Group III

Galois theory and the quadratic form $\operatorname{tr}\left(x^{2}\right)$
 (according to Serre)

02.07.2010

The group $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ acts faithfully and transitively on $\mathbb{P}^{1}\left(\mathbb{F}_{3}\right)$, yielding an inclusion $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \hookrightarrow S_{4}$.

If $f(x)$ is an S_{4}-polynomial with splitting field K, then the natural map $\bar{\rho}: G_{\mathbb{Q}} \rightarrow S_{4} \cong \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ is a 2dimensional projective representation of $G_{\mathbb{Q}}$.

Every representation $\bar{\sigma}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ with cyclotomic determinant comes from the 3-torsion on an elliptic curve.

Thus, $\bar{\rho}$ arises from the action of $G_{\mathbb{Q}}$ on $\mathbb{P}(E[3])$ if and only if $\bar{\rho}$ lifts to a representation $\bar{\sigma}$ with cyclotomic determinant.
$\operatorname{det} \bar{\rho}=\chi_{\text {cyc }}$ if and only if $\operatorname{det} \bar{\sigma}=\chi_{\text {cyc }}$ if and only if disc $K=-3 \cdot$ (square). We assume this is the case from now on.

To identify the obstruction to lifting $\bar{\rho}$, consider the long exact sequence in $G_{\mathbb{Q}^{-}}$cohomology associated to the following sequence of trivial $G_{\mathbb{Q}^{-}}$modules:

$$
\begin{aligned}
& 1 \rightarrow\{ \pm 1\} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow 1 \\
& \cdots \rightarrow \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)\right) \rightarrow \\
& \quad \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)\right) \xrightarrow{\delta} H^{2}(\mathbb{Q},\{ \pm 1\}) \rightarrow \cdots .
\end{aligned}
$$

So $\bar{\rho}$ lifts exactly when $\delta(\bar{\rho})=0$.

Let $E=\mathbb{Q}[x] /(f(x))$ and let q_{E} be the quadratic form

$$
q_{E}(x)=\operatorname{tr}_{E / \mathbb{Q}}\left(x^{2}\right) .
$$

Serre* teaches us that $\delta(\bar{\rho})$ is related to the Hasse-Witt invariant of q_{E}, which we denote $w_{2}\left(q_{E}\right)$.

$$
\delta(\bar{\rho})=w_{2}\left(q_{E}\right)-(2) \cup(-3)
$$

*J.-P. Serre, L'invariant de Witt de la forme $\operatorname{tr}\left(x^{2}\right)$, Comment. Math. Helv. 59 (1984), 651-676

The Hasse-Witt invariant:

The function $q_{E}: x \mapsto \operatorname{tr}_{E / \mathbb{Q}}\left(x^{2}\right)$ is a quadratic form of rank n over \mathbb{Q}. The set of isomorphism classes of such is $H^{1}(\mathbb{Q}, O(n))$.

Permutation matrices give an embedding $i: S_{n} \hookrightarrow O(n)$, and thus a map $i_{*}: H^{1}(\mathbb{Q}, O(n)) \rightarrow H^{1}\left(\mathbb{Q}, S_{n}\right)$.

Recall the coboundary map $\delta: H^{1}\left(\mathbb{Q}, S_{n}\right) \rightarrow H^{2}(\mathbb{Q},\{ \pm 1\})$.

Define the Hasse-Witt invariant by $w_{2}\left(q_{E}\right)=\delta\left(i_{*}\left(q_{E}\right)\right)$.

The class $(2) \cup(-3)$:
By Kummer theory, $H^{1}(\mathbb{Q},\{ \pm 1\})=\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}$. We write (x) for the element of $H^{1}(\mathbb{Q},\{ \pm 1\})$ corresponding to $x \in \mathbb{Q}^{\times}$.

There is a cup product operation
$\cup: H^{1}(\mathbb{Q},\{ \pm 1\}) \times H^{1}(\mathbb{Q},\{ \pm 1\}) \rightarrow H^{2}(\mathbb{Q},\{ \pm 1\})$.
$H^{2}(\mathbb{Q},\{ \pm 1\})$ classifies quaternion \mathbb{Q}-algebras. The distinguished element of $H^{2}(\mathbb{Q},\{ \pm 1\})$ corresponds to $M_{2}(\mathbb{Q})$.

$$
(x) \cup(y)=[\mathbb{Q} \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} i j],
$$

where $i^{2}=x, j^{2}=y$ and $i j=-j i$
(2) $\cup(-3)$ is the isomorphism class of quaternion \mathbb{Q} algebras ramified at 2 and 3 .

Let q_{E}^{0} be the restriction of q_{E} to the trace-zero subspace of E.

Proposition.* $w_{2}\left(q_{E}\right)=(2) \cup\left(d_{E}\right)$ if and only if q_{E}^{0} properly represents zero.

Thus, the lifting obstruction $\delta(\bar{\rho})$ vanishes if and only if there is an element $x \in \mathbb{Q}^{\times}$such that

$$
\operatorname{tr}_{E / F}(x)=\operatorname{tr}_{E / F}\left(x^{2}\right)=0 .
$$

*Serre, loc. cit.

