
Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Computational Group Cohomology: Using
Singular in Sage

Simon King
National University of Ireland, Galway

joint work with G. Ellis (NUIG) and D. J. Green (Jena)

Juli 14, 2010

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Outline

1 Computational approaches

2 Cue Singular!

3 Filter regular parameters

4 No filter regular parameters

5 Computational results and wishlist

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Group Cohomology

G finite group, p prime dividing |G |. H∗(G) := H∗(G ;Fp)

Finitely presentable graded commutative Fp–algebra.

φ : G1 → G2 φ∗ : H∗(G2)→ H∗(G1),
 restriction rGU : H∗(G)→ H∗(U) for U ≤ G .

G determines H∗(G) up to isomorphism.

Wanted:

Software, using general methods, to compute

minimal presentation of H∗(G),

depth, Poincaré series, a–invariants, ...

higher structures (Massey products, Steenrod action)

for as many finite groups as possible.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Computing cohomology

Topology

Construct Classifying spaces. Tailor made. Not algorithmic.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups [Quillen 1971]

Eilenberg–Moore: groups of order 32 [Rusin 1989]

But not general enough, and difficult to implement.

Ring approximations in increasing degree

Prime power groups: Projective resolutions, general
homological algebra.

Otherwise: Stable element method.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Minimal resolutions for prime power groups

D. Green [2001]: Initial segments of a minimal free FpG -resolution
can be computed using n. c. Gröbner Basis techniques for finite
FpG -modules.

Negative monomial orders (for minimality).
No problem, the algebra is nilpotent.

Two-speed replacement rules: Type I precedes Type II.
Idea: Type I is for FpG , Type II is for FpG -modules.

Resolutions for p-groups are computed by C-programs of D. Green.
Could Letterplace do the job as well?

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Stable element method (Cartan–Eilenberg)

If U < G contains a Sylow p-subgroup of G , then rGU is injective.

Stability under g ∈ G

Let cg : H∗(U)→ H∗(Ug) be induced by conjugation with g−1.
x ∈ H∗(U) is stable under g :⇐⇒ rUU∩Ug (x) = rU

g

U∩Ug (c∗g (x))

Characterisation of H∗(G) as subring of H∗(U)

An element of H∗(U) is in rGU (H∗(G)) if and only if it is stable
under double coset representatives of U \ G/U.

GAP bug: After catching 200 GAP errors, one runs into recursion
depth trap.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Cue Singular!

Next step of a ring approximation

Let αn : τnH∗(G)→ H∗(G) the degree-n-approximation.

Compute standard monomials of τnH∗(G) in degree-(n + 1).

Compute αn(τnHn+1(G)) using a resolution / a computation
in H∗(U).

Comparison of αn(τnHn+1(G)) with τnHn+1(G) reveals
degree-(n + 1) relations of H∗(G).

Comparison of Hn+1(G) with αn(c) reveals degree-(n + 1)
generators of H∗(G).

Singular provides the Gröbner bases.
... of course much faster than self made implementation.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Implementing the Stable Elements method

Let P < G be a Sylow p-subgroup and
P = U0 < U1 < ... < Uk = U < G a subgroup tower.
Shall we represent H∗(G) < H∗(P) in terms of a resolution for P?
No! Computing resolutions is expensive, and the required degree
for H∗(G) is much higher than for H∗(P).

Recursive approach: We know H∗(U) etc.!

Represent the rings H∗(U) and H∗(U ∩ Ug) and the maps
rUU∩Ug , rU

g

U∩Ug and cg in Singular.

Compute Hn+1(G) as the stable subspace of Hn+1(U).

Proceed from τnH∗(G) to τn+1H∗(G) as sketched above.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

A memory leak

Formulating the stability conditions in degree n requires mapping a
basis of Hn(U). Mapping ideals reveals a leak:
> ring r = 2,(x(1..5)),dp;

> ideal I = maxideal(7);

> ideal J;

> int i;

> map m = r,x(1)-x(2),x(2)-x(3),x(3)-x(4),x(4)-x(5),x(5)-x(1);

> for (i=1;i<=100;i++)J=m(I); print(memory(2));

1183744

1708032

1713632

1721576

1729520

1737464

...

9333544

9336192

9338840

 Map one polynomial after the other, but that’s slower.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Interface overhead

Two ways to solve the stability conditions:

1 Ship lists of coefficients from Singular to Sage, formulate
and solve linear equations, ship the result back to Singular.
The interface is a serious bottle neck!

2 Keep all data in Singular and solve conditions by
interreduction.
Much faster, but memory consumption (apparently no leak) is
a problem.

 Would be nice to be able to use libSingular – but we’d need
graded commutative rings, and we’d like to use library methods in
libSingular (already done?).

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Benson’s Completeness criterion

Need to test whether αn : τnH∗(G)→ H∗(G) is an isomorphism.

J. F. Carlson [∼ 2000]

Complicated criterion that relies on a conjecture

D. J. Benson [2004]

If n is big enough, filter regular parameters P for H∗(G) can
be constructed in τnH∗(G).

Using the filter degree type of P, compute upper bound α for
the regularity of τnH∗(G).

If n > α +
∑

ζ∈P (|ζ| − 1) then αn is isomorphism.

Problems: Computation of filter degree type; parameter degree

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Modified Benson criterion

D. Green, S. K. [2009]

For p-groups: Improved construction of filter regular
parameters (smaller degrees).

Existence result for filter regular parameters P ′ of τnH∗(G ; k)
in small degrees, for some finite extension field k of Fp.

If n > α +
∑

ζ∈P ′ (|ζ| − 1) then αn is isomorphism.

G = P = Syl2(Co3) (order 1024)

Benson: Parameter degrees 8, 12, 14, 15 (applies in degree 46).
Our construction: Parameter degrees 8,4,6,7 (applies in degree 22).
Existence proof: Parameter degrees 8,4,2,2 over finite extension
field. We detect completion in degree 14, which is perfect.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

How to find filter regular parameters

From maximal elementary abelian subgroups...

Dickson invariants: Explicit formula for elements ζi ,V ∈ H∗(V) for
all maximal p-elementary abelian subgroups V < G .
Degree grows like prkp(G) (Benson)
or like prkp(G)−rk(C(G)) (Green – K. if G is p-group)
These elements simultaneously lift to elements ζi ∈ H∗(G) that
form a filter-regular HSOP.

... to elements ζi ∈ τnH∗(G)

If n ≥ deg(ζi ,V), then we may lift by linear algebra.
For n << deg(ζi ,V): May use Singular.
Intersect full preimages of restriction maps. Hand-made for p > 2.
Wish Singular had graded-commutative rings!

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Constructive improvements

If a parameter is decomposable: Replace it by a small factor.
The last parameter can be replaced by any other (smaller)
parameter.
The result is still a filter regular HSOP!

Inconstructive improvements

If τnH∗(G)/〈ζ1, ..., ζi 〉 is finite over degree-d standard monomials:
There is a finite field extension k of Fp, so that H∗(G , k) has a f.r.
HSOP formed by ζ1, ..., ζi and elements of degree d .

Testing filter regularity using Singular

Need to compute annihilators. Computing quotients hand-made,
since crashes happened for p > 2.
Experimental: Use Hilbert-driven computations for p = 2.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Criteria without filter regularity

P. Symonds [2009]

Let P ⊂ τnH∗(G) yield parameters for H∗(G).
If n >

∑
ζ∈P (|ζ| − 1) and τnH∗(G) is generated in degree ≤ n as

a module over 〈〈P〉〉 then αn is an isomorphism.

S. K. [2010]: Criterion for non prime power groups

1 If H∗(U) is generated in degree ≤ n as a module over
im(rGU ◦αn) then αn is surjective.
No need to compute stable subspace in degree > n!

2 Let αn be surjective, ∃ parameters P ′ of τnH∗(G ; k),
n ≥ N =

∑
ζ∈P ′ |ζ| − depth(H∗(U;Fp)).

αn is isomorphism iff p (τnH∗(G), t) ·
∏
ζ∈P ′ (1− t |ζ|) is a

polynomial of degree ≤ N. Idea due to Peter Symonds.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Computational results with our optional SPKG

Needs review! Hint...

All 267 groups of order 64 and all 2328 groups of order 128

Order 64 first done by J. Carlson [1997-2001, 8 months comp. time].
We need about 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

http://www.nuigalway.ie/maths/sk/Cohomology/rings/

Modular cohomology for different primes of (among others)

Co3: H∗(Co3;F2) is Cohen-Macaulay. Use tower of 4 subgroups!

HS , Janko groups (not J4), Mathieu groups (not M24)

McL: correcting result of Adem-Milgram

Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

Computational approaches
Cue Singular!

Filter regular parameters
No filter regular parameters

Computational results and wishlist

Singular wishlist

Some of it may already be in the devel version.

Student project: Implement Green’s algorithm in Letterplace.

Fix the leak in mapping ideals.

Genuine graded commutative rings (with dim, Hilbert-driven
approach, kernel/preimage...)

libPlural

Usage of Singular library functions on libSingular.

Faster transition of Singular improvements to Sage.

Thank you for your attention!
(and for implementing the wishlist...)

Simon King, NUIG Computational Group Cohomology: Using Singular in Sage

	Computational approaches
	Cue Singular!
	Filter regular parameters
	No filter regular parameters
	Computational results and wishlist

