
How to Parallelize Singular–Code for Multiple
Core Machines

Stefan Steidel

Technische Universität Kaiserslautern

ITWM Kaiserslautern, July 15, 2010

First Steps for Parallelization in Singular

Technical Facts

Parallelization just possible on Singular library level
(interpreter language) – not yet in the kernel

via MP-links

Applications – Modular Algorithms

modular computation of Gröbner bases over Q (cf.
modstd.lib)

modular computation of associated primes of a
zero–dimensional ideal over Q (cf. assprime.lib)

primary decomposition over Z (to appear)

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

First Steps for Parallelization in Singular

Technical Facts

Parallelization just possible on Singular library level
(interpreter language) – not yet in the kernel

via MP-links

Applications – Modular Algorithms

modular computation of Gröbner bases over Q (cf.
modstd.lib)

modular computation of associated primes of a
zero–dimensional ideal over Q (cf. assprime.lib)

primary decomposition over Z (to appear)

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Idea of modStd:

I > Gp1
.........> Gpi

.........> Gps > C.R.T. > Farey > G

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Idea of parallelized modStd:

Gp1
.......> Gps−m+1

...
...

I >

>

Gpi
........> Gps−m+i > C.R.T. >

>
Farey > G

...
...

Gpm
...........>

>

Gps

>

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Details about the implementation of the procedure modStd can be
found on the handout resp. in the Singular library modstd.lib.

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Example:

Compute the Gröbner basis of cyclic(8) ⊆ Q[x1, . . . , x8] with
monomial ordering >dp.

Timings are conducted by using the 32-bit version of Singular
3-1-1 on an Intel R© Xeon R© X5460 with 4 CPUs, 3.16 GHz each,
64 GB RAM under the Gentoo Linux operating system.

using std (basic Gröbner basis algorithm in Singular):
killed after more than 2 days because of memory

using modStd:
4652 sec

using parallelized modStd:
2692 sec

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Example:

Compute the Gröbner basis of cyclic(8) ⊆ Q[x1, . . . , x8] with
monomial ordering >dp.

Timings are conducted by using the 32-bit version of Singular
3-1-1 on an Intel R© Xeon R© X5460 with 4 CPUs, 3.16 GHz each,
64 GB RAM under the Gentoo Linux operating system.

using std (basic Gröbner basis algorithm in Singular):
killed after more than 2 days because of memory

using modStd:
4652 sec

using parallelized modStd:
2692 sec

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Example:

Compute the Gröbner basis of cyclic(8) ⊆ Q[x1, . . . , x8] with
monomial ordering >dp.

Timings are conducted by using the 32-bit version of Singular
3-1-1 on an Intel R© Xeon R© X5460 with 4 CPUs, 3.16 GHz each,
64 GB RAM under the Gentoo Linux operating system.

using std (basic Gröbner basis algorithm in Singular):
killed after more than 2 days because of memory

using modStd:
4652 sec

using parallelized modStd:
2692 sec

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Example:

Compute the Gröbner basis of cyclic(8) ⊆ Q[x1, . . . , x8] with
monomial ordering >dp.

Timings are conducted by using the 32-bit version of Singular
3-1-1 on an Intel R© Xeon R© X5460 with 4 CPUs, 3.16 GHz each,
64 GB RAM under the Gentoo Linux operating system.

using std (basic Gröbner basis algorithm in Singular):
killed after more than 2 days because of memory

using modStd:
4652 sec

using parallelized modStd:
2692 sec

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Parallelized Modular Gröbner Basis Computation

Example:

Compute the Gröbner basis of cyclic(8) ⊆ Q[x1, . . . , x8] with
monomial ordering >dp.

Timings are conducted by using the 32-bit version of Singular
3-1-1 on an Intel R© Xeon R© X5460 with 4 CPUs, 3.16 GHz each,
64 GB RAM under the Gentoo Linux operating system.

using std (basic Gröbner basis algorithm in Singular):
killed after more than 2 days because of memory

using modStd:
4652 sec

using parallelized modStd:
2692 sec

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Problems and Outlook

Parallelization is just applicable using 32–bit Singular
version since MP–links are not compatible with 64–bit
Singular version.

MP–links are not compatible with polynomial ring over the
integers.

Enable parallelization in the kernel.

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Problems and Outlook

Parallelization is just applicable using 32–bit Singular
version since MP–links are not compatible with 64–bit
Singular version.

MP–links are not compatible with polynomial ring over the
integers.

Enable parallelization in the kernel.

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

Problems and Outlook

Parallelization is just applicable using 32–bit Singular
version since MP–links are not compatible with 64–bit
Singular version.

MP–links are not compatible with polynomial ring over the
integers.

Enable parallelization in the kernel.

Stefan Steidel How to Parallelize Singular–Code for Multiple Core Machines ITWM Kaiserslautern, July 15, 2010

