Finding all elliptic curves with good reduction outside a given set of primes

John Cremona
University of Warwick

24 June 2010

Plan of the talk

- Background and statement of the problem
- Some history and previous results
- Algebraic preliminaries
- The method
- finding all possible j-invariants
- finding curves with given j-invariant
- Some results
- Over \mathbb{Q}
- Over number fields

Background to the problem

Theorem (Shafarevich)
Let K be an algebraic number field and S a finite set of primes of K. Then the set
$\mathcal{E}_{K, S}:=\{$ elliptic curves E / K with good reduction at all primes $\mathfrak{p} \notin S\}$
(up to isomorphism) is finite.

Examples

- $\mathcal{E}_{\mathbb{Q}, \emptyset}=\emptyset$ (no elliptic curve over \mathbb{Q} has everywhere good reduction)
- $\# \mathcal{E}_{\mathbb{Q},\{2\}}=24$
(Ogg) $\quad[<5 \mathrm{~s}]$
- $\# \mathcal{E}_{\mathbb{Q},\{2,3\}}=752 \quad$ (Coghlan, 1966)
(Coghlan, 1966) $\quad[\approx 40 s]$
- $\mathcal{E}_{\mathbb{Q}(\sqrt{-23}), \emptyset}=\emptyset$

The last example arose during work of Mark Lingham (Nottingham PhD student) who used modular symbols to show that there are no cusp forms of weight 2 and level 1 for $K=\mathbb{Q}(\sqrt{-23})$, so we expected that there should be no elliptic curves with everywhere good reduction over K. But this case had not previously been treated....

Statement of the problem

Given K and \mathcal{S}, find $\varepsilon_{K, \delta}$ explicitly!

Some history I: over \mathbb{Q}

- Ogg (1966) found all elliptic curves with conductor $N=2^{e}$, then Coghlan did the same for $N=2^{e_{2}} 3^{e_{3}}$ (see Antwerp IV tables). Sage can verify Coghlan's table in about 40s.

```
sage : ECgroS = EllipticCurves_with_good_reduction_out
```

sage : time len(ECgroS ([2]))

CPUtimes : user $2.88 s$, sys $: 0.02 s$, total $: 2.90 s$ Walltime $: 2.90 s$ 24

```
sage : time len(ECgroS([2,3]))
    CPUtimes : user 40.31s, sys :0.30s, total:40.61sWalltime : 40.70s
```


Some history I: over \mathbb{Q}

(1) Ogg (1966) found all elliptic curves with conductor $N=2^{e}$, then Coghlan did the same for $N=2^{e_{2}} 3^{e_{3}}$ (see Antwerp IV tables). Sage can verify Coghlan's table in about 40s. sage : ECgroS = EllipticCurves_with_good_reduction_out

```
sage : time len(ECgroS([2]))
    CPUtimes : user 2.88s, sys : 0.02s, total : 2.90sWalltime : 2.90s
```

 24
 sage : time len(ECgroS ([2,3]))
CPUtimes : user $40.31 s$, sys : 0.30 s, total $: 40.61$ sWalltime : 40.70 s
752
(2) Certain sets $\mathcal{S}=\{2, p\}$ arise in solving Fermat-type equations (c.f. work of M. Bennett). Conductor N up to $2^{8} p^{2}$, so for $p>20$ these are hard to find using modular symbol methods.

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.
(2) Much work has been done for the case of quadratic fields:

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.
(2) Much work has been done for the case of quadratic fields:

- R. J. Stroeker (1970s): $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$ and $\mathcal{S}=\{\mathfrak{p} \mid 2\}$.

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.
(2) Much work has been done for the case of quadratic fields:

- R. J. Stroeker (1970s): $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$ and

$$
\mathcal{S}=\{\mathfrak{p} \mid 2\}
$$

- R. G. E. Pinch (1980s):
- $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3})$ and $S=\{\mathfrak{p} \mid 2\}$.
- $K=\mathbb{Q}(\sqrt{-3})$ and $\delta=\{\mathfrak{p} \mid 3\}$.
- $K=\mathbb{Q}(\sqrt{5})$ and $S=\{\mathfrak{p} \mid 2\}$.
- Kida has determined $\varepsilon_{K, \emptyset}$ for $K=\mathbb{Q}(\sqrt{d})$ for many d with $-100<d<100$, but with several gaps

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.
(2) Much work has been done for the case of quadratic fields:

- R. J. Stroeker (1970s): $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$ and $\mathcal{S}=\{\mathfrak{p} \mid 2\}$.
- R. G. E. Pinch (1980s):
- $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3})$ and $S=\{\mathfrak{p} \mid 2\}$.
- $K=\mathbb{Q}(\sqrt{-3})$ and $S=\{\mathfrak{p} \mid 3\}$.
- $K=\mathbb{Q}(\sqrt{5})$ and $S=\{\mathfrak{p} \mid 2\}$.
- Kida has determined $\varepsilon_{K, \emptyset}$ for $K=\mathbb{Q}(\sqrt{d})$ for many d with $-100<d<100$, but with several gaps
- Setzer (1978) gave necessary and sufficient conditions for the existence of $E \in \mathcal{E}_{K, \emptyset}$ with $E(K)[2] \neq 0, K$ imaginary quadratic: for example, $\mathcal{E}_{\mathbb{Q}(\sqrt{-65}), \emptyset} \neq \emptyset$.

Some history II: over number fields

(1) It is an open problem to determine those fields K for which $\mathcal{E}_{K, \emptyset}$ is not empty, i.e., for which fields there exist elliptic curves with everywhere good reduction.
(2) Much work has been done for the case of quadratic fields:

- R. J. Stroeker (1970s): $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$ and $\mathcal{S}=\{\mathfrak{p} \mid 2\}$.
- R. G. E. Pinch (1980s):
- $K=\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3})$ and $S=\{\mathfrak{p} \mid 2\}$.
- $K=\mathbb{Q}(\sqrt{-3})$ and $\delta=\{\mathfrak{p} \mid 3\}$.
- $K=\mathbb{Q}(\sqrt{5})$ and $S=\{\mathfrak{p} \mid 2\}$.
- Kida has determined $\varepsilon_{K, \emptyset}$ for $K=\mathbb{Q}(\sqrt{d})$ for many d with $-100<d<100$, but with several gaps
- Setzer (1978) gave necessary and sufficient conditions for the existence of $E \in \mathcal{E}_{K, \emptyset}$ with $E(K)[2] \neq 0, K$ imaginary quadratic: for example, $\mathcal{E}_{\mathbb{Q}(\sqrt{-65}), \emptyset} \neq \emptyset$.
- Stroeker proved: if $[K: \mathbb{Q}]=2$ and $\operatorname{gcd}\left(h_{K}, 6\right)=1$ then $\mathcal{E}_{K, \emptyset}=\emptyset$.

Algebraic preliminaries: m-Selmer groups

In our method an important role is played by the so-called " m-Selmer groups" for the number field K. These are subgroups of $K^{*} / K^{* m}$:

$$
K(\mathcal{S}, m)=\left\{x \in K^{*} / K^{* m} \mid \operatorname{ord}_{\mathfrak{p}}(x) \equiv 0 \quad(\bmod m) \quad \forall \mathfrak{p} \notin \mathcal{S}\right\} .
$$

Algebraic preliminaries: m-Selmer groups

In our method an important role is played by the so-called " m-Selmer groups" for the number field K. These are subgroups of $K^{*} / K^{* m}$:

$$
K(\mathcal{S}, m)=\left\{x \in K^{*} / K^{* m} \mid \operatorname{ord}_{\mathfrak{p}}(x) \equiv 0 \quad(\bmod m) \quad \forall \mathfrak{p} \notin \mathcal{S}\right\}
$$

So (the class of) $x \in K^{*}$ lies in $K(\mathcal{S}, m)$ if the $\mathcal{O}_{K, \delta}$-ideal it generates is an m 'th power, and we have the exact sequence:

$$
1 \rightarrow \mathcal{O}_{K, \delta}^{*} / \mathcal{O}_{K, \mathcal{S}}^{* m} \rightarrow K(\mathcal{S}, m) \xrightarrow{\alpha_{m}} \mathcal{C}_{K, \mathcal{S}}[m] \rightarrow 1
$$

Algebraic preliminaries: m-Selmer groups

In our method an important role is played by the so-called " m-Selmer groups" for the number field K. These are subgroups of $K^{*} / K^{* m}$:

$$
K(\mathcal{S}, m)=\left\{x \in K^{*} / K^{* m} \mid \operatorname{ord}_{\mathfrak{p}}(x) \equiv 0 \quad(\bmod m) \quad \forall \mathfrak{p} \notin \mathcal{S}\right\} .
$$

So (the class of) $x \in K^{*}$ lies in $K(\mathcal{S}, m)$ if the $\mathcal{O}_{K, \delta}$-ideal it generates is an m 'th power, and we have the exact sequence:

$$
1 \rightarrow \mathcal{O}_{K, \mathcal{S}}^{*} / \mathcal{O}_{K, S}^{* m} \rightarrow K(\mathcal{S}, m) \xrightarrow{\alpha_{m}} \mathcal{C}_{K, S}[m] \rightarrow 1
$$

This is analogous to the Kummer sequence for elliptic curves:

$$
0 \rightarrow E(K) / m E(K) \rightarrow \operatorname{Sel}^{(m)}(K, E) \rightarrow \amalg[m] \rightarrow 0 .
$$

Computing m-Selmer groups of K

- We will need to use these m-Selmer groups for $m=2$ primarily, but also for $m \in\{3,4,6,12\}$.
- When m is prime, the computation of $K(\mathcal{S}, m)$ is a standard task of computational algebraic number theory, and is provided (for example) in sage for all m :

Computing m-Selmer groups of K

- We will need to use these m-Selmer groups for $m=2$ primarily, but also for $m \in\{3,4,6,12\}$.
- When m is prime, the computation of $K(\mathcal{S}, m)$ is a standard task of computational algebraic number theory, and is provided (for example) in Sage for all m :

```
sage : K.<a> = QuadraticField(-23)
```

sage : P2a, $\mathrm{P} 2 \mathrm{~b}=[\mathrm{P}$ for P , e in
K.ideal(2).factor()]
sage : K.selmer_group([P2a,P2b],4,False)

$$
[1 / 2 * a+3 / 2,2,-1]
$$

- When $\operatorname{gcd}(m, n)=1$ then $K(\mathcal{S}, m n) \cong K(\mathcal{S}, m) \times K(\mathcal{S}, n)$.
- in general...

where

$$
\mu_{m, n}=\mu_{m}(K) /\left(\mu_{m n}(K)\right)^{n} .
$$

An analogous diagram

where
$\operatorname{Ker}=E(\mathbb{Q})[m] / n E(\mathbb{Q})[m n]$,
Coker $=\amalg(E / \mathbb{Q})[m] / n \amalg(E / \mathbb{Q})[m n]$.

Computing m-Selmer groups of K

For example, to compute $K(\mathcal{S}, 4)$ we first compute $K(\mathcal{S}, 2)$ and then "lift" to $K(\mathcal{S}, 4)$: the obstruction to this lift is measured by a quotient of the 2 -torsion in the \mathcal{S}-class group of K.

Computing m-Selmer groups of K

For example, to compute $K(\mathcal{S}, 4)$ we first compute $K(\mathcal{S}, 2)$ and then "lift" to $K(\mathcal{S}, 4)$: the obstruction to this lift is measured by a quotient of the 2 -torsion in the δ-class group of K.

If we denote the image of $K(\mathcal{S}, m n)$ in $K(\mathcal{S}, m)$ by $K(\mathcal{S}, m)_{m n}$, then the (finite abelian) group $K(\mathcal{S}, m n)$ is an extension of $K(\mathcal{S}, n)$ by $K(\mathcal{S}, m)_{m n}$.

Computing m-Selmer groups of K

For example, to compute $K(\mathcal{S}, 4)$ we first compute $K(\mathcal{S}, 2)$ and then "lift" to $K(\delta, 4)$: the obstruction to this lift is measured by a quotient of the 2 -torsion in the δ-class group of K.

If we denote the image of $K(\mathcal{S}, m n)$ in $K(\mathcal{S}, m)$ by $K(\mathcal{S}, m)_{m n}$, then the (finite abelian) group $K(\mathcal{S}, m n)$ is an extension of $K(\mathcal{S}, n)$ by $K(\mathcal{S}, m)_{m n}$.

Application: We will use these Selmer groups in two related ways: most obviously, to parametrize elliptic curves with given j-invariant; and also in obtaining restrictions of the possible j-invariants which need to be considered.

For simplicity, in this talk we will

- omit the cases $j=0$ and $j=1728$;
- assume that \mathcal{S} contains all primes \mathfrak{p} dividing 2 or 3 .

Our method: overview

There are two main steps in our method; the first step for the case $\mathcal{S}=\emptyset$ is similar to the method used by Kida.

Our method: overview

There are two main steps in our method; the first step for the case $\mathcal{S}=\emptyset$ is similar to the method used by Kida.

Given K and \mathcal{S},

- Step A: Find the finite set of possible j-invariants
- Step B: Find all possible curves for each j-invariant

Our method: overview

There are two main steps in our method; the first step for the case $\mathcal{S}=\emptyset$ is similar to the method used by Kida.

Given K and \mathcal{S},

- Step A: Find the finite set of possible j-invariants
- Step B: Find all possible curves for each j-invariant

Step B is quite straightforward (details below) while Step A leads us to the complete solution of several Diophantine Equations (over K): specifically, we need to find the complete (finite) set of all \mathcal{S}-integral points on many elliptic curves of the form $Y^{2}=X^{3}-w$ (with $w \in K$).

Implementations

I implemented this in MAGMA in 2004-5, both over \mathbb{Q} (where I used MAGMA's existing implementation of S-integral point finding by E. Hermann, now improved by S. Donnelly) and over number fields (where I only search for \mathcal{S}-integral points, so do not find complete solutions).

Implementations

I implemented this in MAGMA in 2004-5, both over \mathbb{Q} (where I used MAGMA's existing implementation of δ-integral point finding by E. Hermann, now improved by S. Donnelly) and over number fields (where I only search for \mathcal{S}-integral points, so do not find complete solutions).

Over \mathbb{Q}, in 2008 two Masters students from Mainz (Tobias Nagel and Michael Mardaus) implemented the algorithm for finding all integral and δ-integral points in Sage. Following that I implemented the main algorithm over \mathbb{Q}.

Implementations

I implemented this in MAGMA in 2004-5, both over \mathbb{Q} (where I used MAGMA's existing implementation of δ-integral point finding by E. Hermann, now improved by S. Donnelly) and over number fields (where I only search for \mathcal{S}-integral points, so do not find complete solutions).

Over \mathbb{Q}, in 2008 two Masters students from Mainz (Tobias Nagel and Michael Mardaus) implemented the algorithm for finding all integral and δ-integral points in Sage. Following that I implemented the main algorithm over \mathbb{Q}.

For an implementation in sage over number fields (which is under way as of this week), we use Robert Miller's implementation of $K(S, m)$ and will build on that.

The condition on j

The following result characterizes the j-invariants we seek:

Proposition

Let E be an elliptic curve defined over K with good reduction at all primes $\mathfrak{p} \notin \mathcal{S}$. Set $w=j^{2}(j-1728)^{3}$. Then

$$
\Delta \in K(\mathcal{S}, 12) ; \quad j \in \mathcal{O}_{K, S} ; \quad w \in K(\mathcal{S}, 6)_{12}
$$

Conversely, if $j \in \mathcal{O}_{K, S}$ with $j^{2}(j-1728)^{3} \in K(S, 6)_{12}$ then there exist elliptic curves E with $j(E)=j$ and good reduction outside \mathcal{S}.

The condition on j

The following result characterizes the j-invariants we seek:

Proposition

Let E be an elliptic curve defined over K with good reduction at all primes $\mathfrak{p} \notin \mathcal{S}$. Set $w=j^{2}(j-1728)^{3}$. Then

$$
\Delta \in K(\mathcal{S}, 12) ; \quad j \in \mathcal{O}_{K, S} ; \quad w \in K(\mathcal{S}, 6)_{12}
$$

Conversely, if $j \in \mathcal{O}_{K, S}$ with $j^{2}(j-1728)^{3} \in K(\mathcal{S}, 6)_{12}$ then there exist elliptic curves E with $j(E)=j$ and good reduction outside \mathcal{S}.

To apply this, we first determine the group $K(\mathcal{S}, 6)_{12}$ to find the set of possible w. Then for each w we determine whether the class of w contains a representative w^{\prime} such that
$w^{\prime}=j^{2}(j-1728)^{3}$ with $j \in \mathcal{O}_{K, S}$.

The auxiliary curves

Proposition

Let $w \in K(\mathcal{S}, 6)$. Then each $j \in \mathcal{O}_{K, S}(j \neq 0,1728)$ with $j^{2}(j-1728)^{3} \equiv w\left(\bmod \left(K^{*}\right)^{6}\right)$ has the form $j=x^{3} / w=1728+y^{2} / w$, where $P=(x, y)$ is an S-integral point with $x y \neq 0$ on the elliptic curve

$$
E_{w}: \quad Y^{2}=X^{3}-1728 w .
$$

The auxiliary curves

Proposition

Let $w \in K(\mathcal{S}, 6)$. Then each $j \in \mathcal{O}_{K, S}(j \neq 0,1728)$ with
$j^{2}(j-1728)^{3} \equiv w\left(\bmod \left(K^{*}\right)^{6}\right)$ has the form
$j=x^{3} / w=1728+y^{2} / w$, where $P=(x, y)$ is an S-integral point with $x y \neq 0$ on the elliptic curve

$$
E_{w}: \quad Y^{2}=X^{3}-1728 w .
$$

Suppose that we also have $w \in K(\mathcal{S}, 6)_{12}$. Choose $u_{0} \in K^{*}$ such that $\left(3 u_{0}\right)^{6} w \in K(\mathcal{S}, 12)$; then the elliptic curve

$$
E: \quad Y^{2}=X^{3}-3 x u_{0}^{2} X-2 y u_{0}^{3}
$$

has j-invariant j and good reduction outside S. The complete set of curves with good reduction outside S having j-invariant j is the set of quadratic twists $E^{(u)}$ for $u \in K(S, 2)$.

Summary: Step A

Step A of our algorithm is thus:
(1) list all $w \in K(\mathcal{S}, 6)_{12}$ (taking δ-integral representatives);

Summary: Step A

Step A of our algorithm is thus:
(1) list all $w \in K(\mathcal{S}, 6)_{12}$ (taking \mathcal{S}-integral representatives);
(2) for each, consider the curve $E_{w}: \quad Y^{2}=X^{3}-1728 w$;

Summary: Step A

Step A of our algorithm is thus:
(1) list all $w \in K(\mathcal{S}, 6)_{12}$ (taking S-integral representatives);
(2) for each, consider the curve E_{w} : $\quad Y^{2}=X^{3}-1728 w$;
(3) find $E_{w}(K)$ (an explicit Z-basis);

Summary: Step A

Step A of our algorithm is thus:
(1) list all $w \in K(\delta, 6)_{12}$ (taking δ-integral representatives);
(2) for each, consider the curve E_{w} : $\quad Y^{2}=X^{3}-1728 w$;
(3) find $E_{W}(K)$ (an explicit Z-basis);
((find $E_{W}\left(\mathcal{O}_{K, s}\right)$ (all S-integral points).

Summary: Step A

Step A of our algorithm is thus:
(1) list all $w \in K(\delta, 6)_{12}$ (taking δ-integral representatives);
(2) for each, consider the curve E_{w} : $Y^{2}=X^{3}-1728 w$;
(3) find $E_{W}(K)$ (an explicit Z-basis);
(0) find $E_{W}\left(\mathcal{O}_{K, \delta}\right)$ (all S-integral points).

With $K=\mathbb{Q}$ the number of w to consider is $2 \cdot 6^{\# \delta}$; for general K we get extra contributions from units and the 2 - and 3 -parts of the class group \mathcal{C}_{K}.

After finishing Step A we will have all possible values of j, namely $j=x^{3} / w$ where $(x, y) \in E_{w}(K)$ is an δ-integral point.

Step B: finding the curves from their j-invariants

As is well-known, the j-invariant determines the isomorphism class of the elliptic curve up to quadratic twist (we have excluded the cases $j=0$ and $j=1728$).

Step B: finding the curves from their j-invariants

As is well-known, the j-invariant determines the isomorphism class of the elliptic curve up to quadratic twist (we have excluded the cases $j=0$ and $j=1728$).

The last part of the previous Proposition lists precisely which quadratic twists actually do have good reduction outside δ : we find a first such twist from the information that $w \in K(\mathcal{S}, 6)_{12}$ (and not just $\in K(\mathcal{S}, 6)$); then the other valid twists are the twists of this base curve parametrized by $K(\delta, 2)$.

Step B: finding the curves from their j-invariants

As is well-known, the j-invariant determines the isomorphism class of the elliptic curve up to quadratic twist (we have excluded the cases $j=0$ and $j=1728$).

The last part of the previous Proposition lists precisely which quadratic twists actually do have good reduction outside δ : we find a first such twist from the information that $w \in K(\mathcal{S}, 6)_{12}$ (and not just $\in K(\mathcal{S}, 6)$); then the other valid twists are the twists of this base curve parametrized by $K(\delta, 2)$. Remarks:

- If \mathcal{S} does not contain all primes dividing 6 , some of the curves will need to be discarded as they may not have good reduction at such primes;

Step B: finding the curves from their j-invariants

As is well-known, the j-invariant determines the isomorphism class of the elliptic curve up to quadratic twist (we have excluded the cases $j=0$ and $j=1728$).

The last part of the previous Proposition lists precisely which quadratic twists actually do have good reduction outside δ : we find a first such twist from the information that $w \in K(\mathcal{S}, 6)_{12}$ (and not just $\in K(\mathcal{S}, 6)$); then the other valid twists are the twists of this base curve parametrized by $K(\delta, 2)$. Remarks:

- If \mathcal{S} does not contain all primes dividing 6 , some of the curves will need to be discarded as they may not have good reduction at such primes;
- For $j=0,1728$ we must consider sextic and quartic twists respectively. The exact set of twists to be considered is left as an exercise!

The algorithm in practice I

- There are many curves E_{w} to consider in Step A, increasing by a factor of 6 with each extra prime in S

The algorithm in practice I

- There are many curves E_{w} to consider in Step A, increasing by a factor of 6 with each extra prime in S
- Finding all \mathcal{S}-integral points on each E_{w}, we first find the full Mordell-Weil group $E_{w}(K)$; then use the method of elliptic logarithms, LLL reduction, So our method relies heavily on the efficiency of explicit MW group computation.

The algorithm in practice I

- There are many curves E_{w} to consider in Step A, increasing by a factor of 6 with each extra prime in S
- Finding all \mathcal{S}-integral points on each E_{w}, we first find the full Mordell-Weil group $E_{w}(K)$; then use the method of elliptic logarithms, LLL reduction, So our method relies heavily on the efficiency of explicit MW group computation.
- Over \mathbb{Q}, we have good tools for finding $E_{w}(\mathbb{Q})$ (including descent methods and Heegner points), and can then also find δ-integral points automatically. But there are still curves for which we cannot find $E_{w}(\mathbb{Q})$ without some help, or at all (see examples to follow).

The algorithm in practice II

- Over general number fields K, everything is more difficult. Tools for finding MW bases are more limited, and we do not have an implementation of \mathcal{S}-integral point finding-yet.

The algorithm in practice II

- Over general number fields K, everything is more difficult. Tools for finding MW bases are more limited, and we do not have an implementation of \mathcal{S}-integral point finding-yet. Wait until next week!

The algorithm in practice II

- Over general number fields K, everything is more difficult. Tools for finding MW bases are more limited, and we do not have an implementation of \mathcal{S}-integral point finding-yet. Wait until next week!
- Apart from the one example $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\emptyset$ where Hermann verified that our sets of integral points on $Y^{2}=X^{3} \pm 1728$ (over K) were complete, our results over number fields are all currently conditional on our lists of δ-integral points being complete.

The algorithm in practice II

- Over general number fields K, everything is more difficult. Tools for finding MW bases are more limited, and we do not have an implementation of \mathcal{S}-integral point finding-yet. Wait until next week!
- Apart from the one example $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\emptyset$ where Hermann verified that our sets of integral points on $Y^{2}=X^{3} \pm 1728$ (over K) were complete, our results over number fields are all currently conditional on our lists of \mathcal{S}-integral points being complete. However, we can still sometimes find examples of curves with good reduction outside \mathcal{S}, which is useful.

Examples/Results over \mathbb{Q}

- $\mathcal{S}=\emptyset \Longrightarrow \mathbb{Q}(\mathcal{S}, 6)=\{ \pm 1\}$ so we consider $Y^{2}=X^{3} \pm 1728$ which both have rank 0 and $(\mp 12,0)$ are the only integral points, so the only candidate j is $j=1728$, leading to no curves with conductor 1 .

Examples/Results over \mathbb{Q}

- $\mathcal{S}=\emptyset \Longrightarrow \mathbb{Q}(\mathcal{S}, 6)=\{ \pm 1\}$ so we consider $Y^{2}=X^{3} \pm 1728$ which both have rank 0 and $(\mp 12,0)$ are the only integral points, so the only candidate j is $j=1728$, leading to no curves with conductor 1.
- $\mathcal{S}=\{2\}$ leads to 13 possible j and 24 curves with conductors $32,64,128,256$.

Examples/Results over \mathbb{Q}

- $\mathcal{S}=\emptyset \Longrightarrow \mathbb{Q}(\mathcal{S}, 6)=\{ \pm 1\}$ so we consider $Y^{2}=X^{3} \pm 1728$ which both have rank 0 and $(\mp 12,0)$ are the only integral points, so the only candidate j is $j=1728$, leading to no curves with conductor 1.
- $\mathcal{S}=\{2\}$ leads to 13 possible j and 24 curves with conductors $32,64,128,256$.
- $\mathcal{S}=\{2,3\}$ leads to 83 possible j and 752 curves with conductors $2^{a} 3^{b}$.
- $\mathcal{S}=\{2,17\}$ leads to 42 possible j. During Step A:
- $w=-17^{5}$ gives a curve of rank 0 with Selmer rank 2, so we used the analytic rank;
- The curves for $w=2^{5} 17^{5}, 2^{2} 17^{4},-2^{5} 17^{4},-2^{4} 17^{4}$ have rank 1 with large generators. For example, the generator for $w=2^{5} 17^{5}$ has x-coordinate with denominator d^{2} with

$$
d=3 \cdot 5 \cdot 64189 \cdot 259907 \cdot 20745658643 \cdot 79102726763
$$

which we computed using a Heegner point. So this curve has no δ-integral points - but there should be an easier way to show that!

- $\mathcal{S}=\{2,17\}$ leads to 42 possible j. During Step A:
- $w=-17^{5}$ gives a curve of rank 0 with Selmer rank 2, so we used the analytic rank;
- The curves for $w=2^{5} 17^{5}, 2^{2} 17^{4},-2^{5} 17^{4},-2^{4} 17^{4}$ have rank 1 with large generators. For example, the generator for $w=2^{5} 17^{5}$ has x-coordinate with denominator d^{2} with

$$
d=3 \cdot 5 \cdot 64189 \cdot 259907 \cdot 20745658643 \cdot 79102726763
$$

which we computed using a Heegner point. So this curve has no δ-integral points - but there should be an easier way to show that!

- Complete lists for $\mathcal{S}=\{2,3\}$ (752 curves), $\mathcal{S}=\{2,3,5\}$ (7552 curves), $\mathcal{S}=\{2,3,7\}$ (7168 curves), $\mathcal{S}=\{2,3,11\}$ (6640 curves), $\mathcal{S}=\{2,13\}$ (336 curves), $\mathcal{S}=\{2,17\}$ (256 curves), $\mathcal{S}=\{2,19\}$ (336 curves), $\mathcal{S}=\{2,23\}$ (256 curves) are available at

Examples/Results over quadratic fields

- $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\emptyset: K(\mathcal{S}, 6)=\{ \pm 1, \pm(1+\omega), \pm(2-\omega)\}$ where $\omega=(1+\sqrt{-23}) / 2$ (class number 3 , units ± 1). Four $w \in K(\mathcal{S}, 6)$ gives curves with trivial Mordell-Weil group; the other two are $Y^{2}=X^{3} \pm 1728$ which both have rank 1 over K; we found a generator for each and (with help from Hermann) showed that only $j=0, \pm 1728$ are candidates, but none gives a curve with everywhere good reduction over K. Hence there are no such curves.

Examples/Results over quadratic fields

- $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\emptyset: K(\mathcal{S}, 6)=\{ \pm 1, \pm(1+\omega), \pm(2-\omega)\}$ where $\omega=(1+\sqrt{-23}) / 2$ (class number 3 , units ± 1). Four $w \in K(\mathcal{S}, 6)$ gives curves with trivial Mordell-Weil group; the other two are $Y^{2}=X^{3} \pm 1728$ which both have rank 1 over K; we found a generator for each and (with help from Hermann) showed that only $j=0, \pm 1728$ are candidates, but none gives a curve with everywhere good reduction over K. Hence there are no such curves.
- $K=\mathbb{Q}(\sqrt{-1}), \mathcal{S}=\{1+i\}$ (treated by Stroeker): we find 22 possible j and 64 curves with conductor $(1+i)^{e}$, in agreement with Stroeker:

e	6	8	9	10	12	13	14
$\#$	2	2	8	12	8	16	16

Our result here is conditional on our lists of $(1+i)$-integral points being complete.

- $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\left\{\mathfrak{p}_{2}\right\}$ where $N\left(\mathfrak{p}_{2}\right)=2$ and the class of \mathfrak{p}_{2} generates the class group. We (conditionally) find $\mathcal{E}_{K, \mathcal{S}}=\emptyset$, in agreement with the prediction from Mark Lingham's modular symbol computations.
- $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\left\{\mathfrak{p}_{2}\right\}$ where $N\left(\mathfrak{p}_{2}\right)=2$ and the class of \mathfrak{p}_{2} generates the class group. We (conditionally) find $\mathcal{E}_{K, S}=\emptyset$, in agreement with the prediction from Mark Lingham's modular symbol computations.
- $K=\mathbb{Q}(\sqrt{-23})$: for certain small integral ideals \mathfrak{n}, Mark Lingham computed cusp forms of weight 2 and level \mathfrak{n} but found no matching elliptic curves of conductor \mathfrak{n}. Using our program we found some of these curves. For example, the curve with coefficients
$[0,0,0,-53160 w-43995,-5067640 w+19402006]$ and conductor $\mathfrak{n}=\mathfrak{p}_{2} \overline{\mathfrak{p}_{2}} \mathfrak{p}_{3}^{2} \overline{\mathfrak{p}_{3}}$ of norm 108 was found this way.
- $K=\mathbb{Q}(\sqrt{-23}), \mathcal{S}=\left\{\mathfrak{p}_{2}\right\}$ where $N\left(\mathfrak{p}_{2}\right)=2$ and the class of \mathfrak{p}_{2} generates the class group. We (conditionally) find $\mathcal{E}_{K, S}=\emptyset$, in agreement with the prediction from Mark Lingham's modular symbol computations.
- $K=\mathbb{Q}(\sqrt{-23})$: for certain small integral ideals \mathfrak{n}, Mark Lingham computed cusp forms of weight 2 and level \mathfrak{n} but found no matching elliptic curves of conductor \mathfrak{n}. Using our program we found some of these curves. For example, the curve with coefficients
$[0,0,0,-53160 w-43995,-5067640 w+19402006]$ and conductor $\mathfrak{n}=\mathfrak{p}_{2} \overline{\mathfrak{p}_{2}} \mathfrak{p}_{3}^{2} \overline{\mathfrak{p}_{3}}$ of norm 108 was found this way.
- $K=\mathbb{Q}(\sqrt{38})$: we found the following curve with everywhere good reduction: $Y^{2}=X^{3}+a_{4} X+a_{6}$ where where $\varepsilon=6 \sqrt{38}+37$ is a unit and

$$
\begin{aligned}
& a_{4}=-3^{3} \cdot 5 \cdot \varepsilon^{-1}=810 \sqrt{38}-4995 \\
& a_{6}=2 \cdot 3^{3} \cdot 7(\sqrt{38}-2) \varepsilon^{-1}=27594 \sqrt{38}-170100
\end{aligned}
$$

