ) + 2λxθ(a + θ).
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A Complete Example

Substitute the ansatz with the undetermined coefficients for u:

x = (2aβ21 − 2β20)x3θ + (2aβ11 − 2β10)x2θ + (2β21 + 2λ)xθ2 +

(2aβ21 + 2aβ01 + 2β20 − 2β00 + 2aλ)xθ + 2aβ20x +

β11θ
2 + (aβ11 + β10)θ + aβ10,

Now by comparing the coefficients of the monomials x sθt we
obtain a system of linear equations in the unknowns βij and λ.
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A Complete Example

In matrix notation, we get this system of equations:

2 0 0 0 0 0 2
0 1 0 0 0 0 0

2a 0 0 −2 0 0 0
0 2a 0 0 −2 0 0

2a 0 2a 2 0 −2 2a
0 a 0 0 1 0 0
0 0 0 2a 0 0 0
0 0 0 0 a 0 0





β21

β11

β01

β20

β10

β00

λ


=



0
0
0
0
0
0
1
0


.
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A Complete Example

It has the solution

β21 =
1

2a2
, β11 = 0, β01 = − 1

2a2
,

β20 =
1

2a
, β10 = 0, β00 = 0,

λ = − 1

2a2

corresponding to∫
x

(a + ex2)2
dx =

1
2a2 (x2 − 1)ex2

+ 1
2ax2

a + ex2 − 1

2a2
log(a + ex2

).
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Simultaneous Extensions

Instead with a tower of extensions, Risch-Norman works with a
single simultaneous extension K (x , θ1, . . . , θn).

Thus there is no reason to require that

Dθk ∈ K (x , θ1, . . . , θk),

but one may allow

Dθk ∈ K (x , θ1, . . . , θn).
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Functions Satisfying a System of ODEs

We may therefore have

Dθ1 = f1(x , θ1, . . . , θn)
...

...

Dθn = fn(x , θ1, . . . , θn)

where f1, . . . , fn are rational functions. This can be used to model
functions that satisfy a system of (possibly nonlinear) ODEs, or an
ODE of higher order.

Many special functions satisfy such a system of ODEs.
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Example: Airy Functions

The Airy functions are the solutions of the differential equation

y ′′ − xy = 0.

Therefore Airy functions may be modeled by the extension
K (x , θ1, θ2) if we define

Dx = 1

Dθ1 = θ2

Dθ2 = xθ1
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Trigonometric Functions

The basic trigonometric functions sin x and cos x satisfy the
system of equations

sin′ x = cos x

cos′ x = − sin x ,

so it should be possible to model them using the extension
Q(x , θ1, θ2) with

Dx = 1

Dθ1 = θ2

Dθ2 = −θ1.
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Trigonometric Functions

Indeed, the method will compute simple integrals such as∫
sin x dx = − cos x .

But it will fail to compute∫
sin2 x dx = −1

2
sin x cos x +

x

2
.

So what’s wrong?
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Trigonometric Functions

To analyze how the algorithm fails, take the derivative of∫
sin2 x dx = −1

2
sin x cos x +

x

2

and write the equation using expressions in the field Q(x , θ1, θ2):

θ2
1 =

1

2
θ2

1 −
1

2
θ2

2 +
1

2

Evidently, the coefficients of the monomials are all different
between the two sides of the equation! Why is this?
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Trigonometric Functions and Algebraic Relations

The sine and cosine functions satisfy the relation

sin2 x + cos2 x = 1

which was not taken into account. In Q(x , θ1, θ2), θ2
1 + θ2

2 is not
considered the same as 1!

This makes sense since we could as well have

θ1 = λ sin x

θ2 = λ cos x

for any constant λ the way we defined θ1 and θ2.
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Differential Ideals and Quotients

Definition
Let (R,D) be a differential ring and I ⊂ R an ideal. Then I is
called a differential ideal if DI ⊂ I .

Lemma
Let (R,D) be a differential ring and I ⊂ R a differential ideal. Let
π : R → R/I be the canonical projection. Then D induces a
derivation D∗ on R/I such that D∗ ◦ π = π ◦ D, where
π : R → R/I is the canonical projection.
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Trigonometric Functions and Algebraic Relations

Instead of a field, construct the ring R = Q[x , θ1, θ2] with the
derivation D defined as before. Then the ideal

I = 〈θ2
1 + θ2

2 − 1〉 ⊂ R

is a differential ideal:

Let f ∈ I . Then f = g · (θ2
1 + θ2

2 − 1) for some g ∈ R, and

Df = Dg · (θ2
1 + θ2

2 − 1) + g · (2θ1θ2 − 2θ1θ2)︸ ︷︷ ︸
=0

∈ I .
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Trigonometric Functions and Algebraic Relations

Therefore the quotient R/I is a differential ring with an induced
derivation D∗.

We may now consider the field of fractions

K =
{u

v

∣∣∣u, v ∈ R/I
}

as the field to work over.
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Trigonometric Functions and Algebraic Relations

It is easier to work with regular polynomials than with elements of
quotient fields. Since elements of the quotient field can be
represented by polynomials, we can in fact continue to work with
polynomials, but we need to bring them to a unique normal form.

For example, we could impose the restriction that cos x does not
appear with an exponent greater than one. Then any factor cos2 x
is rewritten as 1− sin2 x .
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Gröbner Bases

In general, the tool to reduce elements to a normal form modulo
an ideal I are Gröbner bases.

In a univariate polynomial ring, any ideal is principal, i.e. generated
by a single polynomial v . A normal form of an arbitrary polynomial
f is found by dividing f by v . The remainder is the normal form.

Gröbner bases generalize this procedure for multivariate polynomial
rings in which ideals in general are not principal.
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The Ideal of Algebraic Relations

The algebraic relations among the generators x , θ1, . . . , θn form a
differential ideal I . Any element of I is to be considered zero by
the algorithm.

In addition to describing the function field by a set of differential
equations, perform the following preparations before running the
algorithm:

I Construct the ideal I of algebraic relations by specifying a set
of generators.

I Compute a Gröbner basis of I so that later polynomials can be
reduced to a normal form with that basis.
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The Modified Algorithm

I Express the integrand as an element of K (x , θ1, . . . , θn)
pretending there are no algebraic relations.

I Make the same ansatz as before:∫
f dx = v0 +

n∑
i=1

λi log vi .

I After applying the derivation D and multiplying the equation
by the common denominator, reduce both sides of the
equation to a normal form using a Gröbner basis of the ideal
of algebraic relations.

I Obtain a system of linear equations by comparing the
coefficients of monomials as before.
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Algebraic Integrands

With these extensions, the algorithm is also able to compute
certain integrals involving algebraic functions. Consider for
example the integral ∫

x
√

1 + xdx .

The field Q(x , y) with y algebraic over Q(x) is constructed as the
field of fractions of the quotient field of R = Q[x , y ]/〈y 2 − x − 1〉.
Moreover we define

Dy =
1

2y
.

Internally, the algorithm works with polynomials in x and y and
reduces them modulo I = 〈y 2 − x − 1〉.
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More Failures

While the reduction modulo the ideal of algebraic relations fixes
many, there are still integrals that would fail to be computed, such
as: ∫

1

sin x
dx =

1

2
log(cos x − 1)− 1

2
log(cos x + 1)∫ √

1 + x

x
dx = 2

√
1 + x − log(

√
1 + x + 1) +

log(
√

1 + x − 1)∫ √
ex + 1 dx = −x + 2

√
ex + 1 + 2 log

(√
ex + 1− 1

)
Obviously the reason is that the logarithms appear unexpectedly.
We call such logarithmic terms spurious.
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Spurious Logarithmic Terms

There are three common sources of spurious logarithmic terms:

I As a result of nonunique factorizations, e.g.

sin2 x = (1 + cos x)(1− cos x)

I From polynomials which are units modulo the ideal of
algebraic relations, e.g.

y ± x where y =
√

1 + x2

I From factors of Dy that depend only on y , e.g.

y = 1 + tan2 x ⇒ Dy = 2y · tan x
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Denominator Terms

There may be other factors besides exponentials that should not
have their exponent decreased when the denominator is predicted:∫

1√
1 + x2 − 1

dx =
−x√

1 + x2 − 1
− log

(
x −

√
1 + x2

)
∫

1

sin x + 1
dx =

− cos x

sin x + 1

The reason is that they have roots of order higher than one despite
being irreducible.
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