Non-commutative Extensions of Singular

Viktor Levandovskyy

RWTH Aachen

14.07.2010, SAGE Days, Kaiserslautern

Outline

(1) Plural: non-commutative $G R$-algebras
(2) LOCAPAL: certain Ore localizations of G-algebras
(3) Letterplace: free associative algebras
(4) SCA: super and graded commutative algebras

To each subsystem: (draw a pic at this place)

- Description and maths behind
- Current status of the implementation
- Functionality under current development
- Ambitious future plans and wishes to SINGULAR

1. Singular:Plural. Description I

Mission Statement

Provide most computer algebraic functionality for modules over the ubiqitous class of $G R$-algebras, that is factor algebras by two-sided ideals of G-algebras.

Properties

G-algebra is a Noetherian domain with PBW basis, that is any polynomial can be represented in terms of standard monomials $x^{\alpha}, \alpha \in \mathbb{N}^{n}$. SINGULAR polynomial data structures are unchanged.

Objects: by default, ideal or module stands for a left object. There are some functions for two-sided input like twostd, which convert them to left-sided structures.

1. Singular:Plural. Description II

Construction of a G-algebra

- exact field \mathbb{K} (available in SINGULAR), variables x_{1}, \ldots, x_{n} and a global monomial ordering \prec, set $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{\prec}$
- define $C \in \operatorname{Mat}(\mathbb{K}, n \times n)$ for coefficients $c_{i j} \neq 0$ for $i<j$
- define strictly upper triangular matrix $D \in \operatorname{Mat}(R, n \times n)$ for rests
- ensure that $\forall 1 \leq i<j \leq n, \operatorname{lm}_{\prec} d_{i j}<x_{i} x_{j}$
- create non-commutative algebra with relations $x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}$
- calling def $\mathrm{G}=$ nc_algebra(C, D) produces a non-commutative algebra with relations $x_{j} x_{i}=c_{i j} x_{i} x_{j}+d_{i j}$
- for G-algebra we need to ensure, that $\forall 1 \leq i<j<k \leq n$

$$
c_{i k} c_{j k} \cdot d_{i j} x_{k}-x_{k} d_{i j}+c_{j k} \cdot x_{j} d_{i k}-c_{i j} \cdot d_{i k} x_{j}+d_{j k} x_{i}-c_{i j} c_{i k} \cdot x_{i} d_{j k}=0
$$

1. Singular:Plural. Status I

Singular:Plural by Greuel, Levandovskyy, Motsak and Schönemann became an integral part of SINGULAR in 2005 and since version 3-0-0 is distributed together with Singular.

- left Gröbner basis for a left submodule (std, slimgb)
- left syzyay module (syz)
- left transformation matrix between two left bases (lift)
- two-sided Gröbner basis of an ideal (twostd)

1. Singular:Plural. Status I

Singular:Plural by Greuel, Levandovskyy, Motsak and Schönemann became an integral part of Singular in 2005 and since version 3-0-0 is distributed together with Singular.
Gröbner trinity is implemented:

- left Gröbner basis for a left submodule (std, slimgb)
- left syzygy module (syz)
- left transformation matrix between two left bases (lift)
- two-sided Gröbner basis of an ideal (twostd)

1. Singular:Plural. Status II

Most of classical Gröbner basics are implemented:

- Ideal (resp. module) membership problem (NF , reduce)
- Intersection with subrings (elimination of variables) (eliminate)
- Intersection of ideals (resp. submodules) (intersect)
- Quotient and saturation of ideals (quot)
- Kernel of a module homomorphism (modulo, moduloSlim)
- Kernel of a ring homomorphism from $\mathbb{K}[Y]$ to G (preimage)
- Algebraic relations between pairwise commuting polynomials
- Gel'fand-Kirillov dimension of a module (gkdim.lib)
- \mathbb{K}-dimension and \mathbb{K}-basis (vdim, k.base)

1. Singular:Plural. Status II

Extensions of functionality: 12+ PluRAL libraries in the release (including the whole package for D-modules) and several more under development.

Homology-related functions

- free left resolutions (res, nres, mres, minres)
- graded Betti numbers for gr-mod over gr-alg (betti)

Newest addition: BFUNVAR.LIB: Bernstein-Sato polynomial, operators, annihilators for affine varieties.

Under current development

NCHOMALG.LIB: $n c E x t _R(M, R), n c E x t(M, N), n c T o r(M, N)$, where M is a left module and N a centralizing $R-R$-bimodule. DIMFPA.LIB by G. Studzinski (RWTH Aachen): dimensions of finitely presented non-commutative algebras
nCFACTOR.LIB by A. Heinle (RWTH Aachen): factorization of polynomials in the 1st Weyl and 1st shift algebras

1. Singular:Plural. Wishlist and future plans

(1) Hilbert polynomial of graded ideals and modules
(2) Hilbert-driven Gröbner basis
(3) modular Gröbner basis, Gröbner trinity, Gröbner basics
(9) smth like trinity command: std, syz,lift at once
(0) implement Gel'fand-Kirillov dimension in the kernel
(0) implement division for PluraL
(1) special Gröbner basis for homogenized objects: compute $\left(I^{h}\right): h^{\infty}$ by extracting h-content of any new element, entering the basis.
(3) bisyzygies and biresolution (algorithms known)
(0) Gröbner-free assistance in elimination (linear algebra)
(1) standard basis and division algorithm for algebras like $\mathbb{K}\left(q_{i j}\right)[x]_{\langle X\rangle}\left\langle\partial \mid \partial_{j} x_{i}=q_{i j} x_{i} \partial_{j}+\delta_{i j}\right\rangle$ (local (q-)Weyl algebras)

2. SinguLar:Plural:LOCAPAL. Description

OLGA = Ore Localization of a G-Algebra

Let $A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \mid \ldots\right\rangle$ be a G-algebra, such that e.g. x_{i} commute, that is $B=\mathbb{K}[x]$ is a subalgebra of A.
Consider $S=B \backslash\{0\}$, then it is known that S is an Ore set in A. Under some mild assumptions there exists a localization (two-sided ring of fractions) $S^{-1} A$. This ring's objects are computable.

Mission Statement

Provide most computer algebraic functionality for modules over such Ore localizations of G-algebras. With special emphasis on applications to operator algebras (differential, difference etc.) and to special functions.

2. LOCAPAL. Status I

Singular:Plural:Locapal by Levandovskyy and Schönemann is under extended beta-testing.
There are configure flags --with-ratGB, --enable-ratGB.

Presentation of objects

- common notation $\mathbb{K}(X)\langle Y\rangle \cong(\mathbb{K}[X] \backslash\{0\})^{-1} \mathbb{K}[X]\langle Y\rangle$
- only polynomials can be used as coefficients instead of partially rational functions (native in this case)
- trick: due to the PBW properrty, one can show objects in the associated commutative ring $\mathbb{K}(X)[Y]$ (of course, without explicit arithmetics)
- for user-friendliness: two rings are needed (working ring $\mathbb{K}[X]\langle Y\rangle$ and an interface ring $\mathbb{K}(X)[Y])$

Connected: released jacobson.lib of Plural

2. Locapal. Status II. Functions

- Initialization of Ore localization:
system("ratVar'', var1, vark), where var $_{1}$, var ${ }_{k}$ are variable names with $n v a r\left(v a r_{1}\right) \leq n v a r\left(v a r_{k}\right)$. All variables between var ${ }_{1}$ and $v a r_{k}$ will be of polynomial nature, the rest is treated as invertibles.
- Gröbner basis of a left submodule (hence syzygy can be computed by hands) std (I), internally extracts polynomial content
- Gröbner basis of a left submodule, its $\mathbb{K}(x)$-dimension (integer or $\infty)$ and both polynomial and fake rational presentations of an object: via the procedure ratstd of the library RATGB.LIB, calls polynomial slimgb with an elimination ordering
- normal form system("intratNF'', what, with, nratvar), where what is a polynomial, with an ideal, nratvar an integer (number of the 1st variable of the polynomial block)

2. LOCAPAL. Future plans and wishes

- finish beta-testing (introduce redTail normal form, a kind of division, completely reduced Gröbner basis) and release that functionality
- Gröbner trinity: syz, lift are needed
- user-friendly interface concept \& natural presentation of objects
- need: antiblock ordering (ring def/ringlist like $\omega\left(<_{1}, \prec_{2}\right)$)
- need: fast and furious linear algebra over $\mathbb{K}(X)$
- crucial need: ehnanced gcd over $\mathbb{K}[X]$ (e.g. content)
- Algorithms to be implemented
(1) free resolutions, modulo, left-right transfer (for hom. algebra)
(2) closure properties (annihilators of a sum/product/... of functions)
(3) integration (Zeilberger, Takayama, Chyzak and other algorithms with plenty of applications), which is used for summation as well
(4) factorization of operators in $\mathbb{K}(X)\langle Y\rangle$
- SAGE: interface for manipulating rational non-commutative expressions?

2. Locapal. Future plans and wishes II

Generalization

Let $A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \mid \ldots\right\rangle$ be a G-algebra as before, but now we do not assume that x_{i} commutes with x_{j}. Instead we suppose that $B=\mathbb{K}\langle X \mid \ldots\rangle$ is a sub- G-algebra of A. Consider $S=B \backslash\{0\}$, then under some assumptions S is an Ore set in A and there exists a localization (two-sided ring of fractions) $S^{-1} A$.

Comments: even simple arithmetics in $S^{-1} A$ requires Gröbner bases, like e.g. the rewriting of a left fraction into a right one (basic multiplication). Ore property guarantees that such other-side fraction exists. Hence we look for $b \in A, t \in S$, such that $s^{-1} a=b t^{-1} \Leftrightarrow \boldsymbol{a t}=s \mathbf{b}$. Hence we need a right syzygy of (a, s) of a special form (since $t \in S$).

3. Letterplace. Description I

Singular:Letterplace by Levandovskyy and Schönemann with contributions by La Scala.
Finitely presented algebra (f.p.a) $:=\mathbb{K}\langle X\rangle / T, T$ is twosided ideal.

Mission Statement

There is a need of a computer algebra system for finitely presented algebras, which is able to be analogously rich in functionality as commutative systems are. That is one needs for a left submodule over an f.p.a: Gröbner trinity+basics, homological algebra and so on.

> Letterplace paradigm uses special computations in commutative polynomial rings and allows to compute non-commutative Gröbner basis via Letterplace Gröbner basis algorithm. Hence it is possible to build the whole functionality on it.

3. Letterplace. Description II

Notations

- X the set of "letters", $P=\mathbb{N}=\{0,1, \ldots\}$ the set of "places"
- $K\langle X\rangle=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ free associative algebra
- $\left(x_{i} \mid j\right)=\left(x_{i}, j\right)$ element of the product set $X \times P$
- $K[X \mid P]$ the polynomial ring in the (commutative) variables $\left(x_{i} \mid j\right)$ (inf. gen.)

There's one-to-one correspondence $\langle X\rangle \ni x_{i_{1}} \cdots x_{i_{n}} \leftrightarrow\left(x_{i_{1}} \mid 0\right) \cdots\left(x_{i_{n}} \mid n-1\right) \in V \subset K[X \mid P]$.

Theorem (La Scala, L., 2009)

The map $\iota: K\langle X\rangle \rightarrow V$ induces a 1-to-1 correspondence $\tilde{\iota}$ between graded two-sided ideals $I \subset K\langle X\rangle$ and letterplace ideals $J \subset K[X \mid P]$.

3. Letterplace. Status

Released since 3-0-1

Gröbner basis of two-sided homogeneous ideal in free associative algebra $\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$. The implementation consists of

- kernel part of Singular, command
system ("freegb", I, d, n)) ($/$ ideal, d degbound, $n=n v a r s$
- the library freegb. lib: format converters (like lp2lstr and lst2str, auxiliary procedures makeLetterplaceRing, some user-friendliness like freeGBasis (uses vector presentation instead of letterplace)

Under beta-testing (the same command call)

Gröbner basis of an arbitrary two-sided ideal in the free algebra

Under development

Libraries for various functionality.

3. Letterplace. Future plans and wishes

Finitely presented algebra (f.p.a) $:=\mathbb{K}\langle X\rangle / T, \quad T$ is twosided ideal.

Plans

- One-sided Gröbner bases over finitely presented algebras
- Gröbner basics for one- and two-sided modules over f.p.a
- One- and two-sided syzygies and resolutions over f.p.a.
- Hilbert function and dimension (like Gel'fand-Kirillov)
- Homological algebra (need resolution, modulo, opposite structure)

SAGE: interface for manipulating expressions containing words in a finite alphabet with coefficients, LETTERPLACE as back-engine.

3. Letterplace. Future plans and wishes

Finitely presented algebra (f.p.a) $:=\mathbb{K}\langle X\rangle / T, \quad T$ is twosided ideal.

Plans

- One-sided Gröbner bases over finitely presented algebras
- Gröbner basics for one- and two-sided modules over f.p.a
- One- and two-sided syzygies and resolutions over f.p.a.
- Hilbert function and dimension (like Gel'fand-Kirillov)
- Homological algebra (need resolution, modulo, opposite structure)

SAGE: interface for manipulating expressions containing words in a finite alphabet with coefficients, LETTERPLACE as back-engine. Distant future: vector enumeration (code by Steve Linton) under SAGE umbrella?

3. Letterplace. Future plans and wishes

Finitely presented algebra (f.p.a) $:=\mathbb{K}\langle X\rangle / T, \quad T$ is twosided ideal.

Plans

- One-sided Gröbner bases over finitely presented algebras
- Gröbner basics for one- and two-sided modules over f.p.a
- One- and two-sided syzygies and resolutions over f.p.a.
- Hilbert function and dimension (like Gel'fand-Kirillov)
- Homological algebra (need resolution, modulo, opposite structure)

SAGE: interface for manipulating expressions containing words in a finite alphabet with coefficients, LETTERPLACE as back-engine. Distant future: vector enumeration (code by Steve Linton) under SAGE umbrella?
Since letterplace computations take place in a commutative ring indeed, when will it be possible to incorporate coefficients over a ring like $\mathbb{Z}[a, b, c]$?

4. SCA by Alex Motsak

Singular:SCA by Greuel, Motsak and Schönemann is distributed together with Singular starting from version 3-0-3 (2007). See the separate file.

