Algebraic Extensions for Summation in Finite Terms

Burçin Eröcal

Research Institute for Symbolic Computation Johannes Kepler University, Linz

> May 4, 2010 SD 20.5, Fields Institute

• Given an *elementary function f*, find g such that

$$g(n) = \sum_{a \le i < n} f(i)$$
$$\Delta g(n) = g(n+1) - g(n) = f(n)$$
$$\sum f(i) = g(n) - g(1)$$

-

• Given an *elementary function f*, find g such that

$$g(n) = \sum_{a \le i < n} f(i)$$
$$\Delta g(n) = g(n+1) - g(n) = f(n)$$
$$\sum f(i) = g(n) - g(1)$$

$$\sum_{0 \le i < n} f(i) = g(n) - g(1)$$

• Given an *elementary function f*, find g such that

$$g(n) = \sum_{a \le i < n} f(i)$$
$$\Delta g(n) = g(n+1) - g(n) = f(n)$$
$$\sum_{0 \le i < n} f(i) = g(n) - g(1)$$

A difference field is a field F together with an automorphism σ of F. The constant field $K \subset F$ is the fixed field of σ .

 $\Delta g = f$

$$\sigma(g) - g = f$$

- B - - B

A difference field is a field F together with an automorphism σ of F. The constant field $K \subset F$ is the fixed field of σ .

 $\Delta g = f$

$$\sigma(g) - g = f$$

A difference field is a field F together with an automorphism σ of F. The constant field $K \subset F$ is the fixed field of σ .

 $\Delta g = f$

$$\sigma(g) - g = f$$

Karr's algorithm

Given an elementary summand f(i), i.e., a sum $\sum_{a \le i \le n} f(i)$,

- construct a field K containing all the constants appearing in f,
- then the rational function field K(n) with the automorphism $\sigma(n) = n + 1$,
- then build a tower K(n)(θ₁,...,θ_m) where the θ_i are elementary functions needed to express f.
- Solve the first order linear difference equation

$$\sigma(g) - g = f$$

over $K(n)(\theta_1,\ldots,\theta_m)$.

Example

۲

$$\sum_{1 \le i < n} H_i^2 = \sum_{1 \le i < n} \left(\sum_{1 \le j < i+1} \frac{1}{j} \right)^2$$

• $H_n^2 \in QQ(n)(h)$ where $\sigma(n) = n + 1$ and $\sigma(h) = h + \frac{1}{n+1}$

• Solve $\sigma(g) - g = h^2$ in $\mathbb{Q}(n)(h)$ to get

$$g(n) = H_n^2 n - 2H_n n - H_n + 2n$$

$$\sum_{1 \le i < n} H_i^2 = g(n) - g(1) = H_n^2 n - 2H_n n - H_n + 2n$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Building towers

At each step

- constants are not extended
- transcendental

First order linear extensions

- $\sigma(g) = \alpha g \beta$, g transcendental
 - inhomogeneous: $\beta \neq 0$
 - homogeneous: $\beta = 0$
 - algebraic: α is a σ -radical
 - transcendental

Building towers

At each step

- constants are not extended
- transcendental

First order linear extensions

- $\sigma(g) = \alpha g \beta, g$ transcendental
 - inhomogeneous: $\beta \neq 0$
 - homogeneous: $\beta = 0$
 - algebraic: α is a σ -radical
 - transcendental

Building towers

At each step

- constants are not extended
- transcendental

First order linear extensions

- $\sigma(g) = \alpha g \beta, g$ transcendental
 - inhomogeneous: $\beta \neq 0$
 - homogeneous: $\beta = 0$

algebraic: α is a σ -radical

transcendental

Building towers

At each step

- constants are not extended
- transcendental

First order linear extensions

 $\sigma(g) = \alpha g - \beta, g$ transcendental

- inhomogeneous: $\beta \neq 0$
- homogeneous: β = 0
 - algebraic: α is a σ -radical
 - transcendental

A (10) × (10) × (10)

Definition (Π-extensions)

We say that F(t), σ is a Π -extension of F, σ if and only if

- $\sigma(t) = \alpha t$ where $\alpha \in F^*$,
- t is transcendental over F and
- the constant field is not extended.

Example

$\Pi\Sigma$ fields (contd.)

Definition (Σ -extensions)

We say that F(t), σ is a Σ -extension of F, σ if and only if

- $\sigma(t) = \alpha t + \beta$ where $\alpha \in F^*$, $\beta \in F$,
- the equation $\sigma(w) \alpha w = \beta$ has no solution in *F* and
- If there exists g ∈ F such that σ(g)/g = αⁿ for some n ∈ N⁺, then there exists f ∈ F such that σ(f)/f = α.

Example

Example

•
$$\mathbb{Q}((-1)^n) \simeq \mathbb{Q}[x]/\langle x^2 - 1 \rangle$$
 since $((-1)^n)^2 = 1$
 $x^2 - 1 = (x - 1)(x + 1)$ over $\mathbb{Q}[x]$.

Example

•
$$\mathbb{Q}((-1)^n) \simeq \mathbb{Q}[x]/\langle x^2 - 1 \rangle$$
 since $((-1)^n)^2 = \frac{1}{x^2 - 1} = (x - 1)(x + 1)$ over $\mathbb{Q}[x]$.

•
$$\mathbb{Q}(4^n)(2^n) \simeq \mathbb{Q}(4^n)[x]/\langle x^2 - 4^n \rangle$$

 $x^2 - 4^n$ is irreducible over $\mathbb{Q}(4^n)$

Example

•
$$\mathbb{Q}((-1)^n) \simeq \mathbb{Q}[x]/\langle x^2 - 1 \rangle$$
 since $((-1)^n)^2 = x^2 - 1 = (x - 1)(x + 1)$ over $\mathbb{Q}[x]$.

•
$$\mathbb{Q}(4^n)(2^n) \simeq \mathbb{Q}(4^n)[x]/\langle x^2 - 4^n \rangle$$

 $x^2 - 4^n$ is irreducible over $\mathbb{Q}(4^n)$

•
$$\mathbb{Q}(8^n)(4^n) \simeq \mathbb{Q}(8^n)[x]/\langle x^3 - (8^n)^2 \rangle$$

 $x^3 - (8^n)^2$ is irreducible over $\mathbb{Q}(8^n)[x]$

▲□→ < □→</p>

Example

•
$$\mathbb{Q}((-1)^n) \simeq \mathbb{Q}[x]/\langle x^2 - 1 \rangle$$
 since $((-1)^n)^2 = x^2 - 1 = (x - 1)(x + 1)$ over $\mathbb{Q}[x]$.

•
$$\mathbb{Q}(4^n)(2^n) \simeq \mathbb{Q}(4^n)[x]/\langle x^2 - 4^n \rangle$$

 $x^2 - 4^n$ is irreducible over $\mathbb{Q}(4^n)$

•
$$\mathbb{Q}(8^n)(4^n) \simeq \mathbb{Q}(8^n)[x]/\langle x^3 - (8^n)^2 \rangle$$

 $x^3 - (8^n)^2$ is irreducible over $\mathbb{Q}(8^n)[x]$

•
$$\mathbb{Q}(4^n,9^n)(6^n) \simeq \mathbb{Q}(4^n,9^n)[x]/\langle x^2 - 4^n9^n \rangle$$

 $x^2 - 4^n9^n$ is irreducible over $\mathbb{Q}(4^n,9^n)$.

< 🗇 🕨

< E >

D-rings

Definition

- R ring
- σ endomorphism of R
- A σ *derivation* is a map δ : $R \rightarrow R$ satisfying

 $\delta(a+b) = \delta(a) + \delta(b)$ and $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$

for any $a, b \in R$. The triple (R, σ, δ) is called a D-ring.

Example (differential ring)

If $\sigma = \mathbf{1}_R$, δ is a derivation on R. In this case, (R, δ) is called a differential ring.

(1)

D-rings

Definition

- R ring
- σ endomorphism of R
- A σ derivation is a map δ : $R \rightarrow R$ satisfying

 $\delta(a+b) = \delta(a) + \delta(b)$ and $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$

for any $a, b \in R$. The triple (R, σ, δ) is called a D-ring.

Example (difference ring)

For any endomorphism σ of R, $\delta = 0$ is a σ -derivation. In this case, (k, σ) is called a difference ring.

(1)

D-rings

Definition

- R ring
- σ endomorphism of R
- A σ derivation is a map δ : $R \rightarrow R$ satisfying

 $\delta(a+b) = \delta(a) + \delta(b)$ and $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$

for any $a, b \in R$. The triple (R, σ, δ) is called a D-ring.

Example

If *R* is commutative, σ an endomorphism of R, and $\alpha \in R$, the map $\delta_{\alpha} = \alpha(\sigma - \mathbf{1}_R)$ given by $\delta(\mathbf{a}) = \alpha(\sigma(\mathbf{a}) - \mathbf{a})$ is a σ -derivation.

(1)

Example

- $R = \mathbb{Q}(x)$,
- $\sigma: x \mapsto x + 1$
- $\delta: \mathbf{X} \mapsto \mathbf{1}$

Then,

$$\delta(x^2) = \delta(xx) = \sigma(x)\delta(x) + \delta(x)x = 2\delta(x)x + \delta(x) = 2x + 1$$

E

・ロト ・回ト ・ヨト ・ヨト

• $(\mathbf{R}, \sigma, \delta)$ and $(\mathbf{R}', \sigma', \delta')$ - D-rings

We say that (R', σ', δ') is a D-ring extension of (R, σ, δ) if R is a subring of R'and $\sigma'(a) = \sigma(a)$ and $\delta'(a) = \delta(a)$ for any $a \in R$.

A 3 b

• For a D-ring R and $a, b \in R$, we introduce the notation

$$V_{a,b}(R) = \{ w \in R \text{ such that } \sigma(w) = aw + b \}$$

to denote the solutions of the first order linear difference equation $\sigma(w) = aw + b$

• We call an element *a* of a D-ring *R* a σ -radical over *R* if there exists $z \in R^*$ such that $\sigma(z) = a^n z$ for an integer n > 0.

Lemma (Bronstein 2000, Lemma 13)

Let (k, σ, δ) be a D-field with σ an automorphism of k, K be a field and a D-field extension of k, and $t \in K^*$ be algebraic over k such that $\sigma(t) = at + b$ for $a, b \in k$. Then, $V_{a,b}(k)$ is not empty. Furthermore, if b = 0, then either a = 0 or a is a σ -radical over k.

Theorem

Let

- $(\mathbf{R}, \sigma, \delta)$ be a D-ring with σ an automorphism of \mathbf{R} ,
- S be a D-ring extension of R,
- and t ∈ S* be algebraic over R such that σ(t) = at + b for a ∈ R* and b ∈ R.

lf

- V_{a,b}(R) has no nonzero elements and
- Const_{σ,δ}(**R**) = Const_{σ,δ}(**S**),

then

- *b* = 0,
- a is a σ -radical over R and
- the minimal polynomial $p \in R[X]$ of t is of the form $X^d c$.

Proof

Following the proof of Theorem 2.3 in [Karr85], let $p(X) = X^d + \sum_{i=0}^{d-1} p_i X^i$ be the minimal polynomial of *t* over *R* where d > 0. We have

$$0 = \sigma(p(t)) = (at+b)^d + \sum_{i=0}^{d-1} \sigma(p_i)(at+b)^i.$$

Replacing t^d with $-\sum_{i=0}^{d-1} p_i t^i$ reveals

$$a^{d} \sum_{i=0}^{d-1} p_{i} t^{i} = \sum_{i=0}^{d-1} {d \choose i} (at)^{i} b^{d-i} + \sum_{i=0}^{d-1} \sigma(p_{i}) (at+b)^{i}$$
(2)

Comparing coefficients for t^{d-1} , we get the equality

$$a^d p_{d-1} = a^{d-1}b + \sigma(p_{d-1})a^{d-1},$$

Then $w = -p_{d-1}/d \in V_{a,b}(R)$. Since $V_{a,b}(R)$ has no nonzero elements, we conclude $p_{d-1} = 0$. Replacing p_{d-1} by 0 in the last equality, we see that *b* is also 0.

Proof (continued).

Looking back at equation (2) and comparing coefficients for t^i , we get

$$\sigma(\boldsymbol{p}_i) = \boldsymbol{a}^{\boldsymbol{d}-i} \boldsymbol{p}_i, \quad \text{for } \boldsymbol{0} \leq i < \boldsymbol{d}-1.$$

Since *t* is nonzero, $p_j \neq 0$ for some j < d. For j > 0, $\sigma(t^{d-j}/p_{d-j}) = t^{d-j}/p_{d-j}$, so t^{d-j}/p_{d-j} is a new constant in *R*. Hence, for 0 < i < d, $p_i = 0$. The equality $\sigma(p_0) = a^d p_0$ shows that *a* is a σ -radical over *k*.

Remark

This theorem doesn't give any information about the purely differential case, since $V_{1,0}(R) = R$ and the statement doesn't apply.

- (*R*, σ, δ) D-ring
- M left R-module

A map θ : $M \rightarrow M$ is called *R*-pseudo-linear (with respect to σ and δ) if

 $\theta(u+v) = \theta(u) + \theta(v)$ and $\theta(au) = \sigma(a)\theta(u) + \delta(a)u$

for any $a \in R$ and $u, v \in M$. We write $End_{R,\sigma,\delta}(M)$ for the set of all *R*-pseudo-linear maps of *M*.

A B K A B K

- (F, σ, δ) D-field of characteristic 0
- (E, σ, δ) algebraic extension of (F, σ, δ)
- $\theta: E \to E \in End_{F,\sigma,\delta}$ an *F*-pseudo-linear map
- We are interested in solving

$$\theta(z) + fz = g$$

for $z \in E$ where $f, g \in E$ are given.

Example

In order to find a *simpler* expression for $\sum_{k=1}^{n} (-1)^{k} k$, we need to solve the equation

$$\sigma(z) - z = (-1)^k k$$

in the difference field $\mathbb{Q}(k)((-1)^k)$, with $\sigma(k) = k + 1$ and $\sigma((-1)^k) = -(-1)^k$.

- We can view *E* as a finite dimensional algebra over *F*.
- Let $\mathbf{b} = (b_1, \dots, b_n)$ be any basis of E over F.
- Write $u_{\mathbf{b}}$ for the column vector of the coordinates of u in the basis \mathbf{b} , i.e., $\mathbf{u}_{b} \in F^{n}$
- We want to solve

$$(\theta(z)+fz)_{\mathbf{b}}=g_{\mathbf{b}}.$$

Example

Let
$$\mathbf{b} = ((-1)^k, 1)$$
. We have $g = (-1)^k k$, then

$$g_{\mathbf{b}} = \left(\begin{array}{c} k \\ 0 \end{array} \right).$$

- Let $z \in E$. Write $z = z_1b_1 + z_2b_2 + \cdots + z_nb_n$ where $z_i \in F$ and $\mathbf{b} = (b_1, \dots, b_n)$ is a basis of *E* over *F*.
- Then,

$$\begin{aligned} \theta(z) &= \theta(z_1b_1) + \dots + \theta(z_nb_n) \\ &= \sigma(z_1)\theta(b_1) + \delta(z_1)b_1 + \dots + \sigma(z_n)\theta(b_n) + \delta(z_n)b_n \\ &= \sum_{i=1}^n \sigma(z_i)\theta(b_i) + \sum_{i=1}^n \delta(z_i)b_i \end{aligned}$$

э

• For an *F*-pseudo-linear map θ , define the matrix $\theta_{\mathbf{b}}$ as follows

$$\theta_{\mathbf{b}} = \left(\begin{array}{ccc} | & | & \cdots & | \\ (\theta(\mathbf{b}_1))_{\mathbf{b}} & (\theta(\mathbf{b}_2))_{\mathbf{b}} & \cdots & (\theta(\mathbf{b}_n))_{\mathbf{b}} \\ | & | & \cdots & | \end{array} \right).$$

Example

In our example,

$$\sigma_{\mathbf{b}} = \left(\begin{array}{cc} -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right).$$

• Recall,

$$\theta(z) = \sum_{i=1}^{n} \sigma(z_i)\theta(b_i) + \sum_{i=1}^{n} \delta(z_i)b_i$$

• Then,

$$\begin{aligned} (\theta(z))_{\mathbf{b}} &= \theta_{\mathbf{b}}(\sigma I)(z)_{\mathbf{b}} + (\delta I)(z)_{\mathbf{b}} \\ &= (\theta_{\mathbf{b}}(\sigma I) + (\delta I))(z)_{\mathbf{b}} \end{aligned}$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• For any $u \in E$, define $M_{\mathbf{b}}(u)$ to be

$$M_{\mathbf{b}}(u) = \begin{pmatrix} | & | & \dots & | \\ (ub_{1})_{\mathbf{b}} & (ub_{2})_{\mathbf{b}} & \dots & (ub_{n})_{\mathbf{b}} \\ | & | & \dots & | \end{pmatrix}$$

• Then for any $u, v \in E$

$$(uv)_{\mathbf{b}} = M_{\mathbf{b}}(u)(v)_{\mathbf{b}}.$$

Example

We have

$$M_{\mathbf{b}}(-1) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$$

We have

$$g_{\mathbf{b}} = (\theta(z) + fz)_{\mathbf{b}}$$

= $(\theta_{\mathbf{b}}(\sigma I) + (\delta I))(z)_{\mathbf{b}} + M_{\mathbf{b}}(f)(z)_{\mathbf{b}}$
= $(\theta_{\mathbf{b}}(\sigma I) + (\delta I) + M_{\mathbf{b}}(f))(z)_{\mathbf{b}}$

Example

In the differential case, $\sigma = \mathbf{1}_F$, $\theta = \delta$, then we have

 $\left(\delta_{\mathbf{b}}+\left(\delta I\right)+M_{\mathbf{b}}(f)\right)(z)_{\mathbf{b}}=g_{\mathbf{b}}.$

Example

In the difference case, $\delta = 0_F$, $\theta = \sigma$, so we have

$$\left(\sigma_{\mathbf{b}}(\sigma I) + M_{\mathbf{b}}(f)\right)(z)_{\mathbf{b}} = g_{\mathbf{b}}$$

N B

Demo

E

・ロト ・回ト ・ヨト ・ヨト

Example

- Take $R = \mathbb{Q}(n)(e)$ with $\sigma(n) = n + 1$ and $\sigma(e) = -e$, where *e* behaves like $(-1)^n$.
- We want to extend R = Q(n) (e) from the previous example with a new indeterminate s such that σ(s) = s e/(n+1).

i.e., *s* behaves like $\sum_{i=1}^{n} \frac{(-1)^{i}}{i}$.

Example

((-1)ⁿ)² = 1, so *e* satisfies the polynomial x² − 1 ∈ Q(n)[x].
x² − 1 factors over Q(n)

$$R \simeq \mathbb{Q}(n)[x]/\langle x^2 - 1 \rangle \simeq \mathbb{Q}(n)[x]/\langle x - 1 \rangle \oplus \mathbb{Q}(n)[x]/\langle x + 1 \rangle$$

•
$$e_0 = \frac{e+1}{2}$$
 and $e_1 = \frac{-e+1}{2}$ are idempotent in *R*.

• Since $1 = e_0 + e_1$ and $e_0e_1 = 0$, we also have the decomposition $R \simeq \mathbb{Q}(n)e_0 \oplus \mathbb{Q}(n)e_1$.

• (1) • (2) • (2) •

Theorem (Singer, van der Put, (1997))

Let (k, σ, δ) be a D-field with σ an automorphism of k, R be a finitely generated simple difference ring and a D-ring extension of k. There exist idempotents $e_0, \ldots, e_{d-1} \in R$ for d > 0 such that

- $R = R_0 \oplus \cdots \oplus R_{d-1}$ where $R_i = e_i R_i$,
- 2 $\sigma(e_i) = e_{i+1 \pmod{d}}$ so σ maps R_i isomorphically onto $R_{i+1 \pmod{d}}$ and σ^d leaves each R_i invariant.
- For each i, R_i is a domain, a simple difference ring and a D-ring extension of e_ik with respect to σ^d.

Remark

If $X^d - c$ splits over k, i.e., $X^d - c = \prod_{0 \le i < d} (x - \zeta_i)$ with $\zeta_i \in k$, we have

$$k[X]/\langle X^d-c
angle\simeq igoplus_{0\leq i< d}k[X]/\langle X-\zeta_i
angle.$$

The isomorphism is given by

$$\pi: k[X] \to \bigoplus_{0 \le i < d} k[X] / \langle X - \zeta_i \rangle$$

$$p \mapsto (p(\zeta_0), \dots, p(\zeta_{d-1}))$$
(3)

Let $e_i = 1 \in K[X]/\langle X - \zeta_i \rangle$, then

$$\pi^{-1}(\boldsymbol{e}_i) = \prod_{\substack{0 \leq i < d \\ i \neq i}} \frac{\boldsymbol{x} - \boldsymbol{e}_j}{\boldsymbol{e}_i - \boldsymbol{e}_j}$$

Example

- Take R = Q(ζ)(n) (e) with σ(n) = n + 1 and σ(e) = ζe, where e behaves like (ζ)ⁿ with ζ a 3rd root of unity.
- $((\zeta)^n)^3 = 1$, so *e* satisfies the polynomial $x^3 1 \in \mathbb{Q}(\zeta)(n)[x]$.
- $x^3 1$ factors over $\mathbb{Q}(\zeta)(n)$

$$R \simeq \mathbb{Q}(\zeta)(n)[x]/\langle x^3 - 1 \rangle$$

$$\simeq \mathbb{Q}(\zeta)(n)[x]/\langle x - 1 \rangle \oplus \mathbb{Q}(\zeta)(n)[x]/\langle x - \zeta \rangle \oplus \mathbb{Q}(\zeta)(n)[x]/\langle x - \zeta^2 \rangle$$

•
$$e_0 = \frac{e^2 + e + 1}{3}$$
, $e_1 = \frac{\zeta^2 e^2 + \zeta e + 1}{3}$ and $e_2 = \frac{\zeta e^2 + \zeta^2 e + 1}{3}$ are idempotent in *R*.

Extending algebraic extensions

Example

• We want to extend $R = \mathbb{Q}(n)(e)$ from the previous example with a new indeterminate *s* such that $\sigma(s) = s - \frac{e}{n+1}$,

i.e., *s* behaves like $\sum_{i=1}^{n} \frac{(-1)^{i}}{i}$.

• Writing $s = s_0 e_0 + s_1 e_1$ and $e = e_0 - e_1$, we have

$$\sigma(s_0e_0 + s_1e_1) = \sigma(s_0)e_1 + \sigma(s_1)e_0 = s_0e_0 + s_1e_1 + \frac{-e_0}{n+1} + \frac{e_1}{n+1}$$

• Hence, we need to find an extension of $\mathbb{Q}(n)$, namely $\mathbb{Q}(n, h)$, where $\sigma(h) = ah + b$ for some $a, b \in \mathbb{Q}(n)$ and $s_0, s_1 \in \mathbb{Q}(n, h)$ such that $\sigma(s_0) = s_1 + \frac{1}{n+1}$ and $\sigma(s_1) = s_0 - \frac{1}{n+1}$.

Example (contd.)

• Take
$$\sigma(h) = -h - \frac{1}{n+1}$$
, $s_0 = -h$ and $s_1 = h$.

• Then

$$\sigma(s_0) = \sigma(-h) = h + \frac{1}{n+1}$$

$$\sigma(s_1) = \sigma(h) = -h - \frac{1}{n+1}$$

E

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let

- Let $R = K[x]/\langle x^d c \rangle$ and (R, σ, δ) be a D-ring,
- where $x^d c$ splits over K[x] and $\sigma(x) = \zeta x$.
- Let S = R[y] be a D-ring extension of R, such that σ(y) = ay + b for a ∈ R* and b ∈ R.

Then

$$(\boldsymbol{S}, \sigma) \simeq (\boldsymbol{K}[\boldsymbol{\bar{y}}][\boldsymbol{x}]/\langle \boldsymbol{x}^{d} - \boldsymbol{c} \rangle, \tilde{\sigma})$$

where $\tilde{\sigma}(\bar{y}) = \zeta a(\zeta)\bar{y} + b(\zeta)$.

A B F A B F

Demo

E

・ロト ・回ト ・ヨト ・ヨト

• q-identities which hold for roots of unity

Sage Days 24 at RISC, Linz, Austria July 17-22

