PROJECT GROUP 3 - FOOD FOR THOUGHT

Please report all typos, errors and nonsensical statements!
(1) Let L be the splitting field of the polynomial $f(X)=X^{3}-2 X+1$. What is the smallest conductor of an elliptic curve E / \mathbf{Q} with $\mathbf{Q}(E[2])=K$?
(2) Look up the Bordeaux tables of cubic fields. For the 10 cubic fields K of smallest discriminant, find the smallest conductor of an elliptic curve E / \mathbf{Q} such that $\mathbf{Q}(E[2])$ is equal to the Galois closure L of K.
(3) Find an elliptic curve E / \mathbf{Q} such that $\mathbf{Q}(E[3])$ is equal to the splitting field of $f(X)=$ $X^{4}-44 X^{2}+528$.
(4) Let G be a closed subgroup of $\mathbf{G L}_{2}\left(\mathbf{Z}_{p}\right)$ with $p \geq 5$. Suppose the image \bar{G} of G in $\mathbf{G L}_{2}\left(\mathbf{F}_{p}\right)$ contains $\mathbf{S L}_{2}\left(\mathbf{F}_{p}\right)$. Show that G contains $\mathbf{S L}_{2}\left(\mathbf{Z}_{p}\right) .{ }^{1}$
(5) Find a proper subgroup G of $\mathbf{S L}_{2}(\mathbf{Z} / 9 \mathbf{Z})$ which maps isomorphically onto $\mathbf{S L}_{2}(\mathbf{Z} / 3 \mathbf{Z})$ under the reduction map. Suppose G is a subgroup of $\mathbf{S L}_{2}(\mathbf{Z} / 9 \mathbf{Z})$ that surjects onto $\mathbf{S L}_{2}(\mathbf{Z} / 3 \mathbf{Z})$. Show that $G=\mathbf{S L}_{2}(\mathbf{Z} / 9 \mathbf{Z})$ or the surjection from G onto $\mathbf{S L}_{2}(\mathbf{Z} / 3 \mathbf{Z})$ is an isomorphism. How many conjugacy classes of $\mathbf{S L}_{2}(\mathbf{Z} / 3 \mathbf{Z})$ s are there in $\mathbf{S L}_{2}(\mathbf{Z} / 9 \mathbf{Z})$? Same question with $\mathbf{S L}_{2}$ replaced by $\mathbf{P S L}_{2}$. Can you find some elliptic curves such that the image of $\bar{\rho}_{E, 3}$ is equal to $G ?^{2}$
(6) If $G \subset \mathbf{S L}_{2}(\mathbf{Z} / 4 \mathbf{Z})$ and $\bar{G}=\mathbf{S L}_{2}(\mathbf{Z} / 2 \mathbf{Z})$, then $|G|=12$ or 48 . If $G \subset \mathbf{S L}_{2}(\mathbf{Z} / 8 \mathbf{Z})$ and $\bar{G}=\mathbf{S L}_{2}(\mathbf{Z} / 2 \mathbf{Z})$, then $|G|=12,24,48,96$, or 384 . Except for 384 , all of these possibilities occur with G not surjecting onto $\mathbf{S L}_{2}(\mathbf{Z} / 4 \mathbf{Z})$. Discuss conjugacy of these groups in $\mathbf{S L}_{2}$ and $\mathbf{P S L}_{2}$? Can you find some elliptic curves such that the image of $\bar{\rho}_{E, 8}$ is equal to $G ?^{3}$
(7) Having played with the last two problems, do you have any thoughts or feedback about Sage's capacity for computing with finite groups like $\mathbf{G L}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right), \mathbf{S L}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ and $\mathbf{P S L}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$.
(8) Suppose E / \mathbf{Q} admits a rational p-isogeny, so that the $\bmod p$ representation is reducible:

$$
\bar{\rho}_{E, p}(\sigma) \sim\left(\begin{array}{cc}
\epsilon(\sigma) & * \\
0 & \epsilon(\sigma)^{-1} \omega(\sigma)
\end{array}\right)
$$

Can we compute anything about the character ϵ ? Its order? Its conductor?

[^0]
[^0]: Date: June 21, 2010.
 ${ }^{1}$ You can look in Serre's 1972 Inventiones paper Propriétés galoisiennes des points d'ordre fini des courbes elliptiques for hints.
 ${ }^{2}$ Elkies has shown how to parametrize these curves. See http://arxiv.org/abs/math/0612734.
 ${ }^{3}$ We should study Elkies' paper and see if we can provide a similar parametrization here.

