# Algebraic Extensions for Summation in Finite Terms 

Burçin Eröcal

Research Institute for Symbolic Computation
Johannes Kepler University, Linz

May 4, 2010<br>SD 20.5, Fields Institute

## Summation in finite terms

- Given an elementary function $f$, find $g$ such that

$$
g(n)=\sum_{a \leq i<n} f(i)
$$

$$
\Delta g(n)=g(n+1)-g(n)=f(n)
$$

## Summation in finite terms

- Given an elementary function $f$, find $g$ such that

$$
\begin{gathered}
g(n)=\sum_{a \leq i<n} f(i) \\
\Delta g(n)=g(n+1)-g(n)=f(n)
\end{gathered}
$$

## Summation in finite terms

- Given an elementary function $f$, find $g$ such that

$$
\begin{gathered}
g(n)=\sum_{a \leq i<n} f(i) \\
\Delta g(n)=g(n+1)-g(n)=f(n)
\end{gathered}
$$

$$
\sum_{0 \leq i<n} f(i)=g(n)-g(1)
$$

## Summation in finite terms

## Definition

A difference field is a field F together with an automorphism $\sigma$ of $F$. The constant field $K \subset F$ is the fixed field of $\sigma$.

## Summation in finite terms

## Definition

A difference field is a field F together with an automorphism $\sigma$ of $F$. The constant field $K \subset F$ is the fixed field of $\sigma$.

$$
\Delta g=f
$$

## Summation in finite terms

## Definition

A difference field is a field F together with an automorphism $\sigma$ of $F$. The constant field $K \subset F$ is the fixed field of $\sigma$.

$$
\begin{gathered}
\Delta g=f \\
\sigma(g)-g=f
\end{gathered}
$$

## Karr's algorithm

Given an elementary summand $f(i)$, i.e., a sum $\sum_{a \leq i<n} f(i)$,

- construct a field $K$ containing all the constants appearing in $f$,
- then the rational function field $K(n)$ with the automorphism $\sigma(n)=n+1$,
- then build a tower $K(n)\left(\theta_{1}, \ldots, \theta_{m}\right)$ where the $\theta_{i}$ are elementary functions needed to express $f$.
- Solve the first order linear difference equation

$$
\sigma(g)-g=f
$$

over $K(n)\left(\theta_{1}, \ldots, \theta_{m}\right)$.

## Example

$$
\sum_{1 \leq i<n} H_{i}^{2}=\sum_{1 \leq i<n}\left(\sum_{1 \leq j<i+1} \frac{1}{j}\right)^{2}
$$

- $H_{n}^{2} \in Q Q(n)(h)$ where $\sigma(n)=n+1$ and $\sigma(h)=h+\frac{1}{n+1}$
- Solve $\sigma(g)-g=h^{2}$ in $\mathbb{Q}(n)(h)$ to get

$$
g(n)=H_{n}^{2} n-2 H_{n} n-H_{n}+2 n
$$

$$
\sum_{1 \leq i<n} H_{i}^{2}=g(n)-g(1)=H_{n}^{2} n-2 H_{n} n-H_{n}+2 n
$$

## $\Pi \Sigma$ fields

## Building towers

At each step

- constants are not extended
- transcendental

```
First order linear extensions
\sigma(g) = \alphag- \beta,g\mathrm{ transcendental}
- inhomogeneous: }\beta\not=
- homogeneous: }\beta=
> algebraic: }\alpha\mathrm{ is a }\sigma\mathrm{ -radical
* transcendental
```


## $\Pi \Sigma$ fields

```
Building towers
At each step
- constants are not extended
- transcendental
```

First order linear extensions
$\sigma(g)=\alpha g-\beta, g$ transcendental

- inhomogeneous: $\beta \neq 0$
- homogeneous: $\beta=0$
algebraic: $\alpha$ is a $\sigma$-racical
transcendental


## $\Pi \Sigma$ fields

## Building towers

At each step

- constants are not extended
- transcendental

First order linear extensions
$\sigma(g)=\alpha g-\beta, g$ transcendental

- inhomogeneous: $\beta \neq 0$
- homogeneous: $\beta=0$
algebraic: $\alpha$ is a $\sigma$-radical
transcendental


## $\Pi \Sigma$ fields

## Building towers

At each step

- constants are not extended
- transcendental


## First order linear extensions

$\sigma(g)=\alpha g-\beta, g$ transcendental

- inhomogeneous: $\beta \neq 0$
- homogeneous: $\beta=0$
algebraic: $\alpha$ is a $\sigma$-radical
transcendental


## $\Pi \Sigma$ fields

## Definition ( $\Pi$-extensions)

We say that $F(t), \sigma$ is a $\Pi$-extension of $F, \sigma$ if and only if

- $\sigma(t)=\alpha t$ where $\alpha \in F^{*}$,
- $t$ is transcendental over $F$ and
- the constant field is not extended.


## Example

| $Q\left(i, 2^{i}\right)$ | $\sigma\left(2^{i}\right)=2\left(2^{i}\right)$ |
| :---: | :---: |
| $Q(i)$ | $\sigma(i)=i+1$ |
| $\mid$ |  |
| $Q$ |  |

## $\Pi \Sigma$ fields (contd.)

## Definition ( $\Sigma$-extensions)

We say that $F(t), \sigma$ is a $\Sigma$-extension of $F, \sigma$ if and only if

- $\sigma(t)=\alpha t+\beta$ where $\alpha \in F^{*}, \beta \in F$,
- the equation $\sigma(w)-\alpha w=\beta$ has no solution in $F$ and
- If there exists $g \in F$ such that $\sigma(g) / g=\alpha^{n}$ for some $n \in \mathbb{N}^{+}$, then there exists $f \in F$ such that $\sigma(f) / f=\alpha$.


## Example

$$
\begin{array}{cc}
Q\left(i, \sum_{1 \leq j<i} \frac{1}{j}\right) & \sigma\left(\sum_{1 \leq j<i} \frac{1}{j}\right)=\sum_{1 \leq j<i+1} \frac{1}{j}=\left(\sum_{1 \leq j<i} \frac{1}{j}\right)+\frac{1}{i} \\
Q(i) & \sigma(i)=i+1
\end{array}
$$

## Examples of algebraic extensions

## Example

- $\mathbb{Q}\left((-1)^{n}\right) \simeq \mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ since $\left((-1)^{n}\right)^{2}=1$ $x^{2}-1=(x-1)(x+1)$ over $\mathbb{Q}[x]$.


## Examples of algebraic extensions

## Example

- $\mathbb{Q}\left((-1)^{n}\right) \simeq \mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ since $\left((-1)^{n}\right)^{2}=1$ $x^{2}-1=(x-1)(x+1)$ over $\mathbb{Q}[x]$.
- $\mathbb{Q}\left(4^{n}\right)\left(2^{n}\right) \simeq \mathbb{Q}\left(4^{n}\right)[x] /\left\langle x^{2}-4^{n}\right\rangle$ $x^{2}-4^{n}$ is irreducible over $\mathbb{Q}\left(4^{n}\right)$.


## Examples of algebraic extensions

## Example

- $\mathbb{Q}\left((-1)^{n}\right) \simeq \mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ since $\left((-1)^{n}\right)^{2}=1$ $x^{2}-1=(x-1)(x+1)$ over $\mathbb{Q}[x]$.
- $\mathbb{Q}\left(4^{n}\right)\left(2^{n}\right) \simeq \mathbb{Q}\left(4^{n}\right)[x] /\left\langle x^{2}-4^{n}\right\rangle$ $x^{2}-4^{n}$ is irreducible over $\mathbb{Q}\left(4^{n}\right)$.
- $\mathbb{Q}\left(8^{n}\right)\left(4^{n}\right) \simeq \mathbb{Q}\left(8^{n}\right)[x] /\left\langle x^{3}-\left(8^{n}\right)^{2}\right\rangle$ $x^{3}-\left(8^{n}\right)^{2}$ is irreducible over $\mathbb{Q}\left(8^{n}\right)[x]$.


## Examples of algebraic extensions

## Example

- $\mathbb{Q}\left((-1)^{n}\right) \simeq \mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ since $\left((-1)^{n}\right)^{2}=1$ $x^{2}-1=(x-1)(x+1)$ over $\mathbb{Q}[x]$.
- $\mathbb{Q}\left(4^{n}\right)\left(2^{n}\right) \simeq \mathbb{Q}\left(4^{n}\right)[x] /\left\langle x^{2}-4^{n}\right\rangle$ $x^{2}-4^{n}$ is irreducible over $\mathbb{Q}\left(4^{n}\right)$.
- $\mathbb{Q}\left(8^{n}\right)\left(4^{n}\right) \simeq \mathbb{Q}\left(8^{n}\right)[x] /\left\langle x^{3}-\left(8^{n}\right)^{2}\right\rangle$ $x^{3}-\left(8^{n}\right)^{2}$ is irreducible over $\mathbb{Q}\left(8^{n}\right)[x]$.
- $\mathbb{Q}\left(4^{n}, 9^{n}\right)\left(6^{n}\right) \simeq \mathbb{Q}\left(4^{n}, 9^{n}\right)[x] /\left\langle x^{2}-4^{n} 9^{n}\right\rangle$ $x^{2}-4^{n} 9^{n}$ is irreducible over $\mathbb{Q}\left(4^{n}, 9^{n}\right)$.


## D-rings

## Definition

- $R$ - ring
- $\sigma$ - endomorphism of R

A $\sigma$ - derivation is a map $\delta: R \rightarrow R$ satisfying

$$
\begin{equation*}
\delta(a+b)=\delta(a)+\delta(b) \quad \text { and } \quad \delta(a b)=\sigma(a) \delta(b)+\delta(a) b \tag{1}
\end{equation*}
$$

for any $a, b \in R$. The triple $(R, \sigma, \delta)$ is called a D -ring.

## Example (differential ring)

If $\sigma=1_{R}, \delta$ is a derivation on R . In this case, $(R, \delta)$ is called a differential ring.

## D-rings

## Definition

- $R$ - ring
- $\sigma$ - endomorphism of R

A $\sigma$ - derivation is a map $\delta: R \rightarrow R$ satisfying

$$
\begin{equation*}
\delta(a+b)=\delta(a)+\delta(b) \quad \text { and } \quad \delta(a b)=\sigma(a) \delta(b)+\delta(a) b \tag{1}
\end{equation*}
$$

for any $a, b \in R$. The triple $(R, \sigma, \delta)$ is called a D -ring.

## Example (difference ring)

For any endomorphism $\sigma$ of $\mathrm{R}, \delta=0$ is a $\sigma$-derivation. In this case, $(k, \sigma)$ is called a difference ring.

## D-rings

## Definition

- $R$ - ring
- $\sigma$ - endomorphism of R

A $\sigma$ - derivation is a map $\delta: R \rightarrow R$ satisfying

$$
\begin{equation*}
\delta(a+b)=\delta(a)+\delta(b) \quad \text { and } \quad \delta(a b)=\sigma(a) \delta(b)+\delta(a) b \tag{1}
\end{equation*}
$$

for any $a, b \in R$. The triple $(R, \sigma, \delta)$ is called a D -ring.

## Example

If $R$ is commutative, $\sigma$ an endomorphism of R , and $\alpha \in R$, the map $\delta_{\alpha}=\alpha\left(\sigma-1_{R}\right)$ given by $\delta(\boldsymbol{a})=\alpha(\sigma(\mathbf{a})-\mathrm{a})$ is a $\sigma$-derivation.

## Example

- $R=\mathbb{Q}(x)$,
- $\sigma: x \mapsto x+1$
- $\delta: x \mapsto 1$

Then,

$$
\delta\left(x^{2}\right)=\delta(x x)=\sigma(x) \delta(x)+\delta(x) x=2 \delta(x) x+\delta(x)=2 x+1
$$

## Extensions of D-rings

## Definition

- $(R, \sigma, \delta)$ and ( $\left.R^{\prime}, \sigma^{\prime}, \delta^{\prime}\right)$ - D-rings

We say that ( $R^{\prime}, \sigma^{\prime}, \delta^{\prime}$ ) is a D -ring extension of $(R, \sigma, \delta)$ if $R$ is a subring of $R^{\prime}$ and $\sigma^{\prime}(a)=\sigma(a)$ and $\delta^{\prime}(a)=\delta(a)$ for any $a \in R$.

## Definition

- For a D-ring $R$ and $a, b \in R$, we introduce the notation

$$
V_{a, b}(R)=\{w \in R \text { such that } \sigma(w)=a w+b\}
$$

to denote the solutions of the first order linear difference equation $\sigma(w)=a w+b$

- We call an element a of a D-ring $R$ a $\sigma$-radical over $R$ if there exists $z \in R^{*}$ such that $\sigma(z)=a^{n} z$ for an integer $n>0$.


## Lemma (Bronstein 2000, Lemma 13)

Let $(k, \sigma, \delta)$ be a $D$-field with $\sigma$ an automorphism of $k, K$ be a field and a $D$-field extension of $k$, and $t \in K^{*}$ be algebraic over $k$ such that $\sigma(t)=a t+b$ for $a, b \in k$. Then, $V_{a, b}(k)$ is not empty. Furthermore, if $b=0$, then either $a=0$ or $a$ is a $\sigma$-radical over $k$.

## Theorem

Let

- $(R, \sigma, \delta)$ be a $D$-ring with $\sigma$ an automorphism of $R$,
- $S$ be a $D$-ring extension of $R$,
- and $t \in S^{*}$ be algebraic over $R$ such that $\sigma(t)=a t+b$ for $a \in R^{*}$ and $b \in R$.
If
- $V_{a, b}(R)$ has no nonzero elements and
- Const $_{\sigma, \delta}(R)=$ Const $_{\sigma, \delta}(S)$,
then
- $b=0$,
- a is a $\sigma$-radical over $R$ and
- the minimal polynomial $p \in R[X]$ of $t$ is of the form $X^{d}-c$.


## Proof

Following the proof of Theorem 2.3 in $\left[\operatorname{Karr85]}\right.$, let $p(X)=X^{d}+\sum_{i=0}^{d-1} p_{i} X^{i}$ be the minimal polynomial of $t$ over $R$ where $d>0$. We have

$$
0=\sigma(p(t))=(a t+b)^{d}+\sum_{i=0}^{d-1} \sigma\left(p_{i}\right)(a t+b)^{i} .
$$

Replacing $t^{d}$ with $-\sum_{i=0}^{d-1} p_{i} t^{\prime}$ reveals

$$
\begin{equation*}
a^{d} \sum_{i=0}^{d-1} p_{i} t^{i}=\sum_{i=0}^{d-1}\binom{d}{i}(a t)^{i} b^{d-i}+\sum_{i=0}^{d-1} \sigma\left(p_{i}\right)(a t+b)^{i} \tag{2}
\end{equation*}
$$

Comparing coefficients for $t^{d-1}$, we get the equality

$$
a^{d} p_{d-1}=a^{d-1} b+\sigma\left(p_{d-1}\right) a^{d-1}
$$

Then $w=-p_{d-1} / d \in V_{a, b}(R)$. Since $V_{a, b}(R)$ has no nonzero elements, we conclude $p_{d-1}=0$. Replacing $p_{d-1}$ by 0 in the last equality, we see that $b$ is also 0.

## Proof (continued).

Looking back at equation (2) and comparing coefficients for $t^{i}$, we get

$$
\sigma\left(p_{i}\right)=a^{d-i} p_{i}, \quad \text { for } 0 \leq i<d-1 .
$$

Since $t$ is nonzero, $p_{j} \neq 0$ for some $j<d$. For $j>0, \sigma\left(t^{d-j} / p_{d-j}\right)=t^{d-j} / p_{d-j}$, so $t^{d-j} / p_{d-j}$ is a new constant in $R$. Hence, for $0<i<d, p_{i}=0$. The equality $\sigma\left(p_{0}\right)=a^{d} p_{0}$ shows that $a$ is a $\sigma$-radical over $k$.

## Remark

This theorem doesn't give any information about the purely differential case, since $V_{1,0}(R)=R$ and the statement doesn't apply.

## Definition

- ( $R, \sigma, \delta$ ) - D-ring
- $M$ - left $R$-module

A map $\theta: M \rightarrow M$ is called $R$-pseudo-linear (with respect to $\sigma$ and $\delta$ ) if

$$
\theta(u+v)=\theta(u)+\theta(v) \quad \text { and } \quad \theta(a u)=\sigma(a) \theta(u)+\delta(a) u
$$

for any $a \in R$ and $u, v \in M$.
We write $E n d_{R, \sigma, \delta}(M)$ for the set of all $R$-pseudo-linear maps of $M$.

- ( $F, \sigma, \delta$ ) - D-field of characteristic 0
- $(E, \sigma, \delta)$ - algebraic extension of $(F, \sigma, \delta)$
- $\theta: E \rightarrow E \in E n d_{F, \sigma, \delta}$ - an $F$-pseudo-linear map
- We are interested in solving

$$
\theta(z)+f z=g
$$

for $z \in E$ where $f, g \in E$ are given.

## Example

In order to find a simpler expression for $\sum_{k=1}^{n}(-1)^{k} k$, we need to solve the equation

$$
\sigma(z)-z=(-1)^{k} k
$$

in the difference field $\mathbb{Q}(k)\left((-1)^{k}\right)$, with $\sigma(k)=k+1$ and $\sigma\left((-1)^{k}\right)=-(-1)^{k}$.

- We can view $E$ as a finite dimensional algebra over $F$.
- Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be any basis of $E$ over $F$.
- Write $u_{\mathrm{b}}$ for the column vector of the coordinates of $u$ in the basis $\mathbf{b}$, i.e., $\mathbf{u}_{b} \in F^{n}$
- We want to solve

$$
(\theta(z)+f z)_{\mathbf{b}}=g_{\mathbf{b}}
$$

## Example

Let $\mathbf{b}=\left((-1)^{k}, 1\right)$. We have $g=(-1)^{k} k$, then

$$
g_{\mathrm{b}}=\binom{k}{0}
$$

- Let $z \in E$. Write $z=z_{1} b_{1}+z_{2} b_{2}+\cdots+z_{n} b_{n}$ where $z_{i} \in F$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ is a basis of $E$ over $F$.
- Then,

$$
\begin{aligned}
\theta(z) & =\theta\left(z_{1} b_{1}\right)+\cdots+\theta\left(z_{n} b_{n}\right) \\
& =\sigma\left(z_{1}\right) \theta\left(b_{1}\right)+\delta\left(z_{1}\right) b_{1}+\cdots+\sigma\left(z_{n}\right) \theta\left(b_{n}\right)+\delta\left(z_{n}\right) b_{n} \\
& =\sum_{i=1}^{n} \sigma\left(z_{i}\right) \theta\left(b_{i}\right)+\sum_{i=1}^{n} \delta\left(z_{i}\right) b_{i}
\end{aligned}
$$

- For an $F$-pseudo-linear map $\theta$, define the matrix $\theta_{\mathbf{b}}$ as follows

$$
\theta_{\mathbf{b}}=\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\left(\theta\left(b_{1}\right)\right)_{\mathbf{b}} & \left(\theta\left(b_{2}\right)\right)_{\mathbf{b}} & \cdots & \left(\theta\left(b_{n}\right)\right)_{\mathbf{b}} \\
\mid & \mid & \cdots & \mid
\end{array}\right) .
$$

## Example

In our example,

$$
\sigma_{\mathbf{b}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

- Recall,

$$
\theta(z)=\sum_{i=1}^{n} \sigma\left(z_{i}\right) \theta\left(b_{i}\right)+\sum_{i=1}^{n} \delta\left(z_{i}\right) b_{i}
$$

- Then,

$$
\begin{aligned}
(\theta(z))_{\mathbf{b}} & =\theta_{\mathbf{b}}(\sigma l)(z)_{\mathbf{b}}+(\delta /)(z)_{\mathbf{b}} \\
& =\left(\theta_{\mathbf{b}}(\sigma I)+(\delta /)\right)(z)_{\mathbf{b}}
\end{aligned}
$$

- For any $u \in E$, define $M_{b}(u)$ to be

$$
M_{\mathbf{b}}(u)=\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\left(u b_{1}\right)_{\mathbf{b}} & \left(u b_{2}\right)_{\mathbf{b}} & \cdots & \left(u b_{n}\right)_{\mathbf{b}} \\
\mid & \mid & \cdots & \mid
\end{array}\right) .
$$

- Then for any $u, v \in E$

$$
(u v)_{\mathbf{b}}=M_{\mathbf{b}}(u)(v)_{\mathbf{b}} .
$$

## Example

We have

$$
M_{\mathrm{b}}(-1)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

- We have

$$
\begin{aligned}
g_{\mathbf{b}} & =(\theta(z)+f z)_{\mathbf{b}} \\
& =\left(\theta_{\mathbf{b}}(\sigma I)+(\delta I)\right)(z)_{\mathbf{b}}+M_{\mathbf{b}}(f)(z)_{\mathbf{b}} \\
& =\left(\theta_{\mathbf{b}}(\sigma I)+(\delta I)+M_{\mathbf{b}}(f)\right)(z)_{\mathbf{b}}
\end{aligned}
$$

## Example

In the differential case, $\sigma=1_{F}, \theta=\delta$, then we have

$$
\left(\delta_{\mathbf{b}}+(\delta l)+M_{\mathbf{b}}(f)\right)(z)_{\mathbf{b}}=g_{\mathbf{b}} .
$$

## Example

In the difference case, $\delta=0_{F}, \theta=\sigma$, so we have

$$
\left(\sigma_{\mathbf{b}}(\sigma I)+M_{\mathbf{b}}(f)\right)(z)_{\mathbf{b}}=g_{\mathbf{b}}
$$

## Demo

## Example

- Take $R=\mathbb{Q}(n)(e)$ with $\sigma(n)=n+1$ and $\sigma(e)=-e$, where $e$ behaves like $(-1)^{n}$.
- We want to extend $R=\mathbb{Q}(n)(e)$ from the previous example with a new indeterminate $s$ such that $\sigma(s)=s-\frac{e}{n+1}$,
i.e., $s$ behaves like $\sum_{i=1}^{n} \frac{(-1)^{i}}{i}$.


## Example

- $\left((-1)^{n}\right)^{2}=1$, so $e$ satisfies the polynomial $x^{2}-1 \in \mathbb{Q}(n)[x]$.
- $x^{2}-1$ factors over $\mathbb{Q}(n)$

$$
R \simeq \mathbb{Q}(n)[x] /\left\langle x^{2}-1\right\rangle \simeq \mathbb{Q}(n)[x] /\langle x-1\rangle \oplus \mathbb{Q}(n)[x] /\langle x+1\rangle
$$

- $e_{0}=\frac{e+1}{2}$ and $e_{1}=\frac{-e+1}{2}$ are idempotent in $R$.
- Since $1=e_{0}+e_{1}$ and $e_{0} e_{1}=0$, we also have the decomposition $R \simeq \mathbb{Q}(n) e_{0} \oplus \mathbb{Q}(n) e_{1}$.


## Theorem (Singer, van der Put, (1997))

Let $(k, \sigma, \delta)$ be a $D$-field with $\sigma$ an automorphism of $k, R$ be a finitely generated simple difference ring and a D-ring extension of $k$. There exist idempotents $e_{0}, \ldots, e_{d-1} \in R$ for $d>0$ such that
(1) $R=R_{0} \oplus \cdots \oplus R_{d-1}$ where $R_{i}=e_{i} R$,
(2) $\sigma\left(e_{i}\right)=e_{i+1}(\bmod d)$ so $\sigma$ maps $R_{i}$ isomorphically onto $R_{i+1}(\bmod d)$ and $\sigma^{d}$ leaves each $R_{i}$ invariant.
(3) For each $i, R_{i}$ is a domain, a simple difference ring and a $D$-ring extension of $e_{i} k$ with respect to $\sigma^{d}$.

## Remark

If $X^{d}-c$ splits over $k$, i.e., $X^{d}-c=\prod_{0 \leq i<d}\left(x-\zeta_{i}\right)$ with $\zeta_{i} \in k$, we have

$$
k[X] /\left\langle X^{d}-c\right\rangle \simeq \bigoplus_{0 \leq i<d} k[X] /\left\langle X-\zeta_{i}\right\rangle .
$$

The isomorphism is given by

$$
\begin{align*}
\pi: k[X] & \rightarrow \bigoplus_{0 \leq i<d} k[X] /\left\langle X-\zeta_{i}\right\rangle  \tag{3}\\
p & \mapsto\left(p\left(\zeta_{0}\right), \ldots, p\left(\zeta_{d-1}\right)\right) \tag{4}
\end{align*}
$$

Let $e_{i}=1 \in K[X] /\left\langle X-\zeta_{i}\right\rangle$, then

$$
\pi^{-1}\left(e_{i}\right)=\prod_{\substack{0 \leq i<d \\ j \neq i}} \frac{x-e_{j}}{e_{i}-e_{j}}
$$

## Example

- Take $R=\mathbb{Q}(\zeta)(n)(e)$ with $\sigma(n)=n+1$ and $\sigma(e)=\zeta e$, where $e$ behaves like $(\zeta)^{n}$ with $\zeta$ a 3rd root of unity.
- $\left((\zeta)^{n}\right)^{3}=1$, so e satisfies the polynomial $x^{3}-1 \in \mathbb{Q}(\zeta)(n)[x]$.
- $x^{3}-1$ factors over $\mathbb{Q}(\zeta)(n)$

$$
\begin{aligned}
R & \simeq \mathbb{Q}(\zeta)(n)[x] /\left\langle x^{3}-1\right\rangle \\
& \simeq \mathbb{Q}(\zeta)(n)[x] /\langle x-1\rangle \oplus \mathbb{Q}(\zeta)(n)[x] /\langle x-\zeta\rangle \oplus \mathbb{Q}(\zeta)(n)[x] /\left\langle x-\zeta^{2}\right\rangle
\end{aligned}
$$

- $e_{0}=\frac{e^{2}+e+1}{3}, e_{1}=\frac{\zeta^{2} e^{2}+\zeta e+1}{3}$ and $e_{2}=\frac{\zeta e^{2}+\zeta^{2} e+1}{3}$ are idempotent in $R$.


## Extending algebraic extensions

## Example

- We want to extend $R=\mathbb{Q}(n)(e)$ from the previous example with a new indeterminate $s$ such that $\sigma(s)=s-\frac{e}{n+1}$,
i.e., $s$ behaves like $\sum_{i=1}^{n} \frac{(-1)^{i}}{i}$.
- Writing $s=s_{0} e_{0}+s_{1} e_{1}$ and $e=e_{0}-e_{1}$, we have

$$
\begin{aligned}
\sigma\left(s_{0} e_{0}+s_{1} e_{1}\right) & =\sigma\left(s_{0}\right) e_{1}+\sigma\left(s_{1}\right) e_{0} \\
& =s_{0} e_{0}+s_{1} e_{1}+\frac{-e_{0}}{n+1}+\frac{e_{1}}{n+1}
\end{aligned}
$$

- Hence, we need to find an extension of $\mathbb{Q}(n)$, namely $\mathbb{Q}(n, h)$, where $\sigma(h)=a h+b$ for some $a, b \in \mathbb{Q}(n)$ and $s_{0}, s_{1} \in \mathbb{Q}(n, h)$ such that $\sigma\left(s_{0}\right)=s_{1}+\frac{1}{n+1}$ and $\sigma\left(s_{1}\right)=s_{0}-\frac{1}{n+1}$.


## Example (contd.)

- Take $\sigma(h)=-h-\frac{1}{n+1}, s_{0}=-h$ and $s_{1}=h$.
- Then

$$
\begin{aligned}
& \sigma\left(s_{0}\right)=\sigma(-h)=h+\frac{1}{n+1}=-\frac{1}{n+1} \\
& \sigma\left(s_{1}\right)=\sigma(h)=-h-\frac{1}{n+1}
\end{aligned}
$$

## Theorem

Let

- Let $R=K[x] /\left\langle x^{d}-c\right\rangle$ and $(R, \sigma, \delta)$ be a $D$-ring,
- where $x^{d}-c$ splits over $K[x]$ and $\sigma(x)=\zeta x$.
- Let $S=R[y]$ be a $D$-ring extension of $R$, such that $\sigma(y)=a y+b$ for $a \in R^{*}$ and $b \in R$.
Then

$$
(S, \sigma) \simeq\left(K[\bar{y}][x] /\left\langle x^{d}-c\right\rangle, \tilde{\sigma}\right)
$$

where $\tilde{\sigma}(\bar{y})=\zeta a(\zeta) \bar{y}+b(\zeta)$.

## Demo

- q-identities which hold for roots of unity


## Sage Days 24 at RISC, Linz, Austria July 17-22

