
J. Guàrdia

(joint work with J. Montes & E. Nart)

Given K=(), F(x) =Irr(,K,), n=degF

determine 1,…, n

such that K = < 1,…, n >.

Example: K=(i), K = <1,i>

H. Cohen
A course in Computational Algebraic Number Theory, GTM 138

h
ar

d
n
es

ss
Index f:=[K :[]]

F(x)=x10000+... 29941 -1

F(x)=x2+210000310000

Disc(F(x))=Disc(K) ·f2

We must factor Disc(F(x))

K=(i)

Assume we can do it!

 For every p| Disc(F(x)):

Compute a triangular p-integral basis of K,

i.e. a (p) -basis of K(p)

 Glue all the local bases

(with Chinese remainder theorem).

 Kummer-Dedekind

 Bauer-Ore

 Zassenhaus’ Round 2

 Zassenhaus’ Round 4

Factor mod p

Newton polygons

Enlarge p -radicals

p-adic Hensel lifting

(MAGMA, MAPLE, KANT)

 Montes-Nart (99)

 Ford-Pauli-Roblot (02)

 GMN (09)

Higher Newton polygons for
prime ideal decomposition

Improved Round 4

(PARI, SAGE)

Extended use of higher
Newton polygons

[K :[]][K :[]]

Round 2

Round 4

FPR

Montes

[K :[]]

K,p

p-integral basis of K

Round 2, Round 4, FPR

Buchman-Lenstra

Montes

 Based on higher Newton polygons

 No Hensel lifting nor p-adic factorization required

 Main task: factorization of polynomials over finite fields

 Computes maximal order, index and prime
ideal factorization

Low memory-requirements

 Excellent (heuristic) running time

 The computation of maximal orders relies on a conjecture
that it is proven only in some cases, but:

 It checks the validity of the result by itself
(with no extra cost)

 We have made thousands of tests, with no fail.

 www.ma4.upc.edu/~guardia/MontesAlgorithm.html
(Google: “Montes Algorithm”)

 Implemented in Magma

 Includes routines to

 Compute p-maximal orders

 Compute p-index
 Factor formally (ramification indices and residuals degrees)
 Factor completely (generators of the prime ideals)
 Compute global maximal orders
 Build examples of polynomials of arbitrary order

 Use it for your big polynomials and/or send them to us.

http://www.ma4.upc.edu/~guardia/MontesAlgorithm.html

f k(x):=(x2+ x+1)2-p2k+1 p1(mod 3)

 Small degree

Medium index

Large coefficients

1. From to

p-integral basis of K

Fix

escaping Dedekind’s criterion

p-integral basis of K:

Theorem of the product:

p-adic reciprocals

Theorem of the polygon

Theorem of the residual

polynomial

Proposition: Given

we can easily compute a monic irreducible

polynomial with

F is a representative of the order one type

 Higher order types

 Higher valuations

 Higher Newton polygons

 Generalized theorems:

◦ of the product

◦ of the polygon

◦ of the residual polynomial

 Finiteness results: control of the
index

Recursive definitions and proofs!

A type of order r is

where

Theorem: Given any type we can effectively construct

a monic irreducible polynomial r+1[x] such that:

Definition:

The residual polynomial in order r+1 attached to S is:

 Theorems of the product, of the polygon, of the residual
polynomial:

◦ If has exponent 1, then (is complete)
◦ Otherwise, originate an extension

of :

 Every complete type determines a prime factor
of .

N

N

RS

 Every prime comes from a type.

ind(N):= number of points of integral coordinates “below” N.

ind(N)=25

Theorem of the index

Let f [x] be a monic and separable polynomial.

a) vp(ind(f)) ind1(f)+...+indr(f), r1.

b) Equality holds if and only if indr+1(f)=0.

complete

Proven when: or

Test:

 The running time of the algorithm is determined by the
highest order of the involved types.

 The enlargement of a type is somewhat arbitrary, but
Montes has designed a refinement process to :
◦ 1. Eat as much index as possible in every order

◦ 2. Assure that “ekfk”>1” grows in every order.

 The number of types and its length should be related to
the Galoisian structure of K.

 Detailed analysis of the complexity of the
algorithm

 Improvement of the diagonalization process
(specific Gröbner basis computation).

 Implementation in Sage (requires
factorization of polynomial over relative
extensions of finite fields).

