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Introduction

In the first lecture, I described in very broad terms the
procedure of computing all elliptic curves of conductor N
using modular symbols.

I will now go into some more details concerning
How to compute one curve from a newform
How to compute the isogenous curves (next time)
How to determine which curve in the isogeny class is
“optimal” (and what that means)
How to verify that the associated Manin constant is 1.

Some of these steps used not to be rigorously justified,
but. . .
that’s not good enough when writing an appendix to a
paper by Agashe, Ribet and Stein!
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Some notation and terminology

f =
∑∞

n=1 anqn, a normalised (a1 = 1) cusp form of weight 2
for Γ0(N) which is a rational newform, in particular an
eigenform for the Hecke algebra with rational integer
eigenvalues

L(f , s), the L-series of f , given for <(s) > 3/2 by the
Dirichlet series

∑
ann−s satisfying a functional equation

Λ(f , s) = Ns/2(2π)−s
Γ(s)L(f , s) = ±Λ(2− s)

the analytic rank r of f is the order of vanishing of Λ(f , s) at
s = 1; the sign of the functional equation is (−1)r which
gives the parity of r
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Some more notation and terminology

ωf = 2πif (z)dz, the associated holomorphic differential on
the modular curve X0(N) = Γ0(N)\H∗

Λf = {〈γ, f 〉 | γ ∈ Γ0(N)} is the period lattice of f , where
〈γ, f 〉 is the period

∫ γ(0)
0 ωf ; it is a discrete rank 2 lattice in C

Ef = C/Λf is the modular elliptic curve attached to f ,
known to be defined over Q and of conductor N, with
L(Ef , s) = L(f , s)
Ω0(f ) is the (positive) real period of f (generates Λf ∩ R)
L(f , 1)/Ω0(f ) is rational, and zero iff r > 0
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From newform to curve
The modular symbol computations give the following data for
each N, some of which is stored:

the number of rational newforms for Γ0(N);
for each newform f , the following data:

the Hecke eigenvalues ap associated to f for all primes p up
to some bound
The sign of the functional equation of L(f , s)
the value of L(f , 1)/Ω0(f ) ∈ Q

From the ap we can

determine the Fourier coefficients an

compute the approximate value of the periods 〈γ, f 〉 for
each γ ∈ Γ0(N)
compute r and L(r)(f , 1) (provided r ≤ 3 !)
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From newform to curve, continued
The modular symbol method also provides the following crucial
“period data”, in the form of five integers and one bit:

a matrix γ ∈ Γ0(N) (only the bottom row matters)
nonzero integers m+,m− and t ∈ {1, 2}

such that if we set 〈γ, f 〉 = xγ + iyγ , then the period lattice Λf
has Z-basis

(2x, x + iy) if t = 1, or
(x, iy) if t = 2

where x = xγ/m+ and y = yγ/m−. Given this basis of Λf (to
some precision) we can compute the constants c4 = c4(Λf ) and
c6 = c6(Λf ) which are known to be integers and the invariants of
the elliptic curve Ef . Manin’s “c = 1 conjecture” is equivalent to
the easily checked statement that Ef is a minimal model.



Practical issues I
There are two different practical issues which affect the validity
of this claim:

I compute the full period lattice of the newform f and
hence the c4 and c6 invariants of this lattice. Since these are
known to be integers, I can guarantee that they are correct.
In each case I check that they are minimal invariants of an
elliptic curve Ef , from which it follows that Ef is the optimal
curve associated to f and that “c = 1” for this curve.

It is hard to ensure that c4,c6 are computed to sufficient
precision to guarantee (rigorously!) that they are correct.
(They are integers, but can be quite large, requiring high
precision.) Each is computed from the periods of f by
summing a series, and the periods are also computed by
summing a series.
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Practical issues II

Computing the complete “period data” requires working in
the full modular symbol space representing H1(X0(N),Z),
which is expensive. It is much cheaper to work in the “plus
space” H+

1 (X0(N),Z), which has half the dimension. This
still gives all the information about f except that we can
only determine the projection of Λf onto R: we cannot
determine either m− or t.

In the rest of this lecture, we will show how to handle the first
issue rigorously.

The same methods also help us obtain as much information as
possible when we only the “plus part” of the homology, which is
currently the case for levels between 60000 and 130000.
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Optimality and Manin’s constant
Let Ef be the elliptic curve associated to the newform f as
before. This elliptic curve is optimal, or an optimal quotient of
the Jacobian J0(N) of X0(N). This means that the map
J0(N)→ Ef has connected kernel.

The Néron differential ω of Ef is uniquely defined up to sign: it is
dX/(2Y + a1X + a3) for a minimal Weierstrass equation. Pulling
back to X0(N) gives a non-zero rational multiple of ωf , and the
absolute value of this rational number is called the Manin
constant c.

Manin conjectured that c = 1 in all cases; no
counterexamples are known.
c ∈ Z (Edixhoven 1991); hence the invariants c4 and c6 of
Ef are certainly integral.
Many other results on c are known: see Agashe, Ribet,
Stein (2006)
c = 1 if N < 130000 (JEC 2006)
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How to show that c = 1
We will show how to do two things:

1 obtain a provably correct equation for the optimal curve Ef

2 verify that c = 1 for Ef

using the following input:

1 a Z-basis w1,w2 for Λf to some precision
2 the lattice type t ∈ {1, 2}
3 a complete isogeny class of elliptic curves {E1, . . . ,Em} of

conductor N, given by minimal models, such that L(Ej, s)
and L(f , s) agree at the first few Euler factors

It does not matter how this list of curves is obtained! In practice,
E1 will be our “approximate Ef ” and the other Ej, if any, are
computed from these (see next lecture).
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Step 0

Proposition

Ef ∼= Ej (over Q) for some j ∈ {1, . . . , n}, and L(Ej, s) = L(f , s).

Proof.
We use the modularity of elliptic curves defined over Q! We
have computed a full set of newforms f at level N, and the same
number of isogeny classes of elliptic curves; the theory tells us
that there is a bijection between these sets. Checking the first
few terms of the L-series (i.e., comparing the Hecke eigenforms
of the newforms with the Frobenius traces of the curves) allows
us to pair up each isogeny class with a newform.
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Lattice normalization
Every lattice Λ in C which defined over R has a unique Z-basis
ω1, ω2 satisfying one of the following:

Type 1: ω1 and (2ω2 − ω1)/i are real and positive; or
Type 2: ω1 and ω2/i are real and positive.

For Λf , we know the type t from modular symbol calculations,
and we know ω1, ω2 (to some precision) by numerical
integration.

For each curve Ej, we compute (to some precision) a Z-basis
for its period lattice Λj, using the standard AGM method. Here,
Λj is the lattice of periods of the Néron differential on Ej. The
type of Λj is determined by the sign of the discriminant of Ej:
type 1 for negative discriminant, and type 2 for positive
discriminant.
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Lattice labelling

We label the curves Ej so that Λ1 and Λf are approximately
equal. To be precise, we will require that∣∣∣∣ω1,1

ω1,f
− 1
∣∣∣∣ < ε and

∣∣∣∣=(ω2,1)
=(ω2,f )

− 1
∣∣∣∣ < ε (*)

for a specific ε > 0.

Here ω1,j, ω2,j denote the normalised generators of Λj, and ω1,f ,
ω2,f those of Λf .

The value of ε will be chosen later. For N < 130000 we never
needed to use an ε < 1

5 , and in the vast majority of cases, ε = 1
was sufficient!
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Recall that for some j0, Ej0 is a minimal model for Ef . We
suspect that j0 = 1 but need to prove it.

Pulling back the Néron differential on Ej0 to X0(N) gives c · ωf
where c ∈ Z is the Manin constant for f . Hence

cΛf = Λj0 .

Our tasks are now to

1 identify j0, to find which of the Ej is (isomorphic to) the
“optimal” curve Ef ; and

2 determine the value of c.

The way we have set things up, we will actually prove that
j0 = 1 and c = 1. As we will soon see, this will follow from (*),
provided that ε is small enough.
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Stevens’ lattice inclusion lemma
A result of Glenn Stevens (1989) implies that in the isogeny
class there is a curve, say Ej1 , whose period lattice Λj1 is
contained in every Λj; this is the unique curve in the class with
minimal Faltings height.

For each j, we know therefore that there exist integers aj, bj

such that

ω1,j1 = ajω1,j and =(ω2,j1) = bj=(ω2,j).

Let B = max(a1, b1).

Remark: It is conjectured that Ej1 is the Γ1(N)-optimal curve, but we
do not need or use this fact. In many cases, the Γ0(N)- and
Γ1(N)-optimal curves are the same, so we expect that j0 = j1 often;
indeed, this holds for the vast majority of cases.
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The key proposition

Proposition

Suppose that (*) holds with ε = B−1; then j0 = 1 and c = 1.
That is, the curve E1 is the optimal quotient and its Manin
constant is 1.

We used this to establish the following:

Theorem
For all N < 60000, every optimal elliptic quotient of J0(N) has
Manin constant equal to 1. Moreover, the optimal curve in each
class is the one whose identifying number in the tables is 1
(except for class 990h where the optimal curve is 990h3).
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Proof of the Theorem

For all N < 60000 we used modular symbols to find all
newforms f and their period lattices, and also the corresponding
isogeny classes of curves. In all cases we verified that (*) held
with the appropriate value of ε. (The case of 990h is only exceptional on

account of an error in labelling the curves several years ago, and is not significant.)

In the vast majority of cases, the value of B is 1, so the
precision needed for the computation of the periods is very low.
For N < 60000, out of 258502 isogeny classes, only 136 have
B > 1: we found a1 = 2 in 13 cases, a1 = 3 in 29 cases, and
a1 = 4 and a1 = 5 in one case each (for N = 15 and N = 11
respectively); b1 = 2 in 93 cases; and no larger values. Class
17a is the only one for which both a1 and b1 are greater than 1
(both are 2).
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Proof of the key proposition

Let ε = B−1 and λ = ω1,1
ω1,f

, so |λ− 1| < ε.

For some j(= j0) we have cΛf = Λj.

The idea is that

lcm(a1, b1)Λ1 ⊆ Λj1 ⊆ Λj = cΛf ;

if a1 = b1 = 1, then the closeness of Λ1 and Λf forces c = 1 and
equality throughout.

To cover the general case it is simpler to work with the real and
imaginary periods separately.
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We have
c =

ω1,j

ω1,f
=
ω1,1

ω1,f

ω1,j

ω1,1
= λ

a1

aj
∈ Z.

Hence

0 ≤
|ajc− a1|

a1
= |λ− 1| < ε ≤ 1

a1
.

Hence λ = 1 and a1 = caj, so ω1,1 = ω1,f . Similarly, we have

=(ω2,j)
=(ω2,f )

= c ∈ Z

and again we can conclude that =(ω2,1) = =(ω2,f ), and hence
ω2,1 = ω2,f .

Thus Λ1 = Λf = c−1Λj, from j = 1 = c follows.
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The range 60000 < N < 130000

Our results for 60000 < N < 130000 are slightly weaker, and
require more work.

In this range we do not know Λf precisely, but only its projection
onto the real line. We argue as before, using B = a1.

Theorem
For all N in the range 60000 < N < 130000, every optimal elliptic
quotient of J0(N) has Manin constant equal to 1.
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Recall that when we have only used the “plus part” of the
homology of X0(N), we are only able obtain partial information.

Instead of knowing the lattice type and approximate basis for
Λf , what we have is (to some precision) a positive real number
ω+

1,f such that

either Λf has type 1 and ω1,f = 2ω+
1,f ,

or Λf has type 2 and ω1,f = ω+
1,f .

Curve E1 has lattice Λ1, and the ratio λ = ω+
1,1/ω

+
1,f satisfies

|λ− 1| < ε.

In the range 60000 < N < 130000 we have a1 = 1 for all but
three cases where a1 = 3, and the inequality holds with ε = 1

3 ,
which suffices.

First assume that a1 = 1.



If the type of Λf is the same as that of Λ1 (for example, this
must be the case if all the Λj have the same type, which will
hold whenever all the isogenies between the Ej have odd
degree) then from cΛf = Λj we deduce as before that λ = 1
exactly, and c = a1/aj = 1/aj, hence c = aj = 1. So in this case
we have that c = 1, though there might be some ambiguity in
which curve is optimal if aj = 1 for more than one value of j.

Assume next that Λ1 has type 1 but Λf has type 2. Now
λ = ω1,1/2ω1,f . The usual argument now gives caj = 2. Hence

either c = 1 and aj = 2,
or c = 2 and aj = 1.



To see if the case c = 2 and aj = 1 could occur, we looked for
classes in which a1 = 1 and Λ1 has type 1, while for some j > 1
we have aj = 1 and Λj of type 2.

This occurs 28 times for 60000 < N < 130000.

For 15 of these the level N is odd, so we know (Abbes–Ulmo
1996) that c must be odd. The remaining 13 are

62516a, 67664a, 71888e, 72916a, 75092a, 85328d, 86452a, 96116a,

106292b, 111572a, 115664a, 121168e, 125332a,

all of which were eliminated by carrying out extra computations
in H1(X0(N),Z).

In all of these 13 cases, the isogeny class consists of two curves, E1

of type 1 and E2 of type 2, with [Λ1 : Λ2] = 2, so that E2 rather than E1

has minimal Faltings height.



Next suppose that Λ1 has type 2 but Λf has type 1. Now
λ = 2ω1,1/ω1,f . The usual argument now gives 2caj = 1, which
is impossible; so this case cannot occur.

Finally we consider the cases where a1 > 1. There are only
three of these for 60000 < N < 130000: namely, 91270a, 117622a
and 124973b, where a1 = 3. In each case the Λj all have the
same type (they are linked via 3-isogenies) and the usual
argument shows that caj = 3. But none of these levels is
divisible by 3, so c = 1 in each case.
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Final remarks

1 In the vast majority of cases we can verify that c = 1 using
only the plus part of homology. The remaining cases can
be eliminated either by doing the extra work needed to
obtain full homology information, or by using known results
(of the form p | c =⇒ p | N).

2 It may be possible to obtain more information without
resorting to the full H1. For example, we could work in the
“minus space” H−1 which would give us all the information
except that of the lattice type.


