Multiplication of binary polynomials

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann See paper at ANTS VIII, 2008

Multiplication of univariate binary polynomials

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann See paper at ANTS VIII, 2008

Plan

- **1. Introduction**
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

1. Introduction

- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

Why?

We focus on polynomial multiplication over $\mathbb{F}_2[x]$.

This is used in many contexts:

- polynomial factorization, irreducibility tests;
- (some) crypto applications ;
- less obvious: sparse linear algebra over \mathbb{F}_2 ;
- and more.

How does data look like ?

Binary polynomial $x^3 + x^2 + 1 \rightarrow \text{machine integer}(1101)_2$ ("dense").

- up to degree 63: one machine word (64-bit).
- degree 64 to 127: two words.

In hardware: **J** add is trivial;

- mul is easy ; much easier than integer mul.
- Not our business.

In software:

- add is trivial (xor);
 - mul is tedious (no PCMULQDQ yet !).

What do we do ?

We are interested in:

- software.
- **speed** everywhere: from 64 to 2^{32} coefficients (think recursion).

Existing software

Existing software typically has:

- **Possibly fast multiplication for** 1, 2... up to a few words.
- Karatsuba multiplication above.

Main reference: Victor Shoup's NTL: shoup.net/ntl

Very rarely (if ever), one finds:

- Code that takes advantage of CPU-specific instructions ;
- Joom-Cook multiplication ;
- Fast multiplication for unbalanced operands ;
- FFT (Schönhage ternary + Cantor additive).

All of this is in the gf2x software package.

Sage Days 16 – June 26th, 2009 – p. 6/29

Sage Days 16 – June 26th, 2009 – p. 6/29

Notations

• Splitting of a polynomial a(x) in s-bit slices:

$$a(x) = A(x, x^{s}),$$

 $A(x, t) = A_{0}(x) + A_{1}(x)t + A_{2}(x)t^{2} + \cdots$
and deg $A_{i} < s.$

● Reconstruction: from A(x,t), compute $a(x) = A(x,x^s)$.

Only of notational interest ; "computationally, nothing happens".

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

Below degree 64: mul1

Classical: $c = a \times b$ computed with a (fixed-) window method.

- **•** Tabulate multiples $g \times b$, for $\deg g < s$ (s =window size).
- Split $a = A_0 + A_1 x^s + A_2 x^{2s} + \cdots$
- Accumulate $c = A_0 \times b + (A_1 \times b)x^s + (A_2 \times b)x^{2s} + \cdots$.

Operations required: shifts, XORs.

For degree below 64, we work with machine words only.

- For deg b = 63, the computation $A_i \times b$ overflows !
- Necessary "repair" step is rather easy (see paper).

mul1 (cont'd)

What is the best window size ?

- Use trial and error. Typically 3 or 4.
- 64×64 : ~ 75 CPU cycles on Intel core2 and i7; ~ 85 CPU cycles on AMD k8.

Note: This trivially extends to a routine for $64k \times 64$.

Using SIMD capabilities

What about 128×128 ?

- Karatsuba \Rightarrow three 64×64 .
- Schoolbook requires $a \times b_{low}$ and $a \times b_{high} \Rightarrow two 128 \times 64$.
- **BUT** $a \times b_{low}$ and $a \times b_{high}$ can be computed in a SIMD-manner.
- \checkmark SIMD instructions on x86_64 provide the necessary shifts and XORs.
 - Accessible with compiler builtins (gcc, icc, MSVC).
 - Assembly is not an absolute necessity.
- 128×128 : \checkmark ~ 129 Intel core2 cycles ;
 - $\checkmark \sim 226 \text{ AMD}$ k8 cycles.
 - Faster than Karatsuba here.

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication. \Rightarrow No branching.

Example for mul4:

```
mul2 (c, a, b);
mul2 (c + 4, a + 2, b + 2);
aa[0] = a[0] ^ a[2]; aa[1] = a[1] ^ a[3];
bb[0] = b[0] ^ b[2]; bb[1] = b[1] ^ b[3];
c24 = c[2] ^ c[4];
c35 = c[3] ^ c[5];
mul2 (ab, aa, bb);
c[2] = ab[0] ^ c[0] ^ c24; c[3] = ab[1] ^ c[1] ^ c35;
c[4] = ab[2] ^ c[6] ^ c24; c[5] = ab[3] ^ c[7] ^ c35;
```

Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication. \Rightarrow No branching.

Cycle counts, Intel core2.

deg	NTL	LIDIA	ZEN	this paper
63	99	117	158	75
127	368	317	480	132
191	703	787	1 005	364
255	1130	988	1 703	410
319	1787	1 926	2629	806
383	2182	2416	3677	850
447	3070	2849	4 960	1 242
511	3517	3019	6 433	1 287

What comes next?

Toom-3: deg a < 3k, write $a = A(x, x^k)$, $A(x, t) = a_0(x) + a_1(x)t + a_2(x)t^2$.

- ▶ Evaluate $(A(x, x_i))_{i=0,1,2,3,4}$ and $(B(x, x_i))_{i=0,1,2,3,4}$
- Multiply: $C(x, x_i) = A(x, x_i)B(x, x_i)$.
- Interpolate: recover C(x,t) from $(C(x,x_i))_{i=0,1,2,3,4}$

Misbelief: \checkmark This is only for $\#K \ge 4...$

- because we need 5 evaluation points (in $\mathbb{P}^1(K)$).
- We can use: $0, 1, \infty, x, x^{-1}$; call this TC3.
- Often better: $0, 1, \infty, x^{64}, x^{-64}$: avoids shifts ; call this TC3W.
- The degrees in recursive calls increase mildly.

Timings

$1 + \deg$	NTL	gf2x	method
1536	0.008	0.004	TC3
4096	0.033	0.017	K2
8 000	0.098	0.046	TC3W
10240	0.160	0.080	TC3W
16384	0.295	0.140	TC3W
24576	0.567	0.240	TC3W
32768	0.887	0.395	TC4
57344	2.331	0.976	TC4
65536	2.667	1.067	TC4
131072	7.937	3.040	TC4

ms, Intel Core2 2.4GHz ; cycles: $\times 2.4 \cdot 10^6$.

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

We are also interested in multiplication in the FFT range. Several options:

- integer FFT and (huge) padding (Krönecker-Schönhage).
- Schönhage's ternary FFT algorithm.
- Cantor's additive FFT algorithm.

Why is Krönecker's trick inefficient here ?

Assume we know how to multiply (fast) in \mathbb{Z} .

We use that in for multiplying in $\mathbb{F}_p[x]$.

If $a(x) = a_0 + a_1x + \dots + a_{N-1}x^{N-1}$, and b(x) similar:

- Choose $B = 2^k$ such that $Np^2 < 2^k$.
- Form the integer $\tilde{a} = a_0 + a_1B + \cdots$. Same for \tilde{b} . We have:

$$\widetilde{a} \cdot \widetilde{b} = \sum_{\ell} \sum_{\substack{i+j=\ell \ \widetilde{c}_{\ell} < Np^2 < B}} a_i b_j B^{\ell}.$$

• The coefficients of $c = a \times b$ are recovered with $c_i = \tilde{c}_i \mod p$.

Cost: $M(N \log (Np^2))$, to be compared to $M(N \log p)$ (quasi-linearity w.r.t input size). This is very expensive for p small.

Other ways to do the FFT

Assume we are given one quotient ring R of $\mathbb{F}_2[x]$ of degree d with

- (reasonably) fast multiplication ;
- \checkmark fast multipoint evaluation and interpolation on some subset W.

Then we can use this to compute products in $\mathbb{F}_2[x]$ up to $\frac{1}{2}d.\#W$ bits.

- Split *a* and *b* in blocks of $\frac{d}{2}$ coefficients: $a = A(x, x^{d/2})$. Map *A* to R[t].
- Multi-evaluate A and B at W.
- Compute pointwise products $\{A(w) \cdot B(w), w \in W\}$.
- Interpolate: recognize C such that $\forall w \in W, C(w) = A(w) \cdot B(w)$.
 Note that C = AB as long as deg(AB) < #W.</p>
- Lift C to $\mathbb{F}_2[x,t]$. Recover $ab = C(x, x^{d/2})$.

Where to do the FFT ?

Several possibilities. Pitfall: W can not be a set of 2^n -th roots of 1 !

- Let $R = \mathbb{F}_{2^k}$ with $2^k 1$ having a large smooth factor K. Let $W = \{K\text{-th roots of } 1\}$.
- Let $R = \mathbb{F}_2[x]/x^{2L} + x^L + 1$, where $L = \lambda 3^{k-1}$. Then x^{λ} generates $W = \{3^k \text{-th roots of } 1\}$.
- $\textbf{ Let } R = \mathbb{F}_{2^{2^k}} \text{ and } W \text{ be a sub-vector space.}$

"Butterflies" go "3-way".

$$\begin{array}{l} x,y \rightarrow x + \alpha y, x - \alpha y, \\ x,y,z \rightarrow x + \alpha y + \alpha^2 z, x + j\alpha y + j^2 \alpha^2 z, x + j^2 \alpha y + j\alpha z \end{array}$$

Where to do the FFT ?

Several possibilities. Pitfall: W can not be a set of 2^n -th roots of 1 !

- Let $R = \mathbb{F}_{2^k}$ with $2^k 1$ having a large smooth factor K. Let $W = \{K\text{-th roots of } 1\}$. not looked at.
- Let $R = \mathbb{F}_2[x]/x^{2L} + x^L + 1$, where $L = \lambda 3^{k-1}$. Then x^{λ} generates $W = \{3^k \text{-th roots of } 1\}$. ternary FFT.
- Let $R = \mathbb{F}_{2^{2^k}}$ and W be a sub-vector space. additive FFT.

"Butterflies" go "3-way".

$$\begin{array}{l} x,y \rightarrow x + \alpha y, x - \alpha y, \\ x,y,z \rightarrow x + \alpha y + \alpha^2 z, x + j\alpha y + j^2 \alpha^2 z, x + j^2 \alpha y + j\alpha z \end{array}$$

The ternary FFT achieves $O(N \log N \log \log N)$ complexity if one uses it recursively also for the pointwise products, BUT:

- This requires computing the pointwise products modulo $X^{3L} + 1$.
- One doesn't have to. One top-level step gives already good results.
- Have to choose a sensible value for K.

Ternary FFT (Schönhage)

There is a (mild) staircase effect.

We can compute a product of degree < N by splitting:

- Compute one product modulo N' > N/2.
- Compute another product modulo N'' > N'.
- Very simple XORs do the reconstruction.

Schönhage FFT + splitting

Schönhage FFT + splitting

A completely different approach. Use a field $R = F_k = \mathbb{F}_{2^{2^k}} = \mathbb{F}_2[\gamma]$. Which evaluation set *W* do we use ?

Let
$$s_1(x) = x^2 + x$$
, and $s_i(x) = \underbrace{s_1(s_1(\cdots s_1(x) \cdots))}_{i \text{ times}}$.

 s_i satisfies many properties:

- s_i is sparse ; s_i is linear ; $s_{2^k} = x^{2^{2^k}} + x$.
- Let $2^k \ge i$ and $W_i = \{ \alpha \in \mathbb{F}_{2^{2^k}} \mid s_i(\alpha) = 0 \} = \operatorname{Ker} s_i$. W_i is a sub-vector space of $\mathbb{F}_{2^{2^k}}$; dim $W_i = i$.

Multi-evaluation at W_i

Use a sub-product tree:

- right-child = 1 + left-child.
- Only the constant coefficients are in extension fields.
- \bullet s_j is sparse, so reduction is cheap.

Cantor: staircase effect

A truncated variant

Evaluate at no more points than needed. Example for 6 points:

- Work modulo $s_2(x) (s_1(x) + \beta_2)$ instead of $s_3(x)$.
- Interpolation is tricky. Uses the sub-product tree twice. See paper.

Performance of additive FFT

Performance of additive FFT

Performance of additive FFT

Comparison Cantor – Schönhage

Comparison Cantor – Schönhage

A word of caution:

- Additive FFT has cheap pointwise products.
- Jernary FFT has cheap evaluation / interpolation.

When transforms can be reused (matrices over $\mathbb{F}_2[x]$), additive FFT wins. Example for deg $ab < 2^{20}$:

- Additive FFT: 57 ms, 2.3 ms in pointwise mults.
- Jernary FFT: 28 ms, 18 ms in pointwise mults.
- $n \times n$ matrix mult: $c_{\text{eval/interp}} * n^2 + c_{\text{pointwise}} * n^3$
- Additive FFT faster for 3×3 matrices and above.

Conclusion

- Significant speed-ups over existing software.
- URL: gf2x.gforge.inria.fr (versions > 0.9 no longer have the additive FFT, because not routinely tested).
- Usable as an add-on to NTL 5.5: NTL_GF2X_LIB=<path>.

In the works: an update to expose the different steps of the transform, for algorithms where caching transforms is desired.