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Let’s start with an elliptic curve E over Q. For each prime `, the
action of Gal(Q/Q) on E [`] (the group of `-division points of E)
defines a representation

ρ = ρ` : Gal(Q/Q)→ GL(2,F`).

We can ask various questions about ρ, for instance: is ρ
irreducible? what is the image of ρ? These questions was
studied intensively by Shimura, Serre and Tate in the late
1960s.

Serre’s 1972 article made a big splash with the following result:

Theorem
If E does not have complex multiplication, then ρ` is surjective
for all sufficiently large `.
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It is not known even today whether the “sufficiently large” in
Serre’s theorem depends on E . On the other hand, B. Mazur’s
1978 article “Rational isogenies of prime degree” shows that if
ρ` is reducible, then ` belongs to the list

2,3,5,7,11,17,19,37,43,67,163.

Mazur’s list recalls the set of fundamental discriminants of
imaginary quadratic fields with class number 1:

−3,−4,−7,−8,−11,−19,−43,−67,−163.

There’s a direct connection between the two:

To fix ideas, let E/Q be an elliptic curve with potential complex
multiplication by the ring of integers of Q(

√
−163) and let λ be

the unique prime ideal of this integer ring that divides the
rational prime 163. The subgroup E [λ] of E [163] may be
viewed as a 1-dimensional Gal(Q/Q)-invariant subspace
of E [163], even though the CM is not defined over Q!
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We will be interested in the very special case where E is
semistable; this means that the conductor of E is square free.
In this case, if ρ` is reducible, then each of the two characters
“in the corner” is either the trivial character 1 or the mod `
cyclotomic character χ = χ`. (This is the character giving the
action of Gal(Q/Q) on the group of `th roots of 1 in Q.)
Because det ρ` = χ`, one character is 1 and the other is χ`.

If the “upper left-hand corner” character is 1, E has a rational
point of order `. If it’s χ`, then E has a rational subgroup
isomorphic to µ`; after dividing by this subgroup, you get an E ′

isogenous to E with a point of order `. Thus in both cases one
emerges with an elliptic curve with a rational point of order `.

Kenneth A. Ribet Galois representations



This is a rare event.

Mazur proved in 1977 that if an elliptic curve has a rational
point of order `, then ` = 2,3,5,7. Ogg had predicted this result
some years before, and Mazur’s confirmation of Ogg’s
conjecture was viewed as a big breakthrough.

For perspective, it might be interesting to check out the
Mazur–Tate article “Points of order 13 on elliptic curves” from
1973–1974 to get an idea of the techniques that were available
when people first began to think about the conjecture.
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We can start with one of these `-values. Let’s take ` = 5, since
2 and 3 are often “special” in various contexts. What are the
elliptic curves with a rational point of order 5? According to the
1976 article “Universal bounds on the torsion of elliptic curves”
by Dan Kubert, all such curves may be written

y2 + (1− b)xy − by = x3 − bx2, ∆ = b5(b2 − 11b− 1) 6= 0,

with b ∈ Q; the point of order 5 is then (0,0).

For each b, the corresponding curve Eb is semistable; see the
1995 article “Semistable reduction and torsion subgroups of
abelian varieties” by Silverberg and Zarhin for a much more
general result.

Members of this audience might want to find a formula for the
conductor of Eb and then comment on the following question:
Which square-free positive integers are conductors of elliptic
curves with a rational point of order 5?
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Actually, the question that I’ve just asked is unlikely to have a
neat answer, but perhaps a more general question has a neat
answer and the necessary conditions that emerge from the
elliptic curve case will suggest what goes on in general.

It won’t be helpful simply to record the conductor for each Eb;
one should also keep track of some associated signs. Namely,
suppose that cond(Eb) = p1 · · · pt , where the pi are distinct
primes. Then, by definition, Eb has multiplicative reduction at
each of the pi , and it has good reduction at the other primes.
For each i , we should record a + sign if the multiplicative
reduction at pi is split and a − sign if it’s non-split.
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Modular forms

Let f =
∑

anqn be the newform of weight two, trivial character
and level N = cond(Eb) that the modularity theorem associates
to Eb. Then ap = ±1 for each p|N; the sign is + or − according
as the bad multiplicative reduction is split or not.

Giving f is the same thing as giving an isogeny class of elliptic
curves. As E runs through the isogeny class, the Galois
representations E [`] are not necessarily isomorphic, but their
semisimplifications are isomorphic.

Accordingly, it is best to think in terms of the association

f 7→ ρf ,` := the semisimplification of any E [`].

(Here, ` is no longer specifically 5.)

Kenneth A. Ribet Galois representations



Now let’s remove the restriction that our newforms correspond
to elliptic curves. First, we consider weight-two newforms
f =

∑
anqn with square-free level and trivial character; the an

are now allowed to be algebraic integers and are no longer
required to be ordinary integers.

For a fixed f , one gets mod ` Galois representations as follows:
The ring R := Z[. . . ,an, . . .] is an order in a totally real number
field. Each ring homomorphism R → F` yields a well-defined
semisimple representation

Gal(Q/Q)→ GL(2,F`).
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We focus on the situations where this representation is
reducible; if it is, it will be the direct sum of the trivial
representation and the mod ` cyclotomic character.

For later discussion, we should record the fact that reducibility
of the representation thus means that we have

ar ≡ 1 + r for almost all primes r ;

the congruence means “equality in F`.”

The ring R = Z[. . . ,an, . . .] should be thought of as a quotient of
the Hecke ring T = Z[. . . ,Tn, . . .] generated by Hecke operators
acting on the space generated by the newforms of level N, so it
might be more natural to write the congruence as

Tr ≡ 1 + r for almost all primes r .
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Next, we fix a square-free integer N and ask whether there
exists a newform f as “above” with level N for which an
associated representation is reducible.

This question is slightly too coarse. Instead, we will fix what
might be termed a “signed conductor”: we give ourselves a set
of distinct prime numbers pi (i = 1, . . . , t) and for each pi we
give ourselves a sign ±. We ask whether there is an f of level
N = p1 · · · pt , for which the api have the chosen signs and for
which one of the associated mod ` representations is reducible.
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To summarize a bit, our question is the following one: We take
a prime `, and to avoid annoying complications we assume
` ≥ 5. For which signed conductors can we obtain 1⊕ χ` as a
mod ` semisimple representation from the set of weight-two
cuspforms of signed level N?

In my ruminations on this question, I have always taken the
conductors to be prime to `. This is surely not a necessary
restriction.
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Here are some fragmentary results and facts:
If all the signs are −, we cannot obtain 1⊕ χ`.
If N = p is prime, and the unique sign is +, we can obtain
1⊕ χ` if and only if p ≡ 1 mod `.
If all signs are + and N yields 1⊕ χ`, then ` divides φ(N)
(Euler phi function).
Suppose that a signed conductor N gives 1⊕ χ`. Then for
each p|N with sign −, we have p ≡ −1 mod `.
If N is a product of exactly two primes, we can answer the
question, i.e., find necessary and sufficient conditions for
1⊕ χ` to occur as an associated semisimple mod `
representation.
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Before elaborating on the last point, I’ll present two relatively
easy theorems that are proved by studying the action of Hecke
operators on the component groups of Jacobians of Shimura
curves in characteristics where there is bad reduction.

Theorem
Suppose that N is a product of an even number of primes and
that there is a unique prime p dividing N whose associated sign
is −. Then N gives rise to 1⊕ χ` if and only if p ≡ −1 mod `.

Theorem
Suppose that N is a product of an odd number of primes and
that all signs are +. Then N gives rise to 1⊕ χ` if and only if `
divides φ(N).
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Now back to the case where N = pq is the product of two
distinct (signed) primes. One of the signs, at least, has to be +.
If one sign is + and one is −, then we have a necessary and
sufficient condition for N to give at least one reducible
representation.

Let’s assume now that both signs are +. Then ` must divide
(p − 1)(q − 1); without loss of generality, assume p ≡ 1 mod `.
Then there’s a newform at level p giving rise to 1⊕ χ`, and we
are asking whether or not we can “raise the level” and find a
form of level pq that gives this same representation.
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Theorem
We can raise the level from p to pq in this context if and only if
1 + q − Tq is not a generator of the Eisenstein ideal at level p
locally at the Eisenstein prime of level p that has residue
characteristic `.

Equivalently: we can raise the level if and only if at least one of
the following conditions is satisfied: q ≡ 1 mod `; the image of
q in (Z/pZ)∗ is an `th power.

For example, take ` = 5 and p = 11. The first condition means
that q ≡ 1 mod 5 and the second means that q ≡ ±1 mod 11.
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Three factors

Since we know what happens when N is prime and when N is
a product of two primes, we should consider the situation
N = pqr , where the factors are distinct prime numbers (different
from `). Each prime is decorated with a sign, and we might as
well shuffle the order of the factors so that the plus signs come
first and the minus signs (if any) come at the end.

We already know that all the signs can’t be −. Thus a priori
there are three cases to consider: (+,+,−), (+,−,−),
(+,+,+). The third case is covered by the second of the two
displayed theorems. Namely, we get 1⊕ χ` at level pqr if and
only if ` divides (p − 1)(q − 1)(r − 1).

For example, if ` = 5, we can take N = 7 · 11 · 13 in the
(+,+,+) case. As I pointed out in a lecture two years ago, it is
striking that 1⊕ χ` does not occur at level 11 · 7 or at level
11 · 13. This situation could not occur for irreducible
representations.
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In the (+,−,−) case, a necessary condition for getting 1⊕ χ`

at level pqr is that we have q ≡ r ≡ −1 mod `. Computation
suggests strongly that this condition is sufficient as well. A
small challenge will be to establish rigorously what the
computation suggests.
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A bigger challenge is to figure out what happens is the
(+,+,−) case. Here we have r ≡ −1 mod `; let’s take ` = 5,
r = 19 and look for pairs (p,q) such that 1⊕ χ5 arises at level
19pq. Adapting some code written by William S., I find that the
following pairs (p,q) appear to work:

(2,11), (2,23), (2,29), (2,31), (2,37), (2,41), (2,43)

and
(3,11), (3,29), (3,31), (3,41), (3,43), (3,47).

As you can see, we have p = 2 or p = 3 and q ≤ 47. If q ≡ −1
mod 5, i.e., q = 29, (p,q) gets on the list, but we’re probably in
the (+,−,−) case here. If q ≡ 1 mod 5 (i.e., q = 11, q = 31,
q = 41) we get on the list, but this time we’re probably in the
(+,+,+) case.

But what about the pairs with q 6= ±1 mod 5: (2,23), (2,37),
(2,43), (3,43), (3,47)? I’m a bit puzzled and could probably
benefit from a good conjecture.
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