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Introduction

We will study three related classes of objects:

Complex AGM sequences (first studied by Gauss!)
Chains of lattices in C
Chains of 2-isogenies between elliptic curves over C

in order to give efficient computational solutions to these questions:

1 How can we compute a basis for the period lattice Λ of an elliptic
curve E defined over C, given by a Weierstrass equation?

2 Given a point P = (x, y) ∈ E(C), how can we compute its elliptic
logarithm z ∈ C (mod Λ)?
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Complex AGM sequences

The real AGM

Let a, b be positive real numbers. Set a0 = 1, b0 = b, and for all n ≥ 0,

an+1 = +
1
2
(an + bn), bn+1 = +

√
anbn.

Then lim an and lim bn both exist and are equal. Their common value is
the Arithmetic-Geometric Mean M(a, b).

The AGM is well known and has been used for centuries in evaluating
(real) elliptic integrals. For example:∫ π/2

0

dx√
a2 cos2 x + b2 sin2 x

=
π

2M(a, b)
.
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Complex AGM sequences

Complex AGM sequences

We now consider pairs a, b ∈ C such that ab(a2 − b2) 6= 0.

A pair is good if |a− b| ≤ |a + b|, or equivalently <(a/b) ≥ 0.

An AGM sequence is a sequence ((an, bn))∞n=0, whose pairs
(an, bn) ∈ C2 satisfy

2an+1 = an + bn, b2
n+1 = anbn

for all n ≥ 0.

There are uncountably many AGM sequences starting with (a0, b0).

an+1 = (an + bn)/2 and bn+1 = ±
√

anbn, with either choice of sign at
each step.
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Complex AGM sequences

Good sequences and optimality

An AGM sequence is

good if (an, bn) is good for all but finitely many n, else bad;
optimal if (an, bn) is good for all n > 0;
strongly optimal if (an, bn) is good for all n ≥ 0;

For every starting pair (a0, b0) there is exactly one optimal AGM
sequence, unless a0/b0 is real and negative, in which case there are
two, with different signs of b1.

These have the property that the ratios an/bn in one of the sequences
are the complex conjugates of those in the other.
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Complex AGM sequences

Limits of AGM sequences

All AGM sequences have limits. More precisely:

For every AGM sequence ((an, bn))∞n=0 starting at (a0, b0):

1 limn→∞ an and limn→∞ bn exist and are equal;
2 The common limit M is non-zero iff the sequence is good;
3 |M| attains its maximum iff the sequence is optimal.

The first two parts of this are elementary. The third (harder) implies

|M(a, b)| ≥ |M(a,−b)| ⇐⇒ |a− b| ≤ |a + b|.
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Lattice chains and isogeny chains

Lattices and lattice chains

A lattice is a discrete free rank 2 Z-module in C.

A lattice chain is an infinite nested sequence of lattices

Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ . . .

such that [Λn : Λn+1] = 2 and Λn+1 6= 2Λn−1 for all n ≥ 1 (so Λ0/Λn is
cyclic of order 2n).

For each n ≥ 1 we have Λn+1 = 〈w〉+ 2Λn for some w ∈ Λn \ 2Λn−1.

Given Λ0, there are three possibilities for Λ1, and then two choices for
Λn for n ≥ 2.

The number of such chains starting with Λ0 is uncountable.
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Lattice chains and isogeny chains

Good lattice chains and limiting periods

Let

Λ∞ =
∞⋂

n=0

Λn.

Then one of two possibilities occurs (since Λ∞ has infinite index):

if Λ∞ = {0}, the chain is bad;
if Λ∞ is free of rank 1, the chain is good.

In a good chain, Λ∞ = 〈w∞〉 for some primitive period w∞, called a
limiting period of the chain.
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Lattice chains and isogeny chains

Good and bad choices in lattice chains

Λn+1 ⊂ Λn is the right choice of sublattice of Λn if Λn+1 = 〈w〉+ 2Λn

where w is a minimal element in Λn \ 2Λn−1 (with respect to the usual
complex absolute value).

For a good chain (Λn)∞n=0, the limiting period w∞ is minimal in Λn for all
but finitely many n ≥ 0.

A chain is good if and only if Λn+1 ⊂ Λn is the right choice for all but
finitely many n ≥ 1.
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Lattice chains and isogeny chains

Optimal chains

A lattice chain is optimal if Λn+1 ⊂ Λn is the right choice for all n ≥ 1.

There is usually one optimal chain for each of the three choices of Λ1.

More precisely, a good chain is optimal if and only if w∞ is a minimal
coset representative of 2Λ0 in Λ0; and the only situation in which
minimal coset representatives are not unique (up to sign) is for
rectangular lattices where the “diagonal” coset has a pair of minimal
representatives (up to sign).

When Λ0 is rectangular with orthogonal basis w1,w2 there are four
optimal chains, including two with Λ1 = 〈w1 + w2〉+ 2Λ0.
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Lattice chains and isogeny chains

Coset representatives and Z-bases

A good chain of lattices with limiting period w∞ is optimal if and only if
w∞ is a minimal coset representative of 2Λ0 in Λ0.

Every non-rectangular lattice Λ has precisely three optimal sublattice
chains, whose limiting periods are the minimal coset representatives in
each of the three non-zero cosets of 2Λ in Λ.

Every rectangular lattice Λ has precisely four optimal sublattice chains.

We will need these results to show that our AGM-based algorithm not
only finds individual primitive periods, but actually gives a Z-basis for
the period lattice. This uses one more easy fact:

For j = 1, 2, 3, let wj be minimal coset representatives for 2Λ in Λ. Then
any two of the wj form a Z-basis for Λ.
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Lattice chains and isogeny chains

Level 4 structure
We link AGM sequences with lattice chains via level 4 structure on
elliptic curves and 2-isogenies.

There are bijections between the following sets:

1 “short” lattice chains Λ0 ⊃ Λ1 ⊃ Λ2 with Λ0/Λ2 cyclic of order 4;
2 triples (E, ω,H) where E is an elliptic curve defined over C, ω a

differential on E, and H ⊂ E(C) a cyclic subgroup of order 4;
3 unordered pairs of nonzero complex numbers a, b with a2 6= b2,

where the pairs a, b and −a,−b are identified.

(1)↔ (2) is clear. For (2)↔ (3) we use the elliptic curve

E{a,b} : Y2 = 4X(X + a2)(X + b2)

on which P{a,b} = (ab, 2ab(a + b)) has order 4 and 2P = T = (0, 0).
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Lattice chains and isogeny chains

Modular functions

Up to homothety our level 4 structures are parametrized by points τ in
the affine modular curve Y0(4) = Γ0(4)\H where H is the upper
half-plane.

The ratio a/b is a modular function (of τ ).

In fact,

τ 7→ κ(τ) = a/b is a hauptmodul for Γ0(4) ∩ Γ(2);
τ 7→ λ(τ) = a2/b2 is a hauptmodul for Γ(2);
τ 7→ f (τ) = a/b + b/a is a hauptmodul for Γ0(4);

f (τ) = 2(1 + λ(2τ))/(1− λ(2τ))

where λ(τ) is the classical Legendre elliptic function on Γ(2).

John Cremona (Warwick) Complex AGM, periods and elliptic logs 15 / 40



Lattice chains and isogeny chains

Modular functions

Up to homothety our level 4 structures are parametrized by points τ in
the affine modular curve Y0(4) = Γ0(4)\H where H is the upper
half-plane.

The ratio a/b is a modular function (of τ ). In fact,

τ 7→ κ(τ) = a/b is a hauptmodul for Γ0(4) ∩ Γ(2);
τ 7→ λ(τ) = a2/b2 is a hauptmodul for Γ(2);
τ 7→ f (τ) = a/b + b/a is a hauptmodul for Γ0(4);

f (τ) = 2(1 + λ(2τ))/(1− λ(2τ))

where λ(τ) is the classical Legendre elliptic function on Γ(2).

John Cremona (Warwick) Complex AGM, periods and elliptic logs 15 / 40



Lattice chains and isogeny chains

Application of modular functions

By studying the values taken by the modular function f on the upper
half-plane, one can prove:

Theorem
Let Λ0 ⊃ Λ1 ⊃ Λ2 be a short lattice chain corresponding to the
unordered pair {a, b} and modular parameter f . The following are
equivalent:

1 Λ2 is the right choice of sublattice of Λ1;
2 the pair (a, b) is good;
3 <(f ) ≥ 0.
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Lattice chains and isogeny chains

The link: isogeny chains

Let Λ0 be the period lattice of an elliptic curve E0/C with Weierstrass
equation

E0 : Y2
0 = 4(X0 − e(0)

1 )(X0 − e(0)
2 )(X0 − e(0)

3 ).

Let
a0 = ±

√
e(0)

1 − e(0)
3 , b0 = ±

√
e(0)

1 − e(0)
2 .

Fixing the order and signs of a0, b0 corresponds to fixing a point P of
order 4 on E0 with 2P = T = (e(0)

1 , 0), and to fixing a short lattice chain
Λ0 ⊃ Λ1 ⊃ Λ2.

AGM sequences ((an, bn))∞n=0 starting from (a0, b0) now correspond to
lattice chains (Λn) with the same three starting terms.
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Lattice chains and isogeny chains

The link: isogeny chains

For each n ≥ 0 let

e(n)
1 =

a2
n + b2

n

3
, e(n)

2 =
a2

n − 2b2
n

3
, e(n)

3 =
b2

n − 2a2
n

3
.

and En the curve with equation Y2
n = 4(Xn − e(n)

1 )(Xn − e(n)
2 )(Xn − e(n)

3 ).

Λn is the period lattice of En and there are 2-isogenies ϕn : En → En−1
induced by C/Λn → C/Λn−1, which fit together to form an isogeny
chain:

· · · // En
ϕn // En−1 // · · · // E1 // E0

where ϕn((e
(n)
1 , 0)) = (e(n−1)

1 , 0) for all n ≥ 1.
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Lattice chains and isogeny chains

The limit

Assume that the AGM sequence (an, bn) is good, with nonzero limit M.
Then

lim
n→∞

e(n)
1 =

2
3

M2; lim
n→∞

e(n)
2 = lim

n→∞
e(n)

3 =
−1
3

M2.

Equivalently, the lattice chain (Λn) is good, with limiting period w∞:

C

��

· · ·oo Coo

��

Cidoo

��

· · ·oo C

��

oo

C/Λ0

��

· · ·oo C/Λn

℘n

��

oo C/Λn+1

℘n+1

��

oo · · ·oo C/〈w∞〉

��

oo

E0 · · ·oo Enoo En+1ϕn
oo · · ·oo E∞oo

where E∞ is the singular curve Y2 = 4(X − 2M2/3)(X + M2/3)2.
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Lattice chains and isogeny chains

Summary so far
We have established bijections between three sets:

1 all AGM sequences starting at (a0, b0);
2 all isogeny chains starting with the short chain E2 → E1 → E0;
3 all lattice chains starting with the short chain Λ0 ⊃ Λ1 ⊃ Λ2.

such that for all n,

1 En ∼= E{an,bn}
∼= C/Λn;

2 Λn ⊃ Λn+1 ⊃ Λn+2 is a short chain;
3 Λn+2 is the right choice of sublattice of Λn+1 if and only if (an, bn) is

a good pair;
4 the lattice chain (Λn) is good (respectively, optimal) if and only if

the sequence ((an, bn)) is good (respectively, optimal).
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Periods of elliptic curves over C

Computing periods via AGM
We now show how every primitive period w1 of E0 may be expressed in
terms of the limit of a suitable AGM sequence.

w1 determines a good lattice chain with Λn = 〈w1〉+ 2nΛ0
(and conversely, since ∩nΛn = 〈w1〉).

The lattice chain in turn determines a good AGM sequence ((an, bn))
starting at a pair (a0, b0) such that E0 ∼= E{a0,b0}.

Theorem
Let (Λn) be a good lattice sequence with limiting period w1 (generating
∩Λn, and defined up to sign). Then for all z ∈ C \ Λ0 we have

lim
n→∞

℘Λn
(z) =

(
π

w1

)2( 1
sin2(zπ/w1)

− 1
3

)
lim

n→∞
℘′

Λn
(z) = −2

(
π

w1

)3( cos(zπ/w1)
sin3(zπ/w1)

)
.
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lim

n→∞
℘′

Λn
(z) = −2

(
π

w1

)3( cos(zπ/w1)
sin3(zπ/w1)

)
.
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Periods of elliptic curves over C

The period formula
Taking z = w1/2 we find:

Corollary

In the above notation, let (Λn) be a (good) lattice chain, with limiting
period w1, associated to the elliptic curve E0 and the (good) AGM
sequence ((an, bn)) with non-zero limit M. Then M = ±π/w1, so that
the period w1 may be determined up to sign by

w1 = ±π/M.

Choosing different good AGM sequences we obtain all primitive
periods in the coset w1 + 4Λ0; the optimal sequence’s limit gives the
minimal such period.
Choosing the sign of b0 so that (a0, b0) is good, the strongly optimal
AGM sequence’s limit gives the minimal period in the same coset
w1 + 2Λ0.

John Cremona (Warwick) Complex AGM, periods and elliptic logs 22 / 40



Periods of elliptic curves over C

The period formula
Taking z = w1/2 we find:

Corollary

In the above notation, let (Λn) be a (good) lattice chain, with limiting
period w1, associated to the elliptic curve E0 and the (good) AGM
sequence ((an, bn)) with non-zero limit M. Then M = ±π/w1, so that
the period w1 may be determined up to sign by

w1 = ±π/M.

Choosing different good AGM sequences we obtain all primitive
periods in the coset w1 + 4Λ0; the optimal sequence’s limit gives the
minimal such period.
Choosing the sign of b0 so that (a0, b0) is good, the strongly optimal
AGM sequence’s limit gives the minimal period in the same coset
w1 + 2Λ0.

John Cremona (Warwick) Complex AGM, periods and elliptic logs 22 / 40



Periods of elliptic curves over C

Another corollary

Corollary

|AGM(a0, b0)| attains its maximum among all limits of AGM-sequences
starting at (a0, b0) if and only if the sequence is optimal.
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Periods of elliptic curves over C

Conclusion: computing periods I
Let E be an elliptic curve over C given by the Weierstrass equation

Y2 = 4(X − e1)(X − e2)(X − e3),

with period lattice Λ. Set

a0 =
√

e1 − e3, b0 =
√

e1 − e2,

where the signs are chosen so that (a0, b0) is good, i.e.,

|a0 − b0| ≤ |a0 + b0|,

and let
w1 =

π

AGM(a0, b0)
,

using the optimal value of the AGM. Then w1 is a primitive period of E,
and is a minimal period in its coset modulo 2Λ.

Define w2, w3 similarly by permuting the ej; then any two of w1,w2,w3
form a Z-basis for Λ.
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Periods of elliptic curves over C

Conclusion: computing periods II

Let E be an elliptic curve over C given by the Weierstrass equation

Y2 = 4(X − e1)(X − e2)(X − e3),

with period lattice Λ. Order the roots (e1, e2, e3) of E, so that the signs
of a =

√
e1 − e3, b =

√
e1 − e2, c =

√
e2 − e3 may be chosen to satisfy

|a− b| ≤ |a + b|, |c− ib| ≤ |c + ib|, |a− c| ≤ |a + c|.

Define
w1 =

π

M(a, b)
, w2 =

π

M(c, ib)
, w3 =

iπ
M(a, c)

.

Then each wj is a primitive period, minimal in its coset modulo 2Λ, and
any two of the wj form a Z-basis for Λ.
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Periods of elliptic curves over C

Special Case I: Real Curves with ∆ > 0

Here the ej are all real and we may order them so that e1 > e2 > e3.

We obtain a rectangular basis for the period lattice by setting

w1 = π/AGM(
√

e1 − e2,
√

e1 − e3),
w2 = πi/AGM(

√
e2 − e3,

√
e1 − e3)

with all square roots positive; then w1 and w2/i are both real and
positive.
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Periods of elliptic curves over C

Special Case II: Real Curves with ∆ < 0
Order the roots so that e1 ∈ R and e2 = e3.

Set a0 =
√

e1 − e3 = x + yi; we may assume that x, y > 0 by swapping
e2, e3 or changing the sign of a0 if necessary. Set r =

√
x2 + y2 > 0 and

b0 =
√

e1 − e2 = x− yi. Now

w+ = π/AGM(a0, b0) = π/AGM(x + yi, x− yi) = π/AGM(x, r)

is a real period, and

w− = π/AGM(−a0, b0) = πi/AGM(y− xi, y + xi) = πi/AGM(y, r).

is an imaginary period.

These periods span a sublattice of index 2 in the period lattice, for
which a Z-basis may be taken to be

w1 = w+ and w2 = (w+ + w−)/2,

with <(w2/w1) = 1/2.
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Complex elliptic logarithms

The problem

We wish to invert the map

C // C/Λ

℘
Λ // E(C).

The elliptic logarithm of P = (x, y) ∈ E(C) is any z ∈ C such that

℘Λ(z) := (℘(z; Λ), ℘′(z; Λ)) = (x, y).
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Complex elliptic logarithms

Recall the diagram:

C

��

· · ·oo Coo

��

Cidoo

��

· · ·oo C

��

oo

C/Λ0

��

· · ·oo C/Λn

℘n

��

oo C/Λn+1

℘n+1

��

oo · · ·oo C/〈w∞〉

��

oo

E0 · · ·oo Enoo En+1ϕn
oo · · ·oo E∞oo

Given z ∈ C define Pn = ℘n(z) for n ≥ 0.

Then ϕn(Pn+1) = Pn for n ≥ 0.

If lim Pn = (x∞, y∞) then one can recover z from x∞, y∞ using formulae
given earlier for lim℘n(z), lim℘′n(z).
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Complex elliptic logarithms

Coherent sequences

Conversely, to each P = P0 ∈ E0(C) there are uncountably many such
“coherent sequences” (Pn), of which only a countable number arise in
this way, one for each choice of z with ℘0(z) = P0. (These z values form
a whole coset of Λ0 in C.) We call the latter “good sequences”.

We will recursively compute the point sequence (Pn) = ((xn, yn))
from P = (x, y). At each stage there will be two choice of preimage
Pn+1 ∈ ϕ−1

n (Pn). Of these, we can specify one as the “right choice” in
such a way that the countable number of good sequences are exactly
those in which all but a finite number of choices are right.
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Complex elliptic logarithms

Choices

To any coherent sequence (Pn) we associate the nested sequence of
cosets Cn = zn + Λn, where zn is any elog of Pn.

· · · ⊃ Cn ⊃ Cn+1 ⊃ . . . .

Each Λn-coset Cn splits into two Λn+1-cosets, one of which is Cn+1.

The point sequence is good if and only if ∩Cn 6= ∅. In this case the
intersection is a coset of Λ∞.

The right choice of Cn+1 (or equivalently of Pn+1) is the one containing
the minimal element of Cn.

Discreteness implies that ∩Cn 6= ∅ iff Cn+1 is the right choice for all but
finitely many n.
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Complex elliptic logarithms

New coordinates

It turns out to yield simpler formulae if instead of coordinates (xn, yn) on
En we use coordinates (tn, un, vn) where

t2
n + e(n)

1 = u2
n + e(n)

2 = v2
n + e(n)

3 = xn

2tnunvn = yn.

The formula for the 2-isogeny now gives

un =
1
2
(un−1 + vn−1),

vn = ±
√

u2
n − a2

n + b2
n,

tn =
untn−1

vn
.

and the “right choice” is to take |vn − un| ≤ |vn + un|.
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Complex elliptic logarithms

The elliptic logarithm algorithm

Input: An elliptic curve E defined over C, with roots e1, e2, e3;
a point P = (x, y) ∈ E(C) with y 6= 0.

1 Let a0 =
√

e1 − e3 and b0 =
√

e1 − e2.
Choose the sign of b0 so that |a0 − b0| ≤ |a0 + b0|.

2 Let u0 =
√

x− e3 and v0 =
√

x− e2.
Choose the sign of v0 so that |u0 − v0| ≤ |u0 + v0|.

3 Let t0 = −y/(2u0v0).
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Complex elliptic logarithms

4 Set n = 1. Repeat the following:
1 Let

an =
an−1 + bn−1

2
, bn =

√
an−1bn−1, cn =

√
a2

n − b2
n.

Choose the sign of bn so that |an − bn| ≤ |an + bn|.
2 Let un = (un−1 + vn−1)/2 and vn =

√
u2

n − c2
n.

Choose the sign of vn so that |un − vn| ≤ |un + vn|.
3 Let tn = untn−1/vn.
4 n← n + 1.

5 Let M = lim an and T = lim tn.

Output:

zP =
1
M

arctan
(

M
T

)
.
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Complex elliptic logarithms

4 Set n = 1. Repeat the following:
1 Let

an =
an−1 + bn−1

2
, bn =

√
an−1bn−1, cn =

√
a2

n − b2
n.

Choose the sign of bn so that |an − bn| ≤ |an + bn|.
2 Let un = (un−1 + vn−1)/2 and vn =

√
u2

n − c2
n.

Choose the sign of vn so that |un − vn| ≤ |un + vn|.
3 Let tn = untn−1/vn.
4 n← n + 1.

5 Let M = lim an and T = lim tn.

Output:

zP =
1
M

arctan
(

M
T

)
.

John Cremona (Warwick) Complex AGM, periods and elliptic logs 34 / 40



Examples

Implementations

We have implemented the algorithm in both SAGE and MAGMA.

The Sage version (by JEC) was merged in version 4.4 of Sage after
ticket #6390 was positively reviewed by Chris Wüthrich. We also
needed to re-implement the complex AGM since previously SAGE used
PARI/GP’s agm function, which does not give “optimal” values. That was
done jointly by JEC and Robert Bradshaw (in Cython for efficiency).

The Magma version was implemented by TT, who also provided the
examples.

We will only give one example here. For more examples, see
http://www.sagemath.org/doc/reference/sage/schemes/
elliptic_curves/period_lattice.html!
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Examples

Example
Let E be the elliptic curve over C given by the Weierstrass equation

E : Y2 = 4(X − e1)(X − e2)(X − e3)

with
e1 = 3− 2i, e2 = 1 + i, e3 = −4 + i.

Now

a0 = 2.70331029534753078867 . . .− i0.55487525889334275023 . . .

b0 = 1.67414922803554004044 . . .− i0.89597747612983812471 . . .

c0 = 2.23606797749978969640 . . .

satisfy
a2

0 = e1 − e3, b2
0 = e1 − e2, c2

0 = a2
0 − b2

0,

and

|a1 − b1| < |a1 + b1|, |c1 − ib0| < |c0 + ib0|, |a0 − c0| < |a0 + c0|.
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Examples

Example (continued)
The minimal periods are

w1 = 1.29215151748713051904 . . .+ i0.44759218107818896608 . . . ,

w2 = 1.42661373451784507587 . . .− i0.80963848056301882107 . . . ,

w3 = −0.13446221703071455682 . . .+ i1.25723066164120778715 . . . ;

any two of wj form a Z-basis for Λ, the period lattice of E.

Next, we wish to compute an elliptic logarithm of the point

P = (2− i, 8 + 4i) ∈ E(C)

(which has infinite order). We find

zP = −0.72212997914002299126 . . .+ i0.01717122412650902249 . . . .
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Local heights at complex infinite places

Canonical heights

If E is an elliptic curve defined over a number field K, then the
canonical or Néron-Tate height of of K of local heights.

At finite (non-archimedean) places this is easy to compute.

At real and complex places there are several methods available.

Mestre showed how to use real AGM sequences (and the same chain
of 2-isogenies as for computing periods) to compute the local height of
a point at a real place.
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Local heights at complex infinite places

Complex local heights

Using complex AGM sequences, we are extending Mestre’s method to
an algorithm for computing local heights at complex places.

As with all AGM-based methods, the convergence is very fast, allowing
for very high precision to be attained easily.

One problem: for the elliptic log algorithm there are many “correct”
answers since the elliptic log is only well-defined modulo the period
lattice. In some ways it does not matter which representative value the
algorithm produces.

However, the local height is a uniquely determined number: so we
have to be very careful to determine exactly what the effect of taking
different choices in the AGM sequences is.

This work is still in progress!
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Hup Holland hup

Hup Holland hup!
Laat de leeuw niet in z’n hempie staan
Hup Holland hup!
Trek het beessie geen pantoffels aan
Hup Holland hup!
Laat je uit ’t veld niet slaan
Want de leeuw op voetbalschoenen
Durft de hele wereld aan
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