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Introduction

In this lecture we will look at ways of finding isogenies between
elliptic curves.

Many of the methods we will describe work in complete
generality. However, the situation for curves over finite fields
(and more generally, in characteristic p) has many very different
features.

Hence we assume for this lecture that K is a field of
characteristic zero, and usually that K is an algebraic number
field (including Q).



The two basic problems

1 Given two elliptic curves E1,E2 defined over K, determine
whether or not E1 and E2 are isogenous (E1 ∼ E2)

2 Given one elliptic curve E defined over K, find “all” elliptic
curves over K which are isogenous to E over K.

Note: isogeny (over K) is an equivalence relation; the second
problem is to find the isogeny class containing a given curve.
This is a finite set when K is a number field (we only count
curves up to isomorphism).

The first problem is to detect when two curves belong to the
same class.
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What is an isogeny?
See Silverman III.4

Let E1,E2 be elliptic curves defined over K. An isogeny from E1
to E2 defined over K is a morphism of curves ϕ : E1 → E2
defined over K such that ϕ(OE1) = OE2 .

E1 and E2 are isogenous if there exists a non-zero isogeny
between them.

Isogenies are automatically group homomorphisms
If ϕ 6= 0 then kerϕ is a finite subgroup of E(K), whose order
is the degree degϕ (the degree of ϕ as a curve morphism).
char K = 0 so we do not need to mention separability!

Isogeny is an equivalence relation: if ϕ 6= 0 there is a dual
isogeny ϕ̂ : E2 → E1 of the same degree
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More facts about isogenies

The set of all isogenies E1 → E2 is an abelian group
denoted Hom(E1,E2) (= 0 unless the Ej are isogenous)
The multiplication maps [m] : E → E are isogenies
Every nonzero isogeny ϕ : E1 → E2 factors uniquely as

E1
[m]−→ E1

ϕ′
−→ E2

where ϕ′ has cyclic kernel.
Every cyclic isogeny ϕ : E1 → E2 factors uniquely as a
product of (cyclic) isogenies of prime degree.

So in looking for isogenies from E1 to other curves we may
restrict to `-isogenies: cyclic isogenies of prime degree `.



Problem 1: isogeny testing

1 Given two elliptic curves E1,E2 defined over a number
field K, determine whether or not E1 and E2 are isogenous.

This is one of those problems where if the answer is “no”, this is
easy to discover, but if the answer is “yes” it is a lot harder to
prove!

(Think of primality testing!)

Isogenous curves have the same conductor N, which is
easy to compute. Answer “no” if NE1 6= NE2 .
Isogenous curves are “locally isogenous”: they have the
same number of points modulo p for all primes p. Test this
for several primes, and answer “no” if any disagree.
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Isogeny testing, continued

Now we have two curves which look isogenous, in the sense
that they have the same conductor and the same number of
points modulo p for many small primes p.

In other words, their L-series look the same (many Euler factors
agree).

What next?

Find the complete isogeny class of E1 and see if it
contains E2 (up to isomorphism): see problem 2!
Or just compute chains of `-isogenies for ` = 2, 3, 5, . . . and
hope for the best.
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Problem 2: finding the complete isogeny class
This divides into two separate sub-problems:

1 Given an elliptic curve E and a specific prime `, find all
curves `-isogenous to E

2 Given an elliptic curve E, determine for which primes `
there exists an `-isogeny from E

Sub-problem 2 is quite deep. The list of ` which occur for elliptic
curves over Q was determined by Mazur in his famous 1978
paper “Rational Isogenies of prime degree”:

` ∈ {2, 3, 5, 7, 13} ∪ {11, 17, 37} ∪ {11, 19, 43, 67, 163}

No such list is known for any other number field!

We will concentrate on sub-problem 1.
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Isogeny kernels
Let ϕ : E → E′ be an `-isogeny defined over K. The kernel
H = kerϕ is a cyclic subgroup of E(K) which is defined over K.

This means that it is stable under Galois, i.e. that

P ∈ H =⇒ Pσ ∈ H ∀σ ∈ GK = Gal(K/K)

Note that this does not mean that H ⊂ E(K)! But is does mean
that the kernel polynomial ΨH(X) ∈ K[X], where

ΨH(X) =
∏

±P=(xP,yP)∈H\{O}

(X − xP).

In this product, we only take one of each pair ±P, so ΨH has
distinct roots and degree (`− 1)/2 (or degree 1 when ` = 2).
Given ΨH there are standard formulas to compute both ϕ and
the codomain curve E′ = E/H. So we will concentrate on
finding ΨH.
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Division polynomials
Nonzero points in the kernel of an `-isogeny all have order `,
since [`] = ϕ̂ ◦ ϕ (and ` is prime).

Hence the kernel polynomial ΨH(X) is a factor of the `-division
polynomial which can be defined as Ψl(X) = ΨE[`](X); it has
degree (`2 − 1)/2 (or 3 when ` = 2) and coefficients in K.

Over K, the division polynomial Ψl(X) factors as a product of
exactly l + 1 (possibly reducible) kernel polynomials. It is easy
to see that E has exactly `+ 1 different `-isogenies, since that is
the number of subgroups of order ` in E[`] ∼= (Z/`Z)2.

Hence one approach is to factor Ψl(X) over K and work out
which irreducible factors combine to give valid kernel
polynomials. This is straightforward when ` = 2 or ` = 3, when
kernel polynomials have degree 1.
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2-isogenies

The first easy case.

Let E have equation Y2 = X3 + AX + B. Then
Ψ2(X) = X3 + AX + B.

To each root x0 of Ψ2(X) in K we have a point P = (x0, 0) of
order 2 and subgroup H = 〈P〉 = {OE,P}.

The kernel polynomial is X − x0, and the isogenous curve
E′ = E/H has equation

E′ : Y2 = X3 + (A− 5(3x2
0 + A))X + (B− 7x0(3x2

0 + A)).

For a general Weierstrass equation the formulas are not much
more complicated.
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3-isogenies

The second easy case.

Let E have equation Y2 = X3 + AX + B.
Then Ψ3(X) = 3X4 + 6AX2 + 12BX − A2.

To each root x0 of Ψ3(X) in K we have a pair of points
P = (x0,±y0) of order 3 and subgroup H = 〈P〉 = {OE,P,−P}.

The kernel polynomial is again X − x0, and the isogenous curve
E′ = E/H has equation

E′ : Y2 = X3 − 3(3A + 10x2
0)X − (70x3

0 + 42Ax0 + 27B).
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E′ : Y2 = X3 − 3(3A + 10x2
0)X − (70x3

0 + 42Ax0 + 27B).
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5-isogenies via division polynomials

Joint work with Kimi Tsukazaki

The 5-division polynomial Ψ5(X) has degree 12; the 6 kernel
polynomials are now quadratic factors.

Not every quadratic factor is a kernel polynomial!

Each kernel now has the form H = {O,±P,±2P} and the two
roots of the kernel polynomial are x(±P), x(±2P).

Let m2(X) be the degree 4 rational function such that
x(2P) = m2(x(P)) for all P ∈ E(K). The condition for a quadratic
factor f (X) of Ψ5(X) to be a kernel polynomial is that

f (x0) = 0 =⇒ f (m2(x0)) = 0.
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5-isogenies via division polynomials (continued)

For f (X) ∈ K[X] define an operation f 7→ µ(f ) by

µ(f )(X) = gcd(Ψ`(X), num(f (m2(X))))

(where num() denotes the numerator of a rational function).

Now, a quadratic factor f (X) of Ψ5(X) is a kernel polynomial if
and only if µ(f ) = f .

Any linear factors of Ψ5(X) are permuted in pairs by µ: we get a
kernel polynomial by taking products f (X)µ(f (X)) with one f
from each such pair, or from a quadratic factor f with µ(f ) = f .
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`-isogenies via division polynomials: the general case

Let ` be any odd prime. Assume that 2 generates
(Z/`Z)∗/{±1} (i.e., 2 is a “semi-primitive root modulo `).

1 Factor Ψl(X). Discard any irreducible factors whose degree
does not divide (`− 1)/2, and consider the remaining
factors f in turn.

2 Write (`− 1)/2 = de where d = deg(f ). Form in succession

f , µ(f ), µ2(f ), . . . , µe(f )

(which are all irreducible factors of Ψl(X)).
3 If µe(f ) 6= f , discard all these factors: f fails.

Otherwise, f passes, and g =
∏e−1

j=0 µ
j(f ) is the kernel of an

`-isogeny defined over K.
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Why 2? When 2?

2 is a semi-primitive root modulo ` for

` = 3, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, . . .

but not for
` = 17, 31, 41, 43, 73, 89, 97, . . .

We can instead use any semi-primitive root a, replacing m2 by
the rational function ma which gives the multiplication-by-a map
on the x-coordinate. In fact, a = 2 or a = 3 work for all ` < 100
except ` = 41, 73, 97 for which a = 6, 5, 5 work.

However, this method becomes rapidly more expensive for
larger ` since both computing and factoring Ψl(X) are slow:
remember that the degree is (`2 − 1)/2.
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The modular method

Joint work with Mark Watkins and Kimi Tsukazaki

We have developed this method for ` = 5, 7 and 13; it also
works for ` = 2 and 3 but then is no easier than the division
polynomial method.

Why these primes?

These are the prime values of ` for which the modular
curve X0(`) has genus 0.

This means that the j-invariants of elliptic curves with a rational
`-isogeny can be expressed in terms of a single free
parameter t, namely a generator for the function field of X0(`),
of degree l + 1.
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Fricke moduli for genus zero primes

As generators of the function fields of X0(`) we may take
functions t satisfying

(` = 2) j = F2(t) = (t + 16)3/t

(` = 3) j = F3(t) = (t + 3)3(t + 27)/t

(` = 5) j = F5(t) = (t2 + 10t + 5)3/t

(` = 7) j = F7(t) = (t2 + 5t + 1)3(t2 + 13t + 49)/t

(` = 13) j = F13(t) = (t2 + 5t + 13)(t4 + 7t3 + 20t2 + 19t + 1)3/t



Why?
Brief explanation: Non-cuspidal points on X0(N) parametrize
pairs (E,H) where E is an elliptic curve and H a cyclic subgroup
of order N. When N = 1 we get the usual j-line. For larger N for
which X0(N) has genus zero, we need a different modular
function t, of level N, and the covering map X0(N)→ X0(1) is
given by a rational map t 7→ j = F(t).

This means that for a curve with given j-invariant, the
isogenous curves (over K) correspond to the solutions t ∈ K to
the equation F`(t) = j, of which there are at most l + 1.

We can thus work out generic `-isogeny formulas
once-and-for-all, and specialise in any given case.

We do also have to take account of twists (non-isomorphic
curves with the same j-invariant). For simplicity we assume
j 6= 0, 1728.
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Outline of the method

Let ` ∈ {3, 5, 7, 13}. Substitute F`(t) into a standard formula
giving an elliptic curve with j-invariant j, and you get an elliptic
curve Et defined over Q(t) with j-invariant j = F`(t).

Find its `-division polynomial (in Q(t)[X]) and factor it.

You will see a factor of degree (l− 1)/2, which is the generic
kernel polynomial we seek, as a polynomial in Q(t)[X].
Specializing to t ∈ K will give us a kernel polynomial in K[X].

The correct t to use are the solutions (if any) to F`(t) = j, where
j = j(E).

However, Et will in general be a quadratic twist of our curve E,
which we must allow for.
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The case ` = 5

Recall that F5(t) = (t2 + 10t + 5)3/t. An elliptic curve with this
j-invariant over Q(t) is

Et : y2 = x3 − 3(j/k)x− 2(j/k)

where j = F5(t) and k = j− 1728. The 5-division polynomial of
Et has the quadratic factor

Ψt(X) = X2+((2t2+20t+10)/(t2+4t−1))X+(t6+42t5+639t4+4300t3+12015t2+9450t+2225)/(t6+30t5+315t4+1300t3+1575t2−978t+125).

To take the quadratic twist into account, we find that the kernel
polynomials for the elliptic curve E with invariants c4, c6, j are
Ψt(c4X/3c6).



Larger `
A similar computation gives generic kernel polynomials for
`-isogenies for ` = 7 and ` = 13. One has to do a substantial
one-time factorization in Q[t,X], but after that the work is trivial.

We have done similar pre-computations for all the larger `
which can occur as isogeny degrees over Q:
l = 11, 17, 19, 37, 43, 67 or 163. In each case the number of
j-invariants is finite, so we no longer have a parameter t in the
division polynomial, which has larger degree (up to
1
2(1632 − 1) = 13284). The one-off computation is non-trivial, but
we can now compute isogenies of all degrees over Q very
quickly without needing to risk floating-point precision issues!

Work is under way to extend this idea of “generic kernel
polynomials” to larger `, starting with the three cases
` = 11, 17, 19 (genus 1). The implementation will work over
arbitrary fields (and arbitrary characteristic).
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