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Group Cohomology

G finite group, p prime dividing |G |. H∗(G ) := H∗(G ;Fp)

Finitely presentable graded commutative Fp–algebra.

φ : G1 → G2  φ∗ : H∗(G2)→ H∗(G1),
 restriction rGU : H∗(G )→ H∗(U) for U ≤ G .

G determines H∗(G ) up to isomorphism.

Wanted:

Software, using general methods, to compute

minimal presentation of H∗(G ),

depth, Poincaré series, a–invariants, ...

higher structures (Massey products, Steenrod action)

for as many finite groups as possible.
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Computing cohomology

Topology

Construct Classifying spaces. Tailor made. Not algorithmic.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups [Quillen 1971]

Eilenberg–Moore: groups of order 32 [Rusin 1989]

But not general enough, and difficult to implement.

Ring approximations in increasing degree

Prime power groups: Projective resolutions, general
homological algebra.

Otherwise: Stable element method.
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Minimal resolutions for prime power groups

D. Green [2001]: Initial segments of a minimal free FpG -resolution
can be computed using n. c. Gröbner Basis techniques for finite
FpG -modules.

Negative monomial orders (for minimality).
No problem, the algebra is nilpotent.

Two-speed replacement rules: Type I precedes Type II.
Idea: Type I is for FpG , Type II is for FpG -modules.

Resolutions for p-groups are computed by C-programs of D. Green.
Could Letterplace do the job as well?
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Stable element method (Cartan–Eilenberg)

If U < G contains a Sylow p-subgroup of G , then rGU is injective.

Stability under g ∈ G

Let cg : H∗(U)→ H∗(Ug ) be induced by conjugation with g−1.
x ∈ H∗(U) is stable under g :⇐⇒ rUU∩Ug (x) = rU

g

U∩Ug (c∗g (x))

Characterisation of H∗(G ) as subring of H∗(U)

An element of H∗(U) is in rGU (H∗(G )) if and only if it is stable
under double coset representatives of U \ G/U.

GAP bug: After catching 200 GAP errors, one runs into recursion
depth trap.
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Cue Singular!

Next step of a ring approximation

Let αn : τnH∗(G )→ H∗(G ) the degree-n-approximation.

Compute standard monomials of τnH∗(G ) in degree-(n + 1).

Compute αn(τnHn+1(G )) using a resolution / a computation
in H∗(U).

Comparison of αn(τnHn+1(G )) with τnHn+1(G ) reveals
degree-(n + 1) relations of H∗(G ).

Comparison of Hn+1(G ) with αn(c) reveals degree-(n + 1)
generators of H∗(G ).

Singular provides the Gröbner bases.
... of course much faster than self made implementation.
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Implementing the Stable Elements method

Let P < G be a Sylow p-subgroup and
P = U0 < U1 < ... < Uk = U < G a subgroup tower.
Shall we represent H∗(G ) < H∗(P) in terms of a resolution for P?
No! Computing resolutions is expensive, and the required degree
for H∗(G ) is much higher than for H∗(P).

Recursive approach: We know H∗(U) etc.!

Represent the rings H∗(U) and H∗(U ∩ Ug ) and the maps
rUU∩Ug , rU

g

U∩Ug and cg in Singular.

Compute Hn+1(G ) as the stable subspace of Hn+1(U).

Proceed from τnH∗(G ) to τn+1H∗(G ) as sketched above.
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A memory leak

Formulating the stability conditions in degree n requires mapping a
basis of Hn(U). Mapping ideals reveals a leak:
> ring r = 2,(x(1..5)),dp;

> ideal I = maxideal(7);

> ideal J;

> int i;

> map m = r,x(1)-x(2),x(2)-x(3),x(3)-x(4),x(4)-x(5),x(5)-x(1);

> for (i=1;i<=100;i++)J=m(I); print(memory(2));

1183744

1708032

1713632

1721576

1729520

1737464

...

9333544

9336192

9338840

 Map one polynomial after the other, but that’s slower.
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Interface overhead

Two ways to solve the stability conditions:

1 Ship lists of coefficients from Singular to Sage, formulate
and solve linear equations, ship the result back to Singular.
The interface is a serious bottle neck!

2 Keep all data in Singular and solve conditions by
interreduction.
Much faster, but memory consumption (apparently no leak) is
a problem.

 Would be nice to be able to use libSingular – but we’d need
graded commutative rings, and we’d like to use library methods in
libSingular (already done?).
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Benson’s Completeness criterion

Need to test whether αn : τnH∗(G )→ H∗(G ) is an isomorphism.

J. F. Carlson [∼ 2000]

Complicated criterion that relies on a conjecture

D. J. Benson [2004]

If n is big enough, filter regular parameters P for H∗(G ) can
be constructed in τnH∗(G ).

Using the filter degree type of P, compute upper bound α for
the regularity of τnH∗(G ).

If n > α +
∑

ζ∈P (|ζ| − 1) then αn is isomorphism.

Problems: Computation of filter degree type; parameter degree
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Modified Benson criterion

D. Green, S. K. [2009]

For p-groups: Improved construction of filter regular
parameters (smaller degrees).

Existence result for filter regular parameters P ′ of τnH∗(G ; k)
in small degrees, for some finite extension field k of Fp.

If n > α +
∑

ζ∈P ′ (|ζ| − 1) then αn is isomorphism.

G = P = Syl2(Co3) (order 1024)

Benson: Parameter degrees 8, 12, 14, 15 (applies in degree 46).
Our construction: Parameter degrees 8,4,6,7 (applies in degree 22).
Existence proof: Parameter degrees 8,4,2,2 over finite extension
field. We detect completion in degree 14, which is perfect.
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How to find filter regular parameters

From maximal elementary abelian subgroups...

Dickson invariants: Explicit formula for elements ζi ,V ∈ H∗(V ) for
all maximal p-elementary abelian subgroups V < G .
Degree grows like prkp(G) (Benson)
or like prkp(G)−rk(C(G)) (Green – K. if G is p-group)
These elements simultaneously lift to elements ζi ∈ H∗(G ) that
form a filter-regular HSOP.

... to elements ζi ∈ τnH∗(G )

If n ≥ deg(ζi ,V ), then we may lift by linear algebra.
For n << deg(ζi ,V ): May use Singular.
Intersect full preimages of restriction maps. Hand-made for p > 2.
Wish Singular had graded-commutative rings!
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Constructive improvements

If a parameter is decomposable: Replace it by a small factor.
The last parameter can be replaced by any other (smaller)
parameter.
The result is still a filter regular HSOP!

Inconstructive improvements

If τnH∗(G )/〈ζ1, ..., ζi 〉 is finite over degree-d standard monomials:
There is a finite field extension k of Fp, so that H∗(G , k) has a f.r.
HSOP formed by ζ1, ..., ζi and elements of degree d .

Testing filter regularity using Singular

Need to compute annihilators. Computing quotients hand-made,
since crashes happened for p > 2.
Experimental: Use Hilbert-driven computations for p = 2.
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Criteria without filter regularity

P. Symonds [2009]

Let P ⊂ τnH∗(G ) yield parameters for H∗(G ).
If n >

∑
ζ∈P (|ζ| − 1) and τnH∗(G ) is generated in degree ≤ n as

a module over 〈〈P〉〉 then αn is an isomorphism.

S. K. [2010]: Criterion for non prime power groups

1 If H∗(U) is generated in degree ≤ n as a module over
im(rGU ◦αn) then αn is surjective.
No need to compute stable subspace in degree > n!

2 Let αn be surjective, ∃ parameters P ′ of τnH∗(G ; k),
n ≥ N =

∑
ζ∈P ′ |ζ| − depth(H∗(U;Fp)).

αn is isomorphism iff p (τnH∗(G ), t) ·
∏
ζ∈P ′ (1− t |ζ|) is a

polynomial of degree ≤ N. Idea due to Peter Symonds.
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Computational results with our optional SPKG

Needs review! Hint...

All 267 groups of order 64 and all 2328 groups of order 128

Order 64 first done by J. Carlson [1997-2001, 8 months comp. time].
We need about 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

http://www.nuigalway.ie/maths/sk/Cohomology/rings/

Modular cohomology for different primes of (among others)

Co3: H∗(Co3;F2) is Cohen-Macaulay. Use tower of 4 subgroups!

HS , Janko groups (not J4), Mathieu groups (not M24)

McL: correcting result of Adem-Milgram

Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.
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Singular wishlist

Some of it may already be in the devel version.

Student project: Implement Green’s algorithm in Letterplace.

Fix the leak in mapping ideals.

Genuine graded commutative rings (with dim, Hilbert-driven
approach, kernel/preimage...)

libPlural

Usage of Singular library functions on libSingular.

Faster transition of Singular improvements to Sage.

Thank you for your attention!
(and for implementing the wishlist...)
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