# The Discrete Fourier Transform 

William Hart

04-July-2010

## The Fourier Transform

Given $f: \mathbb{R} \rightarrow \mathbb{C}$ continuous, absolutely integrable, the Fourier transform is

$$
\hat{f}(s)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi \mathrm{ixs}} \mathrm{dx} \quad \text { for } \quad s \in \mathbb{R}
$$

## The Fourier Transform

Given $f: \mathbb{R} \rightarrow \mathbb{C}$ continuous, absolutely integrable, the Fourier transform is

$$
\hat{f}(s)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi \mathrm{ixs}} \mathrm{dx} \quad \text { for } \quad s \in \mathbb{R}
$$

- Can recover $f$ from the Fourier Inversion Formula

$$
f(x)=\int_{-\infty}^{\infty} e^{2 \pi i x s} \hat{f}(s) d s
$$

## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now

Some standard examples:

- Finite additive groups with the discrete topology, e.g. $\mathbb{Z} / n \mathbb{Z}$


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now

Some standard examples:

- Finite additive groups with the discrete topology, e.g. $\mathbb{Z} / n \mathbb{Z}$
- Tori, $(\mathbb{R} / \mathbb{Z})^{d}$ with the standard topology


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now

Some standard examples:

- Finite additive groups with the discrete topology, e.g. $\mathbb{Z} / n \mathbb{Z}$
- Tori, $(\mathbb{R} / \mathbb{Z})^{d}$ with the standard topology
- Euclidean space $\mathbb{R}^{d}$ with standard topology


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now

Some standard examples:

- Finite additive groups with the discrete topology, e.g. $\mathbb{Z} / n \mathbb{Z}$
- Tori, $(\mathbb{R} / \mathbb{Z})^{d}$ with the standard topology
- Euclidean space $\mathbb{R}^{d}$ with standard topology
- Finitely generated additive groups with the discrete topology, e.g. $\mathbb{Z}^{d}$


## Locally Compact Abelian Groups

More generally, allow complex valued functions on group $G$

- Restrict to locally compact, Hausdorff topological groups
- Abelian groups for now

Some standard examples:

- Finite additive groups with the discrete topology, e.g. $\mathbb{Z} / n \mathbb{Z}$
- Tori, $(\mathbb{R} / \mathbb{Z})^{d}$ with the standard topology
- Euclidean space $\mathbb{R}^{d}$ with standard topology
- Finitely generated additive groups with the discrete topology, e.g. $\mathbb{Z}^{d}$
- Adele ring with the usual restricted topology


## Haar Measure

## Require:

- Haar measure is translation invariant:


## Haar Measure

## Require:

- Haar measure is translation invariant:

$$
\mu(U)=\mu(U+g)
$$

for all $g \in G$, subsets $U \subseteq G$ generated from compact subsets by countable unions and complements.

## Haar Measure

## Require:

- Haar measure is translation invariant:

$$
\mu(U)=\mu(U+g)
$$

for all $g \in G$, subsets $U \subseteq G$ generated from compact subsets by countable unions and complements.

- Haar measure of compact sets is finite


## Haar Measure

## Require:

- Haar measure is translation invariant:

$$
\mu(U)=\mu(U+g)
$$

for all $g \in G$, subsets $U \subseteq G$ generated from compact subsets by countable unions and complements.

- Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a non-trivial Haar measure

## Haar Measure

## Require:

- Haar measure is translation invariant:

$$
\mu(U)=\mu(U+g)
$$

for all $g \in G$, subsets $U \subseteq G$ generated from compact subsets by countable unions and complements.

- Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a non-trivial Haar measure

- For the discrete examples, Haar measure is the counting measure


## Haar Measure

## Require:

- Haar measure is translation invariant:

$$
\mu(U)=\mu(U+g)
$$

for all $g \in G$, subsets $U \subseteq G$ generated from compact subsets by countable unions and complements.

- Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a non-trivial Haar measure

- For the discrete examples, Haar measure is the counting measure
- For other (non-adele) examples can construct Haar measure from Lebesgue measure


## Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

## Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

- The Fourier Transform for an absolutely integrable function $f$ is:

$$
\hat{f}(s)=\int_{G} f(x) e^{-2 \pi \text { is } \cdot x} d \mu(x) .
$$

## Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

- The Fourier Transform for an absolutely integrable function $f$ is:

$$
\hat{f}(s)=\int_{G} f(x) e^{-2 \pi \text { is } \cdot x} d \mu(x) .
$$

- $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ where $\hat{G}$ is the Pontryagin dual of $G$


## Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

- The Fourier Transform for an absolutely integrable function $f$ is:

$$
\hat{f}(s)=\int_{G} f(x) e^{-2 \pi \text { is } \cdot x} d \mu(x) .
$$

- $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ where $\hat{G}$ is the Pontryagin dual of $G$
- $\hat{G}$ is space of additive characters of $G$ (continuous additive homomorphisms) $s: G \rightarrow \mathbb{R} / \mathbb{Z}$


## Discrete Fourier Transform

We are interested in $G$ a finite abelian group with discrete topology

- The Discrete Fourier Transform

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

## Discrete Fourier Transform

We are interested in $G$ a finite abelian group with discrete topology

- The Discrete Fourier Transform

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

- E.g. $G=\mathbb{Z} / n \mathbb{Z}$, functions $f$ on $G$ are polynomials in $\mathbb{C}[x] /\left(x^{n}-1\right)$.


## Discrete Fourier Transform

We are interested in $G$ a finite abelian group with discrete topology

- The Discrete Fourier Transform

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

- E.g. $G=\mathbb{Z} / n \mathbb{Z}$, functions $f$ on $G$ are polynomials in $\mathbb{C}[x] /\left(x^{n}-1\right)$.
- let $\zeta_{j}(g)=\exp \left(\frac{2 \pi \mathrm{ijg}}{n}\right)$ for $g \in \mathbb{Z} / \mathrm{n} \mathbb{Z}$


## Discrete Fourier Transform

We are interested in $G$ a finite abelian group with discrete topology

- The Discrete Fourier Transform

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

- E.g. $G=\mathbb{Z} / n \mathbb{Z}$, functions $f$ on $G$ are polynomials in $\mathbb{C}[x] /\left(x^{n}-1\right)$.
- let $\zeta_{j}(g)=\exp \left(\frac{2 \pi \mathrm{ijg}}{n}\right)$ for $g \in \mathbb{Z} / \mathrm{n} \mathbb{Z}$
- DFT of $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at $\zeta_{j}$ is

$$
\hat{f}_{j}=\hat{f}\left(\zeta_{j}\right)=\sum_{m=0}^{n-1} a_{n} e^{-2 \pi \mathrm{ijm} / n}
$$

## Generalisation

- For finite abelian group $G$ of exponent $n(n G=0)$ can replace $\mathbb{C}$ with commutative ring $K$ containing primitive $n$-th root of unity $\zeta$ (with some additional conditions).


## Generalisation

- For finite abelian group $G$ of exponent $n(n G=0)$ can replace $\mathbb{C}$ with commutative ring $K$ containing primitive $n$-th root of unity $\zeta$ (with some additional conditions).
- DFT is homomorphism $K[G] \rightarrow K^{\hat{G}}$ defined by $\hat{a}(\hat{g})=\sum_{g \in G} a(g)<g, \hat{g}>$ for choice of non-degenerate form $<g, \hat{g}>: G \times \hat{G} \rightarrow\langle\zeta>$.


## Generalisation

- For finite abelian group $G$ of exponent $n(n G=0)$ can replace $\mathbb{C}$ with commutative ring $K$ containing primitive $n$-th root of unity $\zeta$ (with some additional conditions).
- DFT is homomorphism $K[G] \rightarrow K^{\hat{G}}$ defined by $\hat{a}(\hat{g})=\sum_{g \in G} a(g)<g, \hat{g}>$ for choice of non-degenerate form $<g, \hat{g}>: G \times \hat{G} \rightarrow\langle\zeta>$.
- Fourier inversion theorem (conditions)

$$
(\# G)^{-1} \widehat{\hat{a}}(-g)=a(g) \quad \text { for } \quad a \in K[G]
$$

## Examples

- (Number Theoretic Transform) $K=\mathbb{Z} / p \mathbb{Z}$ for prime $p, \zeta$ primitive $n$-th root of unity in $K$


## Examples

- (Number Theoretic Transform) $K=\mathbb{Z} / p \mathbb{Z}$ for prime $p, \zeta$ primitive $n$-th root of unity in $K$
- (Fermat Ring)
$R=\mathbb{Z} / p \mathbb{Z}$ for $p=2^{a^{2}}+1$ (not necessarily prime), $a, K \in \mathbb{N}$. $2^{a}$ is a primitive $2^{K+1}$-th root of unity in $R$.


## Examples

- (Number Theoretic Transform)
$K=\mathbb{Z} / p \mathbb{Z}$ for prime $p, \zeta$ primitive $n$-th root of unity in $K$
- (Fermat Ring)
$R=\mathbb{Z} / p \mathbb{Z}$ for $p=2^{a^{2}}+1$ (not necessarily prime), $a, K \in \mathbb{N}$.
$2^{a}$ is a primitive $2^{K+1}$-th root of unity in $R$.
- $S=\mathbb{Z}[x] /\left(x^{2^{n}}+1\right)$


## Examples

- (Number Theoretic Transform)
$K=\mathbb{Z} / p \mathbb{Z}$ for prime $p, \zeta$ primitive $n$-th root of unity in $K$
- (Fermat Ring)
$R=\mathbb{Z} / p \mathbb{Z}$ for $p=2^{a^{2}}+1$ (not necessarily prime), $a, K \in \mathbb{N}$.
$2^{a}$ is a primitive $2^{K+1}$-th root of unity in $R$.
- $S=\mathbb{Z}[x] /\left(x^{2^{n}}+1\right)$
- (non-example) Mersenne Ring

$$
R=\mathbb{Z} / p \mathbb{Z} \text { for } p=2^{2^{K}}-1
$$

## Convolution

- $G$ an LCA with non-trivial Haar measure $\mu$ convolution of two absolutely integrable functions $f, g: G \rightarrow \mathbb{C}$ is defined by

$$
f \star g(x)=\int_{G} f(y) g(x-y) d \mu(y)
$$

## Convolution

- $G$ an LCA with non-trivial Haar measure $\mu$ convolution of two absolutely integrable functions $f, g: G \rightarrow \mathbb{C}$ is defined by

$$
f \star g(x)=\int_{G} f(y) g(x-y) d \mu(y)
$$

$$
\widehat{f \star g}(s)=\hat{f}(s) \hat{g}(s)
$$

"Fourier Transform converts convolution into "pointwise" multiplication"

## Convolution

- $G$ an LCA with non-trivial Haar measure $\mu$ convolution of two absolutely integrable functions $f, g: G \rightarrow \mathbb{C}$ is defined by

$$
f \star g(x)=\int_{G} f(y) g(x-y) d \mu(y)
$$

$$
\widehat{f \star g}(s)=\hat{f}(s) \hat{g}(s)
$$

"Fourier Transform converts convolution into "pointwise" multiplication"

- Retrieve convolution of $f, g$ using inverse Fourier transform


## Example

- $G=\mathbb{Z} / n \mathbb{Z}$, for $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ and $g=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \in \mathbb{C}[x] /\left(x^{n}-1\right)$, have

$$
(f \star g)_{j}=\sum_{m=0}^{n-1} a_{m} b_{j-m}(\bmod n)
$$

## Example

- $G=\mathbb{Z} / n \mathbb{Z}$, for $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ and $g=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \in \mathbb{C}[x] /\left(x^{n}-1\right)$, have

$$
(f \star g)_{j}=\sum_{m=0}^{n-1} a_{m} b_{j-m}(\bmod n)
$$

- Here convolution is multiplication of polynomials modulo $x^{n}-1$.


## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps


## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps
- Convolution can be computed naively in $O\left(n^{2}\right)$ steps


## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps
- Convolution can be computed naively in $O\left(n^{2}\right)$ steps
- Suppose $G$ has a increasing subgroup series

$$
0=G_{0} \subset G_{1} \subset \ldots \subset G_{K}=G
$$

## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps
- Convolution can be computed naively in $O\left(n^{2}\right)$ steps
- Suppose $G$ has a increasing subgroup series

$$
0=G_{0} \subset G_{1} \subset \ldots \subset G_{K}=G
$$

- Recall that

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps
- Convolution can be computed naively in $O\left(n^{2}\right)$ steps
- Suppose $G$ has a increasing subgroup series

$$
0=G_{0} \subset G_{1} \subset \ldots \subset G_{K}=G
$$

- Recall that

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

- Write every $g \in G$ as sum of element in $G_{K-1}$ and element from fixed set of representatives for $G_{K} / G_{K-1}$.


## Fast Fourier Transforms

- DFT can be computed naively in $O\left(n^{2}\right)$ steps
- Convolution can be computed naively in $O\left(n^{2}\right)$ steps
- Suppose $G$ has a increasing subgroup series

$$
0=G_{0} \subset G_{1} \subset \ldots \subset G_{K}=G
$$

- Recall that

$$
\hat{f}(\zeta)=\sum_{g \in G} \zeta(g) f(g)
$$

- Write every $g \in G$ as sum of element in $G_{K-1}$ and element from fixed set of representatives for $G_{K} / G_{K-1}$.
- For $\mathbb{Z} / 2^{n} \mathbb{Z}$ get Cooley-Tukey FFT, complexity $O(n \log n)$


## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.


## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.
- $g$ primitive root $\bmod p$, compute

$$
\hat{f}_{0}=\sum_{m=0}^{p-1} a_{m} \quad \text { and } \quad \hat{f}_{g^{-j}}=a_{0}+\sum_{m=0}^{p-2} a_{g^{m}} e^{-\frac{2 \pi i}{p} g^{-(j-m)}}
$$

## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.
- $g$ primitive root $\bmod p$, compute

$$
\hat{f}_{0}=\sum_{m=0}^{p-1} a_{m} \quad \text { and } \quad \hat{f}_{g^{-j}}=a_{0}+\sum_{m=0}^{p-2} a_{g^{m}} e^{-\frac{2 \pi i}{p} g^{-(j-m)}}
$$

- Sum is cyclic convolution of two length $p-1$ vectors


## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.
- $g$ primitive root $\bmod p$, compute

$$
\hat{f}_{0}=\sum_{m=0}^{p-1} a_{m} \quad \text { and } \quad \hat{f}_{g^{-j}}=a_{0}+\sum_{m=0}^{p-2} a_{g^{m}} e^{-\frac{2 \pi i}{p} g^{-(j-m)}}
$$

- Sum is cyclic convolution of two length $p-1$ vectors
- Compute using zero padded FFTs or recurse on Rader's FFT


## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.
- $g$ primitive root $\bmod p$, compute

$$
\hat{f}_{0}=\sum_{m=0}^{p-1} a_{m} \quad \text { and } \quad \hat{f}_{g^{-j}}=a_{0}+\sum_{m=0}^{p-2} a_{g^{m}} e^{-\frac{2 \pi i}{p} g^{-(j-m)}}
$$

- Sum is cyclic convolution of two length $p-1$ vectors
- Compute using zero padded FFTs or recurse on Rader's FFT
- Winograd generalised to prime powers


## Rader/Winograd FFT

- $G$ of prime order, work with the multiplicative group of invertible elements modulo $p$, order $p-1$.
- $g$ primitive root $\bmod p$, compute

$$
\hat{f}_{0}=\sum_{m=0}^{p-1} a_{m} \quad \text { and } \quad \hat{f}_{g^{-j}}=a_{0}+\sum_{m=0}^{p-2} a_{g^{m}} e^{-\frac{2 \pi i}{p} g^{-(j-m)}}
$$

- Sum is cyclic convolution of two length $p-1$ vectors
- Compute using zero padded FFTs or recurse on Rader's FFT
- Winograd generalised to prime powers
- Cost somewhere between $O\left(n^{2}\right)$ and $O(n \log n)$ for recursive Rader FFT


## Non-abelian DFTs

Can do DFTs for non-abelian finite groups $G$

- Replace characters with group representations $\rho: G \rightarrow G L_{n}(\mathbb{C})$


## Non-abelian DFTs

Can do DFTs for non-abelian finite groups $G$

- Replace characters with group representations $\rho: G \rightarrow G L_{n}(\mathbb{C})$
- Two reps. equivalent if same up to change of basis


## Non-abelian DFTs

Can do DFTs for non-abelian finite groups $G$

- Replace characters with group representations $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$
- Two reps. equivalent if same up to change of basis
- Complex reps. irreducible if not the direct sum of smaller reps


## Non-abelian DFTs

Can do DFTs for non-abelian finite groups $G$

- Replace characters with group representations $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$
- Two reps. equivalent if same up to change of basis
- Complex reps. irreducible if not the direct sum of smaller reps
- As many inequiv. irred. reps. as conjugacy classes in $G$


## Non-abelian DFTs

Can do DFTs for non-abelian finite groups $G$

- Replace characters with group representations $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$
- Two reps. equivalent if same up to change of basis
- Complex reps. irreducible if not the direct sum of smaller reps
- As many inequiv. irred. reps. as conjugacy classes in $G$
- If $f$ is a $\mathbb{C}$-valued fn . on a finite group $G$ then a Fourier transform of $f$ is a set of matrix sums

$$
\hat{f}(\rho)=\sum_{g \in G} f(g) \rho(g)
$$

one for each $\rho$ in a complete set $\mathcal{R}$ of inequiv. irred. reps.

## Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra $\mathbb{C}[G]$.

- Fourier transform is an isomorphism

$$
B=\oplus_{m=1}^{r} B_{m}: \mathbb{C}[G] \rightarrow \oplus_{m=1}^{r} \mathbb{C}^{b_{m} \times b_{m}}
$$

to algebra of block diagonal matrices, with $r$ the number of classes of inequiv. irred. reps. of $\mathbb{C}[G]$

## Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra $\mathbb{C}[G]$.

- Fourier transform is an isomorphism

$$
B=\oplus_{m=1}^{r} B_{m}: \mathbb{C}[G] \rightarrow \oplus_{m=1}^{r} \mathbb{C}^{b_{m} \times b_{m}}
$$

to algebra of block diagonal matrices, with $r$ the number of classes of inequiv. irred. reps. of $\mathbb{C}[G]$

- Fourier inversion formula, for $\mathcal{R}$ is

$$
f(g)=\frac{1}{\# G} \sum_{\rho \in \mathcal{R}} \operatorname{dim}(\rho) \operatorname{Tr}\left(\hat{f}(\rho) \rho\left(g^{-1}\right)\right)
$$

where $\operatorname{Tr}(M)$ is trace of $M$

## Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra $\mathbb{C}[G]$.

- Fourier transform is an isomorphism

$$
B=\oplus_{m=1}^{r} B_{m}: \mathbb{C}[G] \rightarrow \oplus_{m=1}^{r} \mathbb{C}^{b_{m} \times b_{m}}
$$

to algebra of block diagonal matrices, with $r$ the number of classes of inequiv. irred. reps. of $\mathbb{C}[G]$

- Fourier inversion formula, for $\mathcal{R}$ is

$$
f(g)=\frac{1}{\# G} \sum_{\rho \in \mathcal{R}} \operatorname{dim}(\rho) \operatorname{Tr}\left(\hat{f}(\rho) \rho\left(g^{-1}\right)\right)
$$

where $\operatorname{Tr}(M)$ is trace of $M$

- FFT for $G$ requires subgroup series and notion of $H$-adapted reps. for subgroup $H$ of $G$, etc.


## Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra $\mathbb{C}[G]$.

- Fourier transform is an isomorphism

$$
B=\oplus_{m=1}^{r} B_{m}: \mathbb{C}[G] \rightarrow \oplus_{m=1}^{r} \mathbb{C}^{b_{m} \times b_{m}}
$$

to algebra of block diagonal matrices, with $r$ the number of classes of inequiv. irred. reps. of $\mathbb{C}[G]$

- Fourier inversion formula, for $\mathcal{R}$ is

$$
f(g)=\frac{1}{\# G} \sum_{\rho \in \mathcal{R}} \operatorname{dim}(\rho) \operatorname{Tr}\left(\hat{f}(\rho) \rho\left(g^{-1}\right)\right)
$$

where $\operatorname{Tr}(M)$ is trace of $M$

- FFT for $G$ requires subgroup series and notion of $H$-adapted reps. for subgroup $H$ of $G$, etc.
- Set $\mathcal{R}$ of reps. of $G$ is $H$-adapted if when restricted to $H$ they can be constructed as direct products of fixed set of inequiv. irred. reps. of $H$


## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication


## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication
- Middle product for use in division algorithms


## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication
- Middle product for use in division algorithms
- Number Theoretic Transform $G=\mathbb{Z} / p \mathbb{Z}, p$ odd prime


## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication
- Middle product for use in division algorithms
- Number Theoretic Transform $G=\mathbb{Z} / p \mathbb{Z}, p$ odd prime
- Multidimensional FFTs, $G=\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{r}$ for multivariate polynomial arithmetic


## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication
- Middle product for use in division algorithms
- Number Theoretic Transform $G=\mathbb{Z} / p \mathbb{Z}, p$ odd prime
- Multidimensional FFTs, $G=\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{r}$ for multivariate polynomial arithmetic
- Gauss Sum

$$
G(a ; p)=\sum_{j=0}^{p-1}\left(\frac{j}{p}\right) e^{2 \pi \mathrm{iaj} / p}
$$

for $p$ an odd prime, is a DFT

## Applications of DFT

- Fast Fourier Transform $G=\mathbb{Z} / 2^{n} \mathbb{Z}$, used in fast polynomial and large integer multiplication
- Middle product for use in division algorithms
- Number Theoretic Transform $G=\mathbb{Z} / p \mathbb{Z}, p$ odd prime
- Multidimensional FFTs, $G=\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{r}$ for multivariate polynomial arithmetic
- Gauss Sum

$$
G(a ; p)=\sum_{j=0}^{p-1}\left(\frac{j}{p}\right) e^{2 \pi \mathrm{iaj} / p}
$$

for $p$ an odd prime, is a DFT

- $G(a ; p)=\left(\frac{a}{p}\right) i^{(p-1) / 2} \sqrt{p}$, so Legendre symbol is essentially its own DFT


## Questions

- What other applications exist for DFT for abelian and non-abelian groups?


## Questions

- What other applications exist for DFT for abelian and non-abelian groups?
- What does Sage implement in the way of DFTs for abelian LCAs?


## Questions

- What other applications exist for DFT for abelian and non-abelian groups?
- What does Sage implement in the way of DFTs for abelian LCAs?
- What does Sage implement in the way of DFTs for nonabelian LCHTGs?

