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The Fourier Transform

Given f : R→ C continuous, absolutely integrable, the Fourier
transform is

I

f̂ (s) =

∫ ∞
−∞

f (x)e−2π ixs dx for s ∈ R.

I Can recover f from the Fourier Inversion Formula

f (x) =

∫ ∞
−∞

e2π ixsf̂ (s) ds .
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Locally Compact Abelian Groups

More generally, allow complex valued functions on group G

I Restrict to locally compact, Hausdorff topological groups

I Abelian groups for now

Some standard examples:

I Finite additive groups with the discrete topology, e.g. Z/nZ
I Tori, (R/Z)d with the standard topology

I Euclidean space Rd with standard topology

I Finitely generated additive groups with the discrete topology,
e.g. Zd

I Adele ring with the usual restricted topology
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Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Haar Measure

Require:

I Haar measure is translation invariant:

I

µ(U) = µ(U + g)

for all g ∈ G , subsets U ⊆ G generated from compact subsets
by countable unions and complements.

I Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure

I For the discrete examples, Haar measure is the counting
measure

I For other (non-adele) examples can construct Haar measure
from Lebesgue measure

William Hart The Discrete Fourier Transform



Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

I The Fourier Transform for an absolutely integrable function f
is:

f̂ (s) =

∫
G

f (x)e−2π is ·xdµ(x).

I f̂ : Ĝ → C where Ĝ is the Pontryagin dual of G

I Ĝ is space of additive characters of G (continuous additive
homomorphisms) s : G → R/Z
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I f̂ : Ĝ → C where Ĝ is the Pontryagin dual of G
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I Ĝ is space of additive characters of G (continuous additive
homomorphisms) s : G → R/Z

William Hart The Discrete Fourier Transform



Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

I The Fourier Transform for an absolutely integrable function f
is:

f̂ (s) =

∫
G

f (x)e−2π is ·xdµ(x).
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Discrete Fourier Transform

We are interested in G a finite abelian group with discrete
topology

I The Discrete Fourier Transform

f̂ (ζ) =
∑
g∈G

ζ(g)f (g).

I E.g. G = Z/nZ, functions f on G are polynomials in
C[x ]/(xn − 1).

I let ζj(g) = exp
(

2π ijg
n

)
for g ∈ Z/ nZ

I DFT of f = a0 + a1x + · · ·+ an−1x
n−1 at ζj is

f̂j = f̂ (ζj) =
n−1∑
m=0

ane
−2π ijm /n.
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Generalisation

I For finite abelian group G of exponent n (nG = 0) can replace
C with commutative ring K containing primitive n-th root of
unity ζ (with some additional conditions).

I DFT is homomorphism K [G ]→ K Ĝ defined by
â(ĝ) =

∑
g∈G a(g) < g , ĝ > for choice of non-degenerate

form < g , ĝ >: G × Ĝ →< ζ >.

I Fourier inversion theorem (conditions)

(#G )−1̂̂a(−g) = a(g) for a ∈ K [G ].
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Examples

I (Number Theoretic Transform)
K = Z/pZ for prime p, ζ primitive n-th root of unity in K

I (Fermat Ring)

R = Z/pZ for p = 2a2K
+ 1 (not necessarily prime), a,K ∈ N.

2a is a primitive 2K+1-th root of unity in R.

I S = Z[x ]/(x2n
+ 1)

I (non-example) Mersenne Ring

R = Z/pZ for p = 22K − 1
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Convolution

I G an LCA with non-trivial Haar measure µ
convolution of two absolutely integrable functions
f , g : G → C is defined by

f ? g(x) =

∫
G

f (y)g(x − y)dµ(y).

I

f̂ ? g(s) = f̂ (s)ĝ(s),

“Fourier Transform converts convolution into “pointwise”
multiplication”

I Retrieve convolution of f , g using inverse Fourier transform
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Example

I G = Z/nZ, for f = a0 + a1x + · · ·+ an−1x
n−1 and

g = b0 + b1x + · · ·+ bn−1x
n−1 ∈ C[x ]/(xn − 1), have

(f ? g)j =
n−1∑
m=0

ambj−m (mod n).

I Here convolution is multiplication of polynomials modulo
xn − 1.
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Fast Fourier Transforms

I DFT can be computed naively in O(n2) steps

I Convolution can be computed naively in O(n2) steps

I Suppose G has a increasing subgroup series

0 = G0 ⊂ G1 ⊂ . . . ⊂ GK = G

I Recall that
f̂ (ζ) =

∑
g∈G

ζ(g)f (g).

I Write every g ∈ G as sum of element in GK−1 and element
from fixed set of representatives for GK/GK−1.

I For Z/2nZ get Cooley-Tukey FFT, complexity O(n log n)
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Rader/Winograd FFT

I G of prime order, work with the multiplicative group of
invertible elements modulo p, order p − 1.

I g primitive root mod p, compute

f̂0 =

p−1∑
m=0

am and f̂g−j = a0 +

p−2∑
m=0

agme−
2πi
p

g−(j−m)

.

I Sum is cyclic convolution of two length p − 1 vectors

I Compute using zero padded FFTs or recurse on Rader’s FFT

I Winograd generalised to prime powers

I Cost somewhere between O(n2) and O(n log n) for recursive
Rader FFT
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Non-abelian DFTs

Can do DFTs for non-abelian finite groups G

I Replace characters with group representations ρ : G →GLn(C)

I Two reps. equivalent if same up to change of basis

I Complex reps. irreducible if not the direct sum of smaller reps

I As many inequiv. irred. reps. as conjugacy classes in G

I If f is a C-valued fn. on a finite group G then a Fourier
transform of f is a set of matrix sums

f̂ (ρ) =
∑
g∈G

f (g)ρ(g),

one for each ρ in a complete set R of inequiv. irred. reps.
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Wedderburn’s isomorphism

One can also use Wedderburn’s Theorem for the group algebra
C[G ].

I Fourier transform is an isomorphism

B = ⊕r
m=1Bm : C[G ]→ ⊕r

m=1Cbm×bm

to algebra of block diagonal matrices, with r the number of
classes of inequiv. irred. reps. of C[G ]

I Fourier inversion formula, for R is

f (g) =
1

#G

∑
ρ∈R

dim(ρ) Tr(f̂ (ρ)ρ(g−1)),

where Tr(M) is trace of M
I FFT for G requires subgroup series and notion of H-adapted

reps. for subgroup H of G , etc.
I Set R of reps. of G is H-adapted if when restricted to H they

can be constructed as direct products of fixed set of inequiv.
irred. reps. of H
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Applications of DFT

I Fast Fourier Transform G = Z/2nZ, used in fast polynomial
and large integer multiplication

I Middle product for use in division algorithms

I Number Theoretic Transform G = Z/pZ, p odd prime

I Multidimensional FFTs, G = (Z/2nZ)r for multivariate
polynomial arithmetic

I Gauss Sum

G (a; p) =

p−1∑
j=0

(
j

p

)
e2π iaj /p

for p an odd prime, is a DFT

I G (a; p) =
(

a
p

)
i (p−1)/2√p, so Legendre symbol is essentially

its own DFT
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Questions

I What other applications exist for DFT for abelian and
non-abelian groups?

I What does Sage implement in the way of DFTs for abelian
LCAs?

I What does Sage implement in the way of DFTs for nonabelian
LCHTGs?
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