
Developing Tailored Software for Specific Problems

Àngel Jorba(1) and Maorong Zou(2)

(1) Institut de Matemàtica de la Universitat de Barcelona – IMUB
(2) University of Texas at Austin

June 22nd, 2009

1 / 89

Introduction

In this talk we will discuss the development of numerical integrations for
Ordinary Differential Equations (ODEs).

Our approach is to write a (public domain) package that, given our set of
differential equations, writes (in C) the numerical integration

“Programs making programs, what a obscenity”, C3PO (Star Wars)

2 / 89

Introduction

In this talk we will discuss the development of numerical integrations for
Ordinary Differential Equations (ODEs).

Our approach is to write a (public domain) package that, given our set of
differential equations, writes (in C) the numerical integration

“Programs making programs, what a obscenity”, C3PO (Star Wars)

2 / 89

Introduction

In this talk we will discuss the development of numerical integrations for
Ordinary Differential Equations (ODEs).

Our approach is to write a (public domain) package that, given our set of
differential equations, writes (in C) the numerical integration

“Programs making programs, what a obscenity”, C3PO (Star Wars)

2 / 89

The Taylor method for ODEs Fundamentals

Problem: find a function x : [a, b]→ Rm such that{
x ′(t) = f (t, x(t)),
x(a) = x0,

Taylor method:

x0 = x(a),

xm+1 = xm + x ′(tm)h + · · ·+ x (p)(tm)

p!
hp,

for m = 0, . . . ,N − 1.

3 / 89

The Taylor method for ODEs Fundamentals

A first approach is to compute the derivatives by means of the direct
application of the chain rule,

x ′(tm) = f (tm, x(tm)),

x ′′(tm) = ft(tm, x(tm)) + fx(tm, x(tm))x ′(tm),

and so on.

These expressions have to be obtained explicitly for each equation we want
to integrate.

4 / 89

The Taylor method for ODEs Fundamentals

Example

Van der Pol equation.

x ′ = y ,
y ′ = (1− x2)y − x .

}
.

The nth order Taylor method for the initial value problem is

xm+1 = xm + x ′mh +
1

2!
x ′′mh2 + · · ·+ 1

n!
x

(n)
m hn,

ym+1 = ym + y ′mh +
1

2!
y ′′mh2 + · · ·+ 1

n!
y

(n)
m hn.

There are several ways of obtaining the derivatives of the solution w.r.t.
time.

5 / 89

The Taylor method for ODEs Fundamentals

A standard way is to take derivatives on the differential equation,

x ′′ = (1− x2)y − x ,

y ′′ = −2xy 2 + [(1− x2)2 − 1]y − x(1− x2),

x ′′′ = −2xy 2 + [(1− x2)2 − 1]y − x(1− x2),

y ′′′ = 2y 3 − 8x(1− x2)y 2 + [4x2 − 2 + (1− x2)3]y

+x [1− (1− x2)2],
...

Note how the expressions become increasingly complicated.

6 / 89

The Taylor method for ODEs Fundamentals

These closed formulas allow for the evaluation of the derivatives at any
point, so they have to be computed only once (for each vector field).

For a long time integration,

the effort needed to produce these formulas is not relevant,

the effort to evaluate them is very relevant.

7 / 89

The Taylor method for ODEs Fundamentals

These closed formulas allow for the evaluation of the derivatives at any
point, so they have to be computed only once (for each vector field).

For a long time integration,

the effort needed to produce these formulas is not relevant,

the effort to evaluate them is very relevant.

7 / 89

The Taylor method for ODEs Automatic Differentiation (AD)

There is an alternative procedure to compute derivatives:

Automatic Differentiation

Automatic differentiation is a recursive algorithm to evaluate the
derivatives of a closed expression on a given point.

Automatic differentiation does not produce a closed formula for the
value of the derivative at any point x .

A good reference book is:
A. Griewank: Evaluating derivatives, SIAM (2000).
ISBN: 0-89871-284-X

8 / 89

The Taylor method for ODEs Automatic Differentiation (AD)

Assume that a is a (smooth) real function of a real variable.

Definition

The normalized j-th derivative of a at the point t is

a[j](t) =
1

j!
a(j)(t).

Normalized derivatives are the coefficients of the Taylor series of a at t.

9 / 89

The Taylor method for ODEs Automatic Differentiation (AD)

Lemma

If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

Proof.

It follows from Leibniz formula:

a[n](t) =
1

n!
a(n)(t) =

1

n!

n∑
i=0

(
n

i

)
b(n−i)(t)c(i)(t)

=
1

n!

n∑
i=0

n!

(n − i)!i !
b(n−i)(t)c(i)(t) =

n∑
i=0

b[n−i](t)c [i](t).

If we know the (normalized) derivatives of b and c at t, up to order n, we
can compute the nth derivative of a at t.

10 / 89

The Taylor method for ODEs Automatic Differentiation (AD)

Lemma

If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

Proof.

It follows from Leibniz formula:

a[n](t) =
1

n!
a(n)(t) =

1

n!

n∑
i=0

(
n

i

)
b(n−i)(t)c(i)(t)

=
1

n!

n∑
i=0

n!

(n − i)!i !
b(n−i)(t)c(i)(t) =

n∑
i=0

b[n−i](t)c [i](t).

If we know the (normalized) derivatives of b and c at t, up to order n, we
can compute the nth derivative of a at t.

10 / 89

The Taylor method for ODEs Example: Van der Pol

Example: Van der Pol equation.

x ′ = y ,
y ′ = (1− x2)y − x .

}
u1 = x ,
u2 = y ,
u3 = u1u1,
u4 = 1− u3,
u5 = u4u2,
u6 = u5 − u1,
x ′ = u2,
y ′ = u6.

11 / 89

The Taylor method for ODEs Example: Van der Pol

u1 = x ,
u2 = y ,
u3 = u1u1,
u4 = 1− u3,
u5 = u4u2,
u6 = u5 − u1,
x ′ = u2,
y ′ = u6.

u
[n]
1 = x [n],

u
[n]
2 = y [n],

u
[n]
3 =

n∑
i=0

u
[n−i]
1 u

[i]
1 ,

u
[n]
4 = −u

[n]
3 (if n > 0),

u
[n]
5 =

n∑
i=0

u
[n−i]
4 u

[i]
2 ,

u
[n]
6 = u

[n]
5 − u

[n]
1 ,

x [n+1] =
1

n + 1
u

[n]
2 ,

y [n+1] =
1

n + 1
u

[n]
6 .

12 / 89

The Taylor method for ODEs Example: Van der Pol

The recurrence can be applied up to a suitable order p.

It is not necessary to select the value p in advance.

13 / 89

The Taylor method for ODEs AD: More Rules...

If the functions b and c are of class Cn, we have

1. If a(t) = b(t)± c(t), then a[n](t) =
n∑

i=0

b[i](t)± c [i](t).

2. If a(t) = b(t)c(t), then a[n](t) =
n∑

i=0

b[n−i](t)c [i](t).

3. If a(t) =
b(t)

c(t)
, then

a[n](t) =
1

c [0](t)

[
b[n](t)−

n∑
i=1

c [i](t)a[n−i](t)

]
.

14 / 89

The Taylor method for ODEs AD: More Rules...

4. If α ∈ R \ {0} and a(t) = b(t)α, then

a[n](t) =
1

nb[0](t)

n−1∑
i=0

(nα− i(α + 1)) b[n−i](t)a[i](t).

5. If a(t) = eb(t), then a[n](t) =
1

n

n−1∑
i=0

(n − i) a[i](t)b[n−i](t).

6. If a(t) = ln b(t), then

a[n](t) =
1

b[0](t)

[
b[n](t)− 1

n

n−1∑
i=1

(n − i)b[i](t)a[n−i](t)

]
.

15 / 89

The Taylor method for ODEs AD: More Rules...

7. If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = −1

n

n∑
i=1

ib[n−i](t)c [i](t)

b[n](t) =
1

n

n∑
i=1

ia[n−i](t)c [i](t)

Many ODE can be “decomposed” as a sequence of binary operations, so it
is possible to produce the jet of derivatives of the solution at a given
point, in a recursive way. Note that this includes ODEs involving special
functions.

16 / 89

The Taylor method for ODEs AD: More Rules...

7. If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = −1

n

n∑
i=1

ib[n−i](t)c [i](t)

b[n](t) =
1

n

n∑
i=1

ia[n−i](t)c [i](t)

Many ODE can be “decomposed” as a sequence of binary operations, so it
is possible to produce the jet of derivatives of the solution at a given
point, in a recursive way. Note that this includes ODEs involving special
functions.

16 / 89

The Taylor method for ODEs Order and Step Size Control

Next step is to find an order p and a step size h such that

the error is smaller than ε.

the total number of operations is minimal.

Lemma (C. Simó, 2001)

Assume that the function h 7→ x(tn + h) is analytic on a disk of radius ρm.
Let Am be a positive constant such that

|x [j]
m | ≤

Am

ρj
m

, ∀ j ∈ N.

Then, if the required accuracy ε tends to 0, the values of hm and pm that
give the required accuracy and minimize the global number of operations
tend to

hm =
ρm

e2
, pm = −1

2
ln

(
ε

Am

)
− 1

17 / 89

The Taylor method for ODEs Order and Step Size Control

Next step is to find an order p and a step size h such that

the error is smaller than ε.

the total number of operations is minimal.

Lemma (C. Simó, 2001)

Assume that the function h 7→ x(tn + h) is analytic on a disk of radius ρm.
Let Am be a positive constant such that

|x [j]
m | ≤

Am

ρj
m

, ∀ j ∈ N.

Then, if the required accuracy ε tends to 0, the values of hm and pm that
give the required accuracy and minimize the global number of operations
tend to

hm =
ρm

e2
, pm = −1

2
ln

(
ε

Am

)
− 1

17 / 89

The Taylor method for ODEs Order and Step Size Control

Proof.

The error is of the order of the first neglected term E ≈ A
(

h
ρ

)p+1
.

To obtain an error of order ε we select h ≈ ρ
(
ε
A

) 1
p+1 .

The operations to obtain the jet of is O(p2) ≈ c(p + 1)2.

So, the number of floating point operations per unit of time is given, in

order of magnitude, by φ(p) = c(p+1)2

ρ(ε
A)

1
p+1

.

Solving φ′(p) = 0, we obtain p = −1
2 ln

(
ε
A

)
− 1.

We use this order with the largest step size that keeps the local error
below ε: inserting this value of p in the formula for h we have

h =
ρ

e2
.

18 / 89

The Taylor method for ODEs Order and Step Size Control

Dangerous step sizes
ẋ = −x , x(0) = 1,

We are interested in computing x(10) = exp(−10) ≈ 0.0000454.

The Taylor series at x(0) is very simple to obtain:

x(h) = 1 +
∑
n≥1

(−1)n hn

n!
.

Due to the entire character of this function, the optimal step size is
h = 10, and the degree is selected to have a truncation error smaller than
a given precision.

From a numerical point of view, this is a disaster!

19 / 89

The Taylor method for ODEs Order and Step Size Control

High accuracy and varying order

For instance, assume that the truncation error is exactly hp. If ε = 10−16

and p = 8, then the step size has to be h = 0.01.

Note that, if p is fixed, to achieve an accuracy of 10−32 we have to use
h = 10−4, that forces to use 100 times more steps (hence, 100 times more
operations) than for the ε = 10−16 case.

Changing the value of p from 8 to 16 allows to keep the same step size
h = 0.01 while the computational effort required to obtain the derivatives
is only increased by a factor 4.

If the required precision were higher, these differences would be even more
dramatic.

20 / 89

The Taylor method for ODEs Coding

To use effectively the Taylor method, it has to be coded for each
vectorfield.

Coding can be done

by a human...

... or by a computer program.

In this last case, the program must produce efficient code.

21 / 89

The Taylor method for ODEs Coding

To use effectively the Taylor method, it has to be coded for each
vectorfield.

Coding can be done

by a human...

... or by a computer program.

In this last case, the program must produce efficient code.

21 / 89

The Taylor method for ODEs Coding

To use effectively the Taylor method, it has to be coded for each
vectorfield.

Coding can be done

by a human...

... or by a computer program.

In this last case, the program must produce efficient code.

21 / 89

The taylor package Introduction

We will present a concrete implementation of the Taylor method, written
by Maorong Zou (U. Texas) and A.J.

The software has been released under the GNU Public License, so
everybody is free to use it, to modify it and to redistribute it.

It has been written to run under the GNU/Linux operating system.

The software can be retrieved from
http://www.maia.ub.es/~angel/taylor/

For more information:
A. Jorba, M.Zou, A software package for the Numerical Integration of
ODEs by means of High-Order Taylor Methods, Experimental
Mathematics 14:1 pp. 99–117 (2005).

22 / 89

The taylor package Introduction

The package reads a system of ODEs in a quite natural form, and it can
output several ANSI C routines:

a routine that computes the jet of derivatives of the solution (up to
an order given at runtime),

routines to estimate an order and, from the jet of derivatives, a
suitable step size (for a local error below given thresholds),

a routine to use the previous data to advance the solution in one time
step.

It supports different arithmetics (i.e., extended precision), including
user-defined types.

In the next slides we will explain the algorithms used by taylor.

23 / 89

The taylor package Introduction

Taylor

supports a tiny language using three kind of statements:

extern MY_FLOAT var;

id = expr;

diff(v, t) = expr;

where t is the independent variable and v is a state variable.

We use the first statement to declare external variables. These
declarations re copied to the output routine without modification. External
variables are treated as constants.

We use the second statement to define a constant, or a shorthand
notation for a complex expression used in the differential equations. It is
normally used to help the translater to factor out common expressions,
which in turn, may generate smaller and faster codes.

24 / 89

The taylor package Introduction

Expressions are made from numbers, the time variable, the state variables,
external variables, elementary functions sin, cos, tan, arctan, sinh, cosh,
tanh, √ , exp, and log, using the four arithmetic operators, (.)(.) and
function composition.

A branching construct if(bexpr) {expr} else { expr} is also
supported, here bexpr is a boolean expression as defined in the C
programming language.

25 / 89

The taylor package Jet of Derivatives

The translation process consists of several phases each of which passes its
output to the next phase.

The first phase is the lexical phase. Here characters from the input stream
is grouped into lexical units called tokens by a scanner (lexical anaylizer).
Regular expressions are used to define tokens recognized by the scanner.
The scanner is implemented as a finite state automata. The actual code
for the scanner is generated by Lex. The input to Lex is a file containing
definitions of tokens using regular expressions. The output is a C
procedure yylex() that is called repeatedly by the parser to fetch the
next token from the input stream.

26 / 89

The taylor package Jet of Derivatives

The next phase is syntax analysis. Here a parser groups tokens into
syntactical units and verifies that the input is syntactically valid according
to a prescribed set of grammatical rules. The output of the parser the
parse tree, a graphical representation of the input. Our parser is generated
by Yacc. The input to Yacc is a file containting a set of grammar rules.
The output of Yacc is a procedure yyparse() which is used to generate
the parse tree.

27 / 89

The taylor package Jet of Derivatives

To illustrate the parsing process, let’s look at this example:

x ′ = x(1− x2 − y 2) + y ,

y ′ = y(1− x2 − y 2)− x .

The scanner breaks the input the following list of tokens:

x ’ = x * (1 - x ^ 2 - y ^ 2) + y ; y ’ = x * (1 - x ^ 2 - y ^ 2) - x ;

A graphical representation of the parsed input could be:
=

*

x-

^

2

-

y^

2x

1

x’

y

+

=

-

*

-

^

2

-

y^

2x

1

y’

y

x

28 / 89

The taylor package Jet of Derivatives

The next phase is optimization. The crucial tasks are:

Identify and mark constant expressions (constant expressions are easy
to handle when computing derivatives...)

Eliminate common subexpressions. Algebraic simplifications is not
implemented except for the trivial commutative substituations
ab = ba, a + b = b + a. For example, the expressions 5x2 + 3 and
3 + 5x2 are considered the same while 2x2 + 3, 2x2 + 2 + 1 and
x2 + x2 + 3 are considered all different.

Introduce auxiliary variables for some elementary functions. For
example, a new variable v = cos(x) is added to the symbol table if
sin(x) appears on the parse tree.

Build dependency graphs among all the variables, and order the
variables according to the dependency graph.

29 / 89

The taylor package Jet of Derivatives

The following user controlled “optimization” is also performed at this
stage.

Expand power function as a series of products. This procedure is
controlled by the -expandpower command line switch. For example,
y = x7 will be replaced by u = x ∗ x , v = u ∗ u,w = u ∗ v , y = x ∗ w
if taylor is invoked with the option -expandpower 7. One reason to
expand a power function using products is to avoid singularities (at
the origin).

The flag -sqrt forces the parser to treat exponents like n/2 as the
nth power of a square root (instead of using log and exp).

30 / 89

The taylor package Step size control

Step size control

We use and absolute (εa) and a relative (εr) tolerance.

We define

εm =

{
εa if εr‖xm‖∞ ≤ εa,
εr otherwise,

pm =

⌈
−1

2
ln εm + 1

⌉
.

where d.e stands for the ceiling function.

To derive the step size, we will also distinguish the same two cases as
before.

31 / 89

The taylor package Step size control

If εr‖xm‖∞ ≤ εa, we define

ρ
(j)
m =

(
1

‖x [j]
m ‖∞

) 1
j

, 1 ≤ j ≤ p,

and, if εr‖xm‖∞ > εa,

ρ
(j)
m =

(
‖xm‖∞
‖x [j]

m ‖∞

) 1
j

, 1 ≤ j ≤ p.

32 / 89

The taylor package Step size control

In any case, we estimate the radius of convergence as the minimum of the
last two terms,

ρm = min
{
ρ

(p−1)
m , ρ

(p)
m

}
,

and the estimated time step is

hm =
ρm

e2
.

33 / 89

The taylor package Step size control

Lemma

With the previous notations and definitions:

1. If εr‖xm‖∞ ≤ εa, we have

‖x [pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x [pm]
m hpm

m ‖∞ ≤
εa
e2
.

2. If εr‖xm‖∞ > εa, we have

‖x [pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤ εr ,
‖x [pm]

m hpm
m ‖∞

‖xm‖∞
≤ εr

e2
.

Hence, the proposed strategy is similar to the more straightforward
method of looking for an hm such that the last terms in the series are of
the order of the error wanted.

34 / 89

The taylor package Step size control

Lemma

With the previous notations and definitions:

1. If εr‖xm‖∞ ≤ εa, we have

‖x [pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x [pm]
m hpm

m ‖∞ ≤
εa
e2
.

2. If εr‖xm‖∞ > εa, we have

‖x [pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤ εr ,
‖x [pm]

m hpm
m ‖∞

‖xm‖∞
≤ εr

e2
.

Hence, the proposed strategy is similar to the more straightforward
method of looking for an hm such that the last terms in the series are of
the order of the error wanted.

34 / 89

The taylor package Step size control

Remark

If the solution is entire, the Cauchy bounds are far from optimal.

In this case, the computed values for pm and hm still satisfy the accuracy
requirements but they do not need to be the ones that minimise the global
number of operations.

35 / 89

The taylor package Step size control

The previous formulas have been used for the first order and time step
control, but with a safety factor: Instead of using

hm =
ρm

e2

we use

hm =
ρm

e2
exp

(
− 0.7

pm − 1

)
.

For instance, for pm = 8 the safety factor is 0.90 and for pm = 16 is 0.95.
Those are typical safety factors found in the literature.

36 / 89

The taylor package Step size control

The code provides a second step size control, which is a minor correction
of the previous one.

The idea is to avoid too large step sizes that could lead to cancellations
when adding the Taylor series.

A natural solution is to look for an step size such that the resulting series
has all the terms decreasing in modulus. However, if the solution x(t) has
some intermediate Taylor coefficients that are very small, this technique
could lead to a very drastic (and unnecessary) step reductions.

Therefore, we have used a weaker criterion.

37 / 89

The taylor package Step size control

Let h̄m be the step size control obtained previously. Let us define z as

z =

{
1 if εr‖xm‖∞ ≤ εa,
‖xm‖∞ otherwise.

Let hm ≤ h̄m be the largest value such that

‖x [j]
m ‖∞hj

m ≤ z , j = 1, . . . , p.

We note that, in many cases, it is enough to take hm = h̄m to meet this
condition.

The generated code allows for used-defined order and step size controls.

38 / 89

Using taylor Installation

The software can be retrieved from
http://www.maia.ub.es/~angel/taylor/

It installs in a GNU/Linux system.

It requires the packages flex and bison.

Now we will see how it works.

39 / 89

Using taylor Example: The RTBP

/* ODE specification: rtbp */
mu=0.01;
umu=1-mu;
r2=x1*x1+x2*x2+x3*x3;
rpe2=r2-2*mu*x1+mu*mu;
rpe3i=rpe2^(-3./2);
rpm2=r2+2*(1-mu)*x1+(1-mu)*(1-mu);
rpm3i=rpm2^(-3./2);

diff(x1, t)= x4+x2;
diff(x2, t)= x5-x1;
diff(x3, t)= x6;
diff(x4, t)= x5-(x1-mu)*(umu*rpe3i)-(x1+umu)*(mu*rpm3i);
diff(x5, t)=-x4-x2*(umu*rpe3i+mu*rpm3i);
diff(x6, t)=-x3*(umu*rpe3i+mu*rpm3i);

40 / 89

Using taylor Example: The RTBP

To produce a numerical integrator for this vector field, assume that the
previous code is in the file rtbp.in
Then, you can type

taylor -name rtbp -o taylor_rtbp.c -step -jet -sqrt rtbp.in
taylor -name rtbp -o taylor.h -header rtbp.in

to produce two files:

taylor_rtbp.c: The time stepper

taylor.h: Header to define the arithmetic used

41 / 89

Using taylor Example: The RTBP

Usage: ./taylor

[-name ODE_NAME]

[-o outfile]

[-doubledouble | -qd_real | -dd_real | -gmp -gmp_precision PRECISION]

[-main | -header | -jet | -main_only]

[-step STEP_CONTROL_METHOD]

[-u | -userdefined] STEP_SIZE_FUNCTION_NAME ORDER_FUNCTION_NAME

[-f77]

[-sqrt]

[-headername HEADER_FILE_NAME]

[-debug] [-help] [-v] file

42 / 89

Using taylor Example: The RTBP

Main C call:

int taylor_step_ODE_NAME(MY_FLOAT *time,
MY_FLOAT *xvars,
int direction,
int step_ctrl_method,
double log10abserr,
double log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order)

43 / 89

Using taylor Example: The RTBP

Main Fortran 77 call:

void taylor_f77_ODE_NAME__(MY_FLOAT *time,
MY_FLOAT *xvars,
int *direction,
int *step_ctrl_method,
double *log10abserr,
double *log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order,
int *flag)

44 / 89

Using taylor Example: The RTBP

Let us see an example of numerical integration by selecting the initial
condition x1=-0.45, x2=0.80, x3=0.00, x4=-0.80, x5=-0.45 and
x6=0.58.

We will perform a numerical integration with the standard double precision
of the computer, for 1 unit of time.

As a first test, we will check the preservation of the Hamiltonian.

We have coded a small main program that uses this initial condition to call
the Taylor integrator till the time has advanced in one unit.

45 / 89

Using taylor Example: The RTBP

Next run takes εa = εr = 10−16

value of H at the initial condition: -1.3362071584596453
numerical integration starts...

0.24011923241902 20 -1.00000
0.49521588761001 20 0.00000
0.76536594703474 20 0.00000
1.00000000000000 20 -1.00000

Is there a drift in the energy?

46 / 89

Using taylor Example: The RTBP

Next run takes εa = εr = 10−16

value of H at the initial condition: -1.3362071584596453
numerical integration starts...

0.24011923241902 20 -1.00000
0.49521588761001 20 0.00000
0.76536594703474 20 0.00000
1.00000000000000 20 -1.00000

Is there a drift in the energy?

46 / 89

Using taylor Example: The RTBP

-150

-100

-50

 0

 50

 100

 0 250000 500000 750000 1e+06

’ham.res’ u 1:2

47 / 89

Using taylor Errors in energy

It is possible to check (statistically) that the variation of the energy
behaves like a random walk.

Let Hj be the value of H at the step number j of the numerical integration
and, instead of consider Hj − H0, let us focus on the local variation
Hj − Hj−1.

48 / 89

Using taylor Errors in energy

ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

Local variation of the energy during 106 units of time. The first column
denotes multiples of the machine precision and the remaining columns
contain the number of integration steps for which the local variation of
energy is equal to the multiple of eps in the first column.

49 / 89

Using taylor Errors in energy

To do an standard statistical analysis, let us assume that the sequence of
errors Hj − Hj−1 is given by a sequence of independent, identically
distributed random variables, and we are interested in knowing if its mean
value is zero or not.

Therefore, we will apply the following test of significance of the mean.
The null hypothesis assumes that the true mean is equal to zero.

If k denotes a multiple of eps and νk the number of times that this
deviation has occurred (in our case, νk = 0 if k > 4), we define

n =
∑
|k|≤4

νk , m =
1

n

∑
|k|≤4

kνk , s =

√√√√ 1

n2

∑
|k|≤4

(k −m)2νk ,

where s stands for the standard error of the sample mean m.

50 / 89

Using taylor Errors in energy

Under the previous assumptions (independence and equidistribution of the
observations), the value

τ =
m

s

must behave as a N(0, 1) standard normal distribution.

To test the null hypothesis (i.e., zero mean) with a confidence level of
95%, we have to check for the condition |τ | ≤ 1.96.

51 / 89

Using taylor Errors in energy

ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

τ -6.0613 -0.9160 -0.1383 -0.0735 -0.3141

The last row shows the value of τ for the different integrations. It is clear
that for ε = 10−14 we must reject that the drift has zero mean, and it is
also clear that this hypothesis cannot be rejected in the other cases.

52 / 89

Using taylor taylor vs rk78

A comparison with a Runge-Kutta-Fehlberg 7-8

We ask the rk78 for an accuracy of 10−16.

The error in H after 106 units of time, in number of multiples of the
machine epsilon, is −13412 for the rk78, and −217 for the Taylor method.

The time taken for the rk78 was of 9m and 34s, while the Taylor method
needed 4m and 4s.

If we ask the rk78 for an accuracy of 10−14 then the time taken goes down
to 4m and 58s, but the final error is 649368 times the epsilon of the
machine (that is, 1.44× 10−10).

53 / 89

Using taylor taylor vs rk78

This is a second benchmark using the standard quadruple precision of a
HP 9000/712 computer, with a 100 MHz PA-RISC 1.1 processor.

We have used the vector field of the Restricted Three-Body Problem, with
the same initial condition and mass parameter as before.

The integration time has been restricted to 10 units, to avoid long testing
times. We have asked for a local error of 10−32 for the rk78, and of the
10−33 for the Taylor method.

The total cpu time for the rk78 is of 3m 48s, while the Taylor method only
takes 4.1 seconds.

54 / 89

Using taylor Extended arithmetics

Next, we will discuss the capabilities of taylor to use different
arithmetics.

When taylor generates the code for the jet of derivatives and/or the step
size control, it declares all the real variables with a special type called
MY FLOAT, and each mathematical operation is substituted by a suitable
macro call (the name of these macros is independent from the arithmetic).

55 / 89

Using taylor Extended arithmetics

The definition of the type MY FLOAT and the body of the macros is
contained in a header file. This file is produced invoking taylor with the
flag -header plus a flag specifying the arithmetic wanted. For instance, to
multiply two real numbers (z = xy), taylor outputs the code

MultiplyMyFloatA(z,x,y);

56 / 89

Using taylor Extended arithmetics

If we call taylor with the -header flag and without specifying the
desired arithmetic, it will assume we want the standard double precision
and it will generate a header file with the lines,

typedef double MY_FLOAT;

to define MY FLOAT as double. We will also find the line

/* multiplication r=a*b */
#define MultiplyMyFloatA(r,a,b) (r=(a)*(b))

57 / 89

Using taylor Extended arithmetics

If we use the flag -gmp to ask for the GNU multiple precision arithmetic
(see below), we will get

#define MY_FLOAT mpf_t

and

/* multiplication r=a*b */
#define MultiplyMyFloatA(r,a,b) mpf_mul(r,(a),(b))

Here, mpf mul is the gmp function that multiplies the two numbers a and
b and stores the result in r. Then, the C preprocessor will substitute the
macros by the corresponding calls to the arithmetic library.

58 / 89

Using taylor Extended arithmetics

The package includes support for several extended precision arithmetics:
doubledouble, dd real, dq real, gmp (the GNU Multiple Precision
Library) and mpfr.

If a library does not contain implementation of trigonometric functions
and/or transcendental functions, we note that they can be defined by
means of differential equations. Therefore, if an ODE includes some of
these functions, we can enlarge the system of ODEs by adding the
differential equation for the special function and to integrate the whole
system.

59 / 89

Using taylor Extended arithmetics

None of these floating point libraries is included in our package. They can
be downloaded from the internet and are only needed if extended precision
is required.

Note that to use an arithmetic different from the ones provided here we
only have to modify the header file (for more details, see the manual...).

60 / 89

Using taylor Extended arithmetics

Next, we are going to use extended precision (more concretely, the gmp
library) to compute the error of the double precision version.

To measure the error, we have computed the relative difference between
these two approximations. For instance, for the x coordinate, the
operations we have implemented are,

e(x) = 1− x̃

x
,

where x is the extended precision approximation and x̃ is the double
precision result. All the computations have been done in double precision.
The result is written in multiples of the machine precision.

61 / 89

Using taylor Extended arithmetics

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.183827140545086 174 -0.82041748043202e-153
2 0.374344795509428 174 -0.59666725849601e-153
3 0.574965855180706 174 -0.67125066580801e-153
4 0.789299521404807 174 -0.14916681462400e-153
5 1.000000000000000 174 -0.22375022193600e-153
iterates: 5 final time: 1.000000e+00

Numerical integration using gmp with a 512 bits mantissa and asking for a
relative error of 10−150.

62 / 89

Using taylor Extended arithmetics

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.180071007388544 346 0.124236998889749e-303
2 0.366492191198110 346 0.678258138919457e-303
3 0.562476214016376 346 0.878726168201663e-303
4 0.771527181403796 346 0.921848099579533e-303
5 0.997166681972274 346 0.106043126217200e-302
6 1.000000000000000 346 0.106043682485665e-302
iterates: 6 final time: 1.000000e+00

As before, but using a 1024 bits mantissa and asking for a relative error of
10−300.

63 / 89

Next Step: Variational Flow (of any order) Introduction

Variational flow

ẋ = f (x), x(0) = x0

For each initial data x0, we call F (x0) the value of the solution at a given
time T , F (x0) = x(T).

We are interested in the derivatives of F , up to a given order.

We have two options to compute these derivatives:

A numerical integration of the variational equations

To use automatic differentiation on the evaluation of F .

We focus on the second option.

64 / 89

Next Step: Variational Flow (of any order) Introduction

Or, in other words:

For the initial value problem

x′(t) = F (t, x(t)) (1)

x(t0) = x0 (2)

we have to find a simple method to integrate the variational equations w.
r. t. x0 along x(t). The variational equations may be of an arbitrarily
prescribed order.

65 / 89

Next Step: Variational Flow (of any order) Introduction

The standard procedure to compute the first variational equations is to
linearize (1),

δ′x = DxF (t, x(t))δx (3)

δx(t0) = I (4)

and integrate (1) and (3) simultaneously. Computation of DxF by hand
is laborious and error prone when F is complex. This is especially true
when we need to integrate higher order variational equations.

An option is to use a computer algebra system to obtain DxF .

66 / 89

Next Step: Variational Flow (of any order) Introduction

Main idea: Automatic Differentiation

We use series arithmetic libraries to extend the floating point arithmetic.

It will allow us to integrate the variational equations automatically along
with the IVP.

67 / 89

Next Step: Variational Flow (of any order) Applications

Some Applications

Computation of Lyapunov exponents (1st order variational equations)

Computation and continuation of periodic orbits (1st order variational
equations)

Analysis of bifurcations of periodic orbits (at least, 2nd order
variationals)

Propagation of a small region of initial conditions, i.e., the
uncertainty of an asteroid (high order variational equations)

68 / 89

Next Step: Variational Flow (of any order) Multivariate series

Multivariate series

Suppose x = x(s1, s2, · · · , sn) = x(s) is a Cm function near 0, then x can
be expanded as a Taylor polynomial,

x = x(0)+
∑

i

αi si+
∑

i+j=2

αijsi sj+· · ·+
∑

i1+i2+···+ik=k

αi1i2···ik s i1
1 s i2

2 · · · s
ik
k +· · ·+O(|s|m)

(5)
where

αi1i2···ik =
1

k!

∂kx

∂ i1s1∂ i2s2 · · · ∂ ik sk
(6)

are the normalized partial derivatives.

69 / 89

Next Step: Variational Flow (of any order) Multivariate series

If x and y are Cm functions, then the Taylor polynomial of xy is the
product of the Taylor polynomials of x and y , truncated to degree m.
Hence the partial derivatives of xy can be obtained algebraically through
the arithmetic operation on two polynomials.

This is true for x ± y , x/y and elementary functions on x .

70 / 89

Next Step: Variational Flow (of any order) Multivariate series

In other words, if we code x , y as

x = [x0, αi , αij , · · ·] (7)

y = [y0, βi , βij , · · ·] (8)

then we can compute the partial derivatives of x ◦ y and f (x)
automatically through series arithmetic. This is essentially an
implementation of automatic differentiation (AD).

71 / 89

Next Step: Variational Flow (of any order) Multivariate series

Example: Consider the function

f (s, t) =
(
st + sin(s) + 4

)(
3t2 + 6

)
∇f can be obtained automatically in the following manner when evaluate
f (s0, t0). We just need to promote s and t to series,

s = [s0, 1, 0] = [s0,
∂s

∂s
,
∂s

∂t
]

t = [t0, 0, 1] = [s0,
∂t

∂s
,
∂t

∂t
]

and carry out the evaluation of f (s0, t0) using series arithmetic,

s t = [s0t0, t0, s0]

sin(s) = [sin(s0), cos(s0), 0]

t2 = [t2
0 , 0, 2t0]

72 / 89

Next Step: Variational Flow (of any order) Multivariate series

st + sin(s) + 4 = [s0t0 + sin(s0) + 4, t0 + cos(s0), s0]

3t2 + 6 = [3t2
0 + 6, 0, 6t0]

f (s0, t0) = [(s0t0 + sin(s0) + 4)(3t2
0 + 6), (3t2

0 + 6)(t0 + cos(s0)),

6t0(s0t0 + sin(s0) + 4) + s0(3t2
0 + 6)]

and

∇f = [(3t2
0 + 6)(t0 + cos(s0)), 6t0(s0t0 + sin(s0) + 4) + s0(3t2

0 + 6)]

Higher order derivatives can be obtained the same way.

73 / 89

Next Step: Variational Flow (of any order) Multivariate series

Example: Consider the initial value problem

x ′ = f (t, x , y), y ′ = g(t, x , y)

x(0) = x0, y(0) = y0

If we promote the state variable to series, like

x(t) = [x ;
∂x

∂x0
,
∂x

∂y0
; ...], y(t) = [y ;

∂y

∂x0
,
∂y

∂y0
; ...]

with initial values

x = [x0; 1, 0; 0, ..., 0], y = [y0; 0, 1; 0, ..., 0]

74 / 89

Next Step: Variational Flow (of any order) Multivariate series

Then for any explicit integration algorithm,

(tk+1, xk+1, yk+1) = Φ(tk , xk , yk)

we can overload the arithmetic in Φ using series arithmetic, to obtain the
jet of derivatives (t1, x1, y1) using the initial value (t0 = 0, x0, y0), and to
iterate the procedure to obtain the jet of Φn,

(tn, xn, yn) = Φ(tn−1, xn−1, yn−1) = Φn(t0, x0, y0).

In this sense, we are integrating the variational equations up to the order
of the jets used for the state variables (x , y).

75 / 89

Next Step: Variational Flow (of any order) Multivariate series

In general, for the initial value problem

x′(t) = F (t, x(t)) (9)

x(t0) = x0 (10)

if F is composed from elementary functions, then we can integrate the
variational equations (up to an arbitrarily specified order) automatically
using series arithmetic via an explicit integrator.

76 / 89

Next Step: Variational Flow (of any order) Taylor and variational equations

The Taylor integrator is an explicit method, so we can overload it with
series arithmetic. However, series operations are much more expensive
than floating point operations, so we don’t want to promote all variables
to series unless we have to. For example, in the problem of studing the
orbit of an asteroid, the vector field looks like

x′ = f (x)

y′ = g(x, y)

where the first equation describe the motion of 9 planets, the second
equation describe the motion of the asteroid. Obviously we are only
interested in the variations of y.

77 / 89

Next Step: Variational Flow (of any order) Taylor and variational equations

We add one new declaration statement

jet VARSLIST variables COUNT degree DEGREE ;

to declare series variables. For example

jet y1,y2,y3 variables 5 degree 7 ;

specifies y1, y2, y3 are series of 5 variables, and are of degree 7.

78 / 89

Next Step: Variational Flow (of any order) Taylor and variational equations

The input for lorenz equations may look like

x’ = 10.0 * (y - x);
y’ = 28.0 * x - x * z - y;
z’ = x * y -8.0 * z / 3.0;

jet x, y, z variables 3 degree 1;

With this input, the code generated by Taylor will integrate the first order

variation equations along the reference trajectory.

79 / 89

Next Step: Variational Flow (of any order) Implementation notes

For efficiency reasons, we are implementing several libraries for the
operations with series.

We note that the key operation (regarding to efficiency) is the product of
series.

Computation of maximal Lyapunov exponents.
In this case, we only need a series up to order 1, with one variable
(a(0) + a(1)s). The arithmetic of series is straightforward and the code
can be inlined.

80 / 89

Next Step: Variational Flow (of any order) Implementation notes

Computation of (1st order) variational flow.
It has many applications, like computation of all Lyapunov exponents,
linear stability of periodic orbits, differential of Poincaré maps, etc.

In this case, the series are expressions of the form a0 +
∑

a
(1)
j sj .

Again, the formula for the product of 1st order series (up to 1st
order) is straightforward, and it has been coded using simple loops.

Computation of second order variational flow.
This is also a quite common case. We have coded a specific algorithm
for the product of series.

81 / 89

Next Step: Variational Flow (of any order) Implementation notes

Computation of variationals of order N, with two variables.
This is a special case. The series is stored as a sequence of
homogeneous polynomials. Each of them can be seen as a polynomial
of 1 variable,

n∑
j=0

a
(n)
j ,n−js

j
1sn−j

2 .

Then, the product of two homogeneous polynomials is coded with a
single loop (like a product of polynomials of 1 variable).

82 / 89

Next Step: Variational Flow (of any order) Implementation notes

Computation of variationals of order N, with M variables.
This is the general case. The series is stored as a sequence of
homogeneous polynomials.

Each homogeneous polynomial is stored as an array. For each
homogeneous polynomial, we use two hash functions to relate its
position inside the array to its multiindex. Using these two functions
the product is straightforward.

83 / 89

Application: Motion of Apophis

Application: motion of Apophis

This is joint work (still in progress) with E.M. Alessi, A. Farrés, C. Simó
and A. Vieiro (all from U. of Barcelona). It started as an Ariadna Contract
with the European Space Agency.

Apophis is a near-Earth asteroid (NEO) that caused a brief period of
concern in December 2004 because initial observations indicated a small
probability (up to 2.7%) that it would strike the Earth in 2029.

84 / 89

Application: Motion of Apophis

Additional observations provided improved predictions that eliminated the
possibility of an impact on Earth or the Moon in 2029.

However, Apophis will have succesive approaches to the Earth and, for the
moment being, we cannot rule out an impact for the next approach in
2036, although it is very unlikely...

85 / 89

Application: Motion of Apophis

Here we want to transport the uncertainty region for Apophis (coming
from the errors in the measurements of its actual postion).

The model is a restricted N – body model. The asteroid moves driven by
the gravitational force exerted by the Sun, the nine planets and the Moon
(N = 11).

Other effects will be added in the future.

We will use a Taylor method for the integration of the ODE and the jet
transport methodology to transport a box of data along time.

86 / 89

Application: Motion of Apophis

At a fixed time t > 0 the solution is represented as a truncated Taylor
series in ξ = (ξ1, ..., ξ6).

The coordinates can be adapted according to the shape of the initial
uncertainty set.

The effect of the uncertainty in parameters can be included.

It can be modified to take into account different distributions for the
uncertainty.

By replacing the usual arithmetic by interval arithmetic and rigorous
estimates on the errors, the computations could be made absolutely
rigorous.

87 / 89

Application: Motion of Apophis

In 2029 Apophis will get at about 37000 km w.r.t. the centre of the
Earth.

The most significant changes that the orbit of Apophis will suffer are
in the inclination w.r.t. the ecliptic plane, in the semi-major axis and
thus in the period, which will change from 320 days to 425 days in
average. The speed of the asteroid will slow down of about 3 km/s in
average.

Between 2036 and 2037, Apophis will undergo three Earth close
approaches, at least of approximately 40× 106 km.

A good estimate of these approaches strongly depends on a very
precise determination of the changes on the asteroid’s trajectory in
the 2029 approach.

88 / 89

Application: Motion of Apophis

We have checked that at least 13th or 14th order variational
equations are required to have a good description of the 2036-2037
passages with the data available at present.

If, with the actual data, we assume standard errors 4 times smaller,
then 7th order variational equations would be enough to depict the
behaviour of the image box accurately and in that case we can
guarantee that Apophis will not collide with the Earth in these
approaches.

89 / 89

	Introduction
	The Taylor method for ODEs
	
	
	
	
	
	

	The taylor package
	
	
	

	Using taylor
	
	
	
	
	

	Next Step: Variational Flow (of any order)
	
	
	
	
	

	Application: Motion of Apophis

