New ideas for computing integral bases
 J. Guàrdia

(joint work with J. Montes \& E. Nart)

Introduction

Statement of the problem

Given $K=\mathbb{Q}(\vartheta), \quad F(x)=\operatorname{Irr}(\vartheta, K, \mathbb{Q}), \quad n=\operatorname{deg} F$
determine $\omega_{1}, \ldots, \omega_{n}$
such that $\quad \mathbb{Z}_{K}=\mathbb{Z}<\omega_{1}, \ldots, \omega_{n}>$.

Example:

$$
K=\mathbb{Q}(i), \quad \mathbb{Z}_{K}=\mathbb{Z}<1, i>
$$

Main problems of computational algebraic number theory

4.9.3 Conclusion: the Main Computational Tasks of Algebraic Number Theory

From the preceding definitions and results, it can be seen that the main computational problems for a number field $K=\mathbb{Q}(\theta)$ are the following:
(1) Compute an integral basis of \mathbb{Z}_{K}, determine the decomposition of prime numbers in \mathbb{Z}_{K} and \mathfrak{p}-adic valuations for given ideals or elements.
(J) compute a system or rumuamentar unls or \boldsymbol{n} and/or ne regurator $\Omega(\Omega)$. Note that these two problems are not completely equivalent, since for many applications, only the approximate value of the real number $R(K)$ is desired. In most cases, by the Brauer-Siegel theorem, the fundamental units are too large even to write down, at least in a naïve manner (see Section 5.8.3 for a representation which avoids this problem).
(4) Compute the class number and the structure of the class group $\mathrm{Cl}(\mathrm{K})$. It is essentially impossible to do this without also computing the regulator.
(5) Given an ideal of \mathbb{Z}_{K}, determine whether or not it is principal, and if it is, compute $\alpha \in K$ such that $I=\alpha \mathbb{Z}_{K}$.

H. Cohen

A course in Computational Algebraic Number Theory, GTM 138

It is not that easy!

Assume we can do it!

Think Globally Act Locally!

\square For every $p \mid \operatorname{Disc}(F(x))$:
Compute a triangular p-integral basis of K, i.e. a $\mathbb{Z}_{(p)}$-basis of $\mathbb{Z}_{K} \otimes \mathbb{Z}_{(p)}$
\square Glue all the local bases
(with Chinese remainder theorem).

Ancient history

- Kummer-Dedekind

Factor $\bmod p$

- Bauer-Ore

Newton polygons

- Zassenhaus' Round 2

Enlarge p-radicals

- Zassenhaus’ Round 4 p-adic Hensel lifting

Modern history

- Montes-Nart (99) \longrightarrow Higher Newton polygons for prime ideal decomposition
- Ford-Pauli-Roblot (02) \Rightarrow Improved Round 4
(PARI, SAGE)
- GMN (09)

Extended use of higher Newton polygons

Some commercials

Graphical description

Change your mind!

Main properties of Montes algorithm

\square Based on higher Newton polygons
\square No Hensel lifting nor p-adic factorization required
\square Main task: factorization of polynomials over finite fields
\square Computes maximal order, index and prime ideal factorization
\square Low memory-requirements
\square Excellent (heuristic) running time
The computation of maximal orders relies on a conjecture that it is proven only in some cases, but:
\square It checks the validity of the result by itself (with no extra cost)
\square We have made thousands of tests, with no fail.

The Montes package

[www.ma4.upc.edu/~guardia/MontesAlgorithm.html
(Google: "Montes Algorithm")
\square Implemented in Magma
\square Includes routines to
\square Compute p-maximal orders
\square Compute p-index
\square Factor $p \mathbb{Z}_{K}$ formally (ramification indices and residuals degrees)
\square Factor $p \mathbb{Z}_{K}$ completely (generators of the prime ideals)

- Compute global maximal orders
\square Build examples of polynomials of arbitrary order
\square Use it for your big polynomials and/or send them to us.

Some examples

```
Magma V2.11-10
Type ? for help.
> Attach("montes
    (09:54) gp > allocatemem()
    *** allocatemem: Warning: doubling stack size; new stack = 32768000000 (31250.
000 Mbytes).
    *** allocatemem: Warning: not enough memory, new stack 16384000000.
(09:54) gp > #
    timer = 1 (on)
(09:54) gp > f=x^800+2^50*x^600+2^100**^400+2^200;
time = 0 ms.
(09:54) gp >
(09:54) gp > d=poldisc(f);
time = 3,292 ms.
(09:54) gp >
(09:54) gp > v=valuation(d,2);
time = 0 ms.
    time OK:=Maxin
Time: 3.180
>
    time basis,ing
Time: 0.010
>
>
> time basis,inder
Time: 106.140
>
```

index;
[
[2, 79925],
$[5,0]$,
[257, 0]
]

Some bigger examples

$$
\begin{aligned}
\phi_{1}= & x^{2}+4 x+16 ; \\
\phi_{2}= & \phi_{1}^{2}+16 x \phi_{1}+1024 ; \\
\phi_{3}= & \phi_{2}^{2}+2^{11} u \phi_{2}+2^{18} x \phi_{1} ; \\
\phi_{4}= & \phi_{3}^{2}+2^{25} x \phi_{3}+2^{35} \phi_{1} \phi_{2} ; \\
\phi_{5}= & \phi_{4}^{3}+2^{29} \phi_{3} \phi_{4}^{2}+2^{139} \phi_{3}+2^{153} \phi_{2} ; \\
\phi_{6}= & \phi_{5}^{2}+2^{141} \phi_{3} \phi_{5}+2^{279} \phi_{4} ; \\
\phi_{7}= & \phi_{6}^{3}+2^{998} \phi_{1}+2^{1003} ; \\
\phi_{8}= & \phi_{7}^{2}+2^{1505}\left(\phi_{5}+2^{167}\right) \phi_{6} ; \\
\phi_{9}= & \phi_{8}^{2}+\left(\left(\left(2^{683}\left(x v \phi_{2}+2^{13} w\right) \phi_{3}+2^{710}\left(w \phi_{2}+2^{11} x v\right)\right) \phi_{4}^{2}+\right.\right. \\
& 2^{743}\left(x\left(\phi_{2}+2^{7} v\right) \phi_{3}+2^{25}\left(u \phi_{2}+2^{7}\left(u \phi_{1}+64\right)\right)\right) \phi_{4}+
\end{aligned}
$$

ϕ_{j}	$\operatorname{deg} \phi_{j}$	$\operatorname{ind}\left(\phi_{j}\right)$	2-basis	2-stem	PARI 2.3.4	MAGMA 2.11	SAGE 3.2.3
ϕ_{2}	4	12	0.00	0.01	0.00	0.01	0.01
ϕ_{3}	8	72	0.00	0.01	0.004	0.02	0.01
ϕ_{4}	16	352	0.00	0.02	0.016	4.67	0.05
ϕ_{5}	48	3696	0.03	0.6	2.4	42747	4.06
ϕ_{6}	96	15408	0.08	0.38	101	$>72 h$	196
ϕ_{7}	288	142416	0.97	16	47157	$>72 h$	119047
ϕ_{8}	576	573696	6.8	M	$>72 h$	$>72 h$	$>72 h$
ϕ_{9}	1152	2303520	34.5	M	$>72 h$	$>72 h$	$>72 h$

Some tables (I):

$$
f^{k}(x):=\left(x^{2}+x+1\right)^{2}-p^{2 k+1} p \equiv 1(\bmod 3)
$$

\square Small degree
\square Medium index
\square Large coefficients

p	ind $\left(f^{k}\right)$	p-stem	PARI 2.3.4	MAGMA 2.11	SAGE 3.2.3
7	1000	0.41	2.14	0.89	2.4
7	2000	1.14	15.03	3.35	16.4
7	4000	4.02	111.7	15.6	121
7	8000	18.9	747	84.6	841
7	16000	105	5573	486	6374
7	20000	187	11520	859	12242
13	1000	0.5	3.8	1.37	4.4
13	2000	1.5	27.4	5.16	30.7
13	10000	53.7	2585	231	3071
19	10000	65.7	3444	284	4213
31	10000	86.5	4741	364	6000
37	10000	93.7	5238	395	6715
43	10000	100.6	5689	422	7370
103	10000	140	9120	596	11913
1009	1000	0.99	27.9	3.65	37
1009	2000	4.49	189	19.6	266.2
1009	4000	24.5	1380	112	2032
$10^{9}+9$	1000	3.94	188	23.2	519
$10^{9}+9$	2000	22.9	1409	133	4085
$10^{9}+9$	4000	139	10608	763	42790
$10^{69}+9$	100	1.59	12.4	5.61	165
$10^{69}+9$	200	4.14	88.5	30.1	1322
$10^{69}+9$	400	14.3	688	167	10802

Some tables (II): Random tests

$$
p=2
$$

Order	Tests	Mean Degree	Mean Index	Mean Time
3	1800	65	6735	1.065
4	5054	117	25774	3.936
5	300	172	67411	19.605

$$
1<p<1024
$$

Order	Tests	Mean Degree	Mean Index	Mean Time
1	20000	7	33	0.002
2	10000	25	777	0.151
3	6000	65	6605	4.09

$$
\mathbb{t}_{r}=\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \psi_{r}(y)\right\}
$$

$$
\text { N } \operatorname{ind}_{t_{r}}(F):=f_{0} \cdots f_{r} \operatorname{ind}\left(N_{\phi_{r+1}}^{r+1}(F)\right)
$$

1. From

Zur allgemeinen Theorie der algebraischen Größen.
Von Herrn Michael Bauer in Budapest.
§ I.

1. Es sei die Gleiehung
(I.)

$$
z^{n}+c_{1} z^{n-1}+\cdots+c_{k} z^{n-k}+\cdots+c_{n}=0
$$

gegeben, deren Koeffizienten rationale ganze Größen irgend eines holoiden Bereiches [(A), $\left.x_{1}, x_{2}, \ldots x_{m}\right]$ bezw. $\left[[1], x_{1}, x_{2}, \ldots x_{m}\right]$ sind.*) Es sei ferner P eine rationale Primgröle des Bereiches; w eine Wurzel der Gleiehung (I.), die den Gattungsbereich (I^{\prime}) bestimmt. Es sollen in bezug auf den Gattungsbereich die Zerlegungen
bestehen, wo \Re_{i} ein Primideal, die Zahl e_{i} eine positive und die Zahl a_{i} eine nicht negative rationale ganze Zahl bedeuten.

Kummer-Dedekind's criterion

$$
\begin{aligned}
& f(x):=\operatorname{Irr}(\theta, K, \mathbb{Q}) \\
& f(x) \equiv \psi_{1}(x)^{e_{1} \cdots} \psi_{g}(x)^{e_{g}}(\bmod p) \longrightarrow p \mathbb{Z}_{K}=\mathfrak{a}_{1} \cdots \mathfrak{a}_{g} \\
& \psi_{k}(x) \in \mathbb{F}_{p}[x] \xrightarrow{\text { lifting }} \phi_{k}(x) \in \mathbb{Z}[x] \\
& e_{k}=1 \quad \text { or } \phi_{k} \nmid\left(f-\phi_{1}^{e_{1}} \cdots \phi_{g}^{e_{g}}\right) / p \quad \longrightarrow \mathfrak{a}_{k}=\mathfrak{p}_{k}^{e_{k}} \\
& \mathfrak{p}_{k}=\left(p, \phi_{k}(\theta)\right), \quad e\left(\mathfrak{p}_{k} / p\right)=e_{k}, \quad f\left(\mathfrak{p}_{k} / p\right)=\operatorname{deg} \psi_{k}
\end{aligned}
$$

$$
1, \theta, \ldots, \theta^{n-1} \quad p \text {-integral basis of } K
$$

Bauer-Ore: Newton polygon (I)

$$
v\left(\sum a_{i} x^{i}\right)=\min _{i}\left\{v_{p}\left(a_{i}\right)\right\}
$$

$$
\phi(x) \in \mathbb{Z}[x] \quad \text { monic and irreducible } \bmod p
$$

$$
f(x)=\sum a_{i}(x) \phi(x)^{i}
$$

$N_{\phi}(f)=$ principal part of the lower convex

Bauer-Ore: Newton polygon (II)

$f(x):=\operatorname{Irr}(\theta, K, \mathbb{Q}) \quad$ escaping Dedekind's criterion
Fix $\psi=\psi_{k}, \quad \mathfrak{a}_{\psi}=\mathfrak{a}_{k}, \quad \phi=\phi_{k}(x)$

$$
\begin{gathered}
N_{\phi}(f)=S_{1}+\cdots+S_{r} \\
\downarrow \\
\mathfrak{a}_{\psi}=\mathfrak{b}_{1} \cdots \mathfrak{b}_{r}
\end{gathered}
$$

Bauer-Ore: Residual polynomial

p-Integral basis in order 1

$$
\left\{\frac{q_{j}(\theta) \theta^{k}}{p^{m_{j}}}: 1 \leq j \leq l, 0 \leq k<\operatorname{deg} \phi\right\}_{\phi}
$$

Theoretical background

Theorem of the product:

$$
\begin{aligned}
& N_{\phi}(f g)=N_{\phi}(f)+N_{\phi}(g) \\
& R_{S}(f g)(y)=R_{S}(f)(y) R_{S}(g)(y)
\end{aligned}
$$

Theorem of the polygon
Theorem of the residual polynomial
p-adic reciprocals

Generalizing the lifting

Proposition: Given

$$
\phi(x) \in \mathbb{Z}[x], S, \psi(y) \in \mathbb{F}_{\bar{\phi}}[y]
$$

we can easily compute a monic irreducible polynomial $F \in \mathbb{Z}[x]$ with

$$
N_{\phi}(F)=S \quad R_{S}(F)(y)=c \psi(y)
$$

F is a representative of the order one type $\mathbb{t}=\{\phi, S, \psi\}$

2. Higher Newton Polygons (Montes)

Outline

- Higher order types
- Higher valuations
- Higher Newton polygons
- Generalized theorems:
- of the product
- of the polygon
- of the residual polynomial
- Finiteness results: control of the index

Recursive definitions and proofs!

Higher order types

A type of order r is

$$
\mathbb{t}_{r}=\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \psi_{r}(y)\right\}
$$

where
$\phi_{k}(x) \in \mathbb{Z}[x]$ monic, $\phi_{k}(x)$ irred. $\bmod p$
$N_{\phi_{k}}^{k}\left(\phi_{k+1}\right)=S_{k}$ side with slope $\lambda_{k}:=-h_{k} / e_{k}$ $\psi_{k}(y):=c R_{S_{k}}^{k}\left(\phi_{k+1}\right)(y) \in \mathbb{F}_{k}[y] 0 \leq k \leq r-1$
$\psi_{0}(y):=\phi_{1}(y) \bmod p$ monic and irreducible $\mathbb{F}_{0}:=\mathbb{F}_{p} \quad \mathbb{F}_{k+1}=\mathbb{F}_{k}\left(z_{k}\right) \quad \psi_{k}\left(Z_{k}\right)=0$.
$\psi_{r}(y) \in \mathbb{F}_{r}[y]$ monic, irreducible, free

General "lifting"

Theorem: Given any type \mathbb{t}_{r} we can effectively construct a monic irreducible polynomial $\phi_{r+1} \in \mathbb{Z}[x]$ such that:

$$
\begin{gathered}
N_{\phi_{k}}^{k}\left(\phi_{r+1}\right)=S_{k}, \\
R_{S_{k}}^{k}\left(\phi_{r+1}\right)(y)=c_{k} R_{S_{k}}^{k}\left(\phi_{k+1}\right)(y) \\
R_{S_{r}}^{r}\left(\phi_{r+1}\right)(y)=c \psi_{r}(y) \\
\mathbb{t}_{r}=\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \psi_{r}(y)\right\} \\
\mathbb{t}_{r+1}=\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \phi_{r+1}(x), S_{r+1}, \psi_{r+1}(y)\right\}
\end{gathered}
$$

$$
\phi_{r+1} \text { is a representative of } \mathbb{t}_{r}
$$

Higher valuations

$$
\left.v_{r+1}\left(\sum a_{i}(x) \phi_{r}(x)^{i}\right)=e_{r} \min _{i}\left\{v_{r}\left(a_{i}(x) \phi_{r}(x)^{i}\right)+i\left|\lambda_{r}\right|\right)\right\}
$$

v_{r+1} extends v with index $e_{1} \cdots e_{r}$

Higher Newton polygons

$$
\begin{aligned}
& \mathbb{t}_{r} \longrightarrow \phi_{r+1} \\
& f(x)=\sum a_{i}(x) \phi_{r+1}(x)^{i}
\end{aligned}
$$

$N_{\phi_{r+1}}^{r+1}(f)=$ principal part of the lower convex envelope of $\left\{\left(i, v_{r+1}\left(a_{i}(x) \phi_{r+1}(x)^{i}\right)\right\}_{i}\right.$

Higher residual polynomials

Definition:

The residual polynomial in order $r+1$ attached to S is:

$$
\begin{gathered}
R_{S}^{r+1}(f)(y)=c_{s}+c_{s+e} y+\cdots+c_{s+(d-1) e} y^{d-1}+c_{s+d e} y^{d} \\
c_{i}:=z_{r}^{t_{r}(i)} R_{S}^{r}\left(a_{i}(x)\right)\left(z_{r}\right) \in \mathbb{F}_{r}
\end{gathered}
$$

Higher order theorems

Theorems of the product, of the polygon, of the residual polynomial:

$$
\begin{aligned}
& \forall \mathbb{t}_{r} \forall S \in N_{\phi_{r+1}}^{r+1}(\operatorname{Irr}(\theta, K, \mathbb{Q})) \\
& \quad \psi \mid R_{S}^{r+1}(\operatorname{Irr}(\theta, K, \mathbb{Q}))(y) \text { irred. } \longrightarrow \mathfrak{a}_{\psi} \mid p \mathbb{Z}_{K}
\end{aligned}
$$

- If ψ has exponent 1 , then $\mathfrak{a}_{\psi}=\mathfrak{p}_{\psi}^{e} \quad\left(\mathbb{t}_{r}\right.$ is complete)
- Otherwise, $S_{r+1}=S, \psi_{r+1}=\psi$ originate an extension of \mathbb{t}_{r} :

$$
\begin{aligned}
\mathbb{t}_{r} & =\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \psi_{r}(y)\right\} \\
\mathbb{t}_{r+1} & =\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \phi_{r+1}(x), S_{r+1}, \psi_{r+1}(y)\right\}
\end{aligned}
$$

Types attached to a polynomial

- Every complete type \mathbb{t} determines a prime factor $\mathfrak{p}_{\mathbb{t}}$ of $p \mathbb{Z}_{K}$.
Every prime \mathfrak{p} comes from a type.

Finiteness: Theorem of the index (I)

 $\operatorname{ind}(N):=$ number of points of integral coordinates "below" N.

$$
\mathbb{t}_{r}==-=-=-\rightarrow \operatorname{ind}_{\mathbb{U}_{r}}(F):=f_{0} \cdots f_{r} \operatorname{ind}\left(N_{\phi_{r+1}}^{r+1}(F)\right)
$$

$$
\operatorname{ind}_{r+1}(F):=\sum_{\mathbb{t}_{r} \in t_{r}(F)} \operatorname{ind}_{\mathbb{t}_{r}}(F)
$$

Finiteness: Theorem of the index (II)

Theorem of the index

Let $f \in \mathbb{Z}[x]$ be a monic and separable polynomial.
a) $v_{p}(\operatorname{ind}(f)) \geq \operatorname{ind}_{1}(f)+\ldots+\operatorname{ind}_{r}(f), \quad r \geq 1$.
b) Equality holds if and only if $\operatorname{ind}_{r+1}(f)=0$.

p-Integral basis in order r

$\mathbb{4}_{r}=\left\{\phi_{1}(x), S_{1}, \phi_{2}(x), S_{2}, \ldots, \phi_{r}(x), S_{r}, \psi_{r}(y)\right\} \quad$ complete
Compute a representative ϕ_{r+1} of \mathbb{t}_{r}
$f(x)=Q(x) \phi_{r+1}(x)+a(x)$

$$
B_{\mathbb{U}_{r}}=\left\{\frac{Q(\theta) q_{r, j_{r}}(\theta) q_{1, j_{1}}(\theta) \theta^{j_{0}}}{p^{m_{j_{0}, j_{1}, \ldots, j_{r}}}}\right\}_{j_{0}, j_{1}, \ldots, j_{r}}
$$

Conjecture: $B_{\mathbb{U}}$ is a p - integral basis of K.

Proven when: $\max \left\{r: \mathbb{t}_{r}\right\}=1$ or $\operatorname{card}\left\{\mathbb{t}_{r}\right\}=1$.

Complexity issues

What about the order of types?

- The running time of the algorithm is determined by the highest order of the involved types.
- The enlargement of a type is somewhat arbitrary, but Montes has designed a refinement process to :
- 1. Eat as much index as possible in every order
- 2. Assure that " $e_{k} f_{k}$ " >1 " grows in every order.

$$
\sum_{\mathbb{U}} \prod_{k=1}^{r} e_{k}^{\mathbb{\pi}} f_{k}^{\mathbb{t}}=\operatorname{deg} f \Longrightarrow \max \left\{r: \mathbb{t}_{r}\right\} \ll \log _{2} \operatorname{deg} f
$$

- The number of types and its length should be related to the Galoisian structure of K.

Help. I need somebody (J. Lennon)

To do:

- Detailed analysis of the complexity of the algorithm
- Improvement of the diagonalization process (specific Gröbner basis computation).
- Implementation in Sage (requires factorization of polynomial over relative extensions of finite fields).

