
Faugère’s F5 algorithm: variants and
implementation issues

Christian Eder
(joint work with John Perry)

Technische Universität Kaiserslautern

June 24th, 2009

1 / 47



What is this talk all about?

1 Efficient computations of Gröbner bases using Faugère’s F5
Algorithm and variants of it

2 Explanation of the F5 Algorithm, its criteria used to detect
useless pairs, and its points of inefficiency

3 Presentation of the variants F5R & F5C which reduce the
stated inefficiencies of F5

4 Learning about other improvements due to F5C

5 Comparison of F5, F5R & F5C under several aspects

6 Reducing F4-ish in F5

2 / 47



The following section is about

1 Introducing Gröbner bases
Gröbner basics
Computation of Gröbner bases
Problem of zero reduction

2 The F5 Algorithm

3 Optimizations of F5

4 Further improvements in F5C

5 Comparison of the variants of F5

6 Symbolic preprocessing in F5

3 / 47



Basic problem

1 Given a ring R and an ideal I � R we want to compute a
Gröbner basis G of I .

2 G can be understood as a nice representation for I .
Gröbner bases were discovered by Bruno Buchberger in 1965
[Bu65]. Having computed G lots of difficult questions
concerning I are easier to answer using G instead of I .

3 This is due to some nice properties of Gröbner bases. The
following is very useful to understand how to compute a
Gröbner basis.

4 / 47



Main property of Göbner bases

Lemma
Let G be a Gröbner basis of an ideal I . It holds that for all

p, q ∈ G it holds that

Spol(p, q)
G
−→ 0,

where

• Spol(p, q) = hc(q)upp − hc(p)uqq and

• uk = lcm(hm(p),hm(q))
hm(k) .

5 / 47



Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previous stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

6 / 47



Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previous stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

4 Choose p ∈ P , P := P \ {p}

6 / 47



Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previous stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

4 Choose p ∈ P , P := P \ {p}

(a) If p
G
−→ 0 ⇒ no new information

Go on with the next element in P .

6 / 47



Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previous stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

4 Choose p ∈ P , P := P \ {p}

(a) If p
G
−→ 0 ⇒ no new information

Go on with the next element in P .
(b) If p

G
−→ h 6= 0 ⇒ new information

Add h to G .
Build new S-polynomials with h and add them to P .
Go on with the next element in P .

5 When P = ∅ we are done and G is a Gröbner basis of I .

6 / 47



Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:

7 / 47



Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

7 / 47



Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

7 / 47



Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉 by

(a) adding f2 to G1, G2 = G1 ∪ {f2},
(b) computing S-polynomials of f2 with elements of G1

(c) reducing all S-polynomials and possibly add new elements to
G2

7 / 47



Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉 by

(a) adding f2 to G1, G2 = G1 ∪ {f2},
(b) computing S-polynomials of f2 with elements of G1

(c) reducing all S-polynomials and possibly add new elements to
G2

3 . . .

4 G := Gm is the Gröbner basis of I

7 / 47



Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
When such an S-polynomial reduces to an element h 6= 0 w.r.t. G

then we get new information for the structure of G , namely
adding h to G .
But most of the S-polynomials considered during the algorithm
reduce to zero w.r.t G .
⇒ No new information from zero reductions

8 / 47



Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
When such an S-polynomial reduces to an element h 6= 0 w.r.t. G

then we get new information for the structure of G , namely
adding h to G .
But most of the S-polynomials considered during the algorithm
reduce to zero w.r.t G .
⇒ No new information from zero reductions

Problem to be solved
Detect a zero reduction of Spol(p, q) before we even start to
compute the S-polynomial.

Let’s have a look at the following example:

8 / 47



An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.

9 / 47



An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
Computing

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2,

we get a new element g3 = xz2 − yz2 for G .

9 / 47



An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
Computing

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2,

we get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

9 / 47



An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
Computing

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2,

we get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

Spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

9 / 47



An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
Computing

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2,

we get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

Spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

Now we can reduce further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

9 / 47



How to detect zero reductions in advance?

There are different attempts to detect zero reductions:

1 Buchberger’s criteria and the well-known implementation of
Gebauer & Möller [GM88].

2 In 2002 Faugère has published the F5 Algorithm [Fa02], a
Gröbner basis algorithm which uses new criteria to detect such
useless pairs.

10 / 47



How to detect zero reductions in advance?

There are different attempts to detect zero reductions:

1 Buchberger’s criteria and the well-known implementation of
Gebauer & Möller [GM88].

2 In 2002 Faugère has published the F5 Algorithm [Fa02], a
Gröbner basis algorithm which uses new criteria to detect such
useless pairs.

⇒ In the following we need to understand how Faugère’s criteria
work.

10 / 47



The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm
F5 basics
Implementation of signatures
The inefficiency of F5

3 Optimizations of F5

4 Further improvements in F5C

5 Comparison of the variants of F5

6 Symbolic preprocessing in F5

11 / 47



Signatures of polynomials
Faugère’s idea is to give each polynomial during the computations
of the algorithm a so-called signature:

12 / 47



Signatures of polynomials
Faugère’s idea is to give each polynomial during the computations
of the algorithm a so-called signature:

1 Assuming a polynomial p its signature is defined to be
S(p) = (t, ℓ) where t is its monomial and ℓ ∈ N is its index.

2 A generating element fi of I gets the signature S(fi) = (1, i).

3 We have an ordering ≺ on the signatures:

(t1, ℓ1) ≻ (t2, ℓ2) ⇔ (a)ℓ1 > ℓ2 or

(b)ℓ1 = ℓ2 and t1 > t2

12 / 47



Signatures of polynomials
Faugère’s idea is to give each polynomial during the computations
of the algorithm a so-called signature:

1 Assuming a polynomial p its signature is defined to be
S(p) = (t, ℓ) where t is its monomial and ℓ ∈ N is its index.

2 A generating element fi of I gets the signature S(fi) = (1, i).

3 We have an ordering ≺ on the signatures:

(t1, ℓ1) ≻ (t2, ℓ2) ⇔ (a)ℓ1 > ℓ2 or

(b)ℓ1 = ℓ2 and t1 > t2

Example

Assume Q[x , y , z ] with degree reverse lexicographical ordering.
Then

1 (x2y , 3) ≻ (z3, 3),

2 (1, 5) ≻ (x12y234z3456, 4).

12 / 47



Signatures of polynomials

Remark
Note that there are other ways to define the ordering ≺ such that
it prefers the degree of the monomial and not the index [MTM92].
Recently Ars and Hashemi have implemented F5 with different
orderings [AH09].

13 / 47



Signatures of polynomials

Remark
Note that there are other ways to define the ordering ≺ such that
it prefers the degree of the monomial and not the index [MTM92].
Recently Ars and Hashemi have implemented F5 with different
orderings [AH09].

Using the signatures in the F5 Algorithm we also need to define
them for S-polynomials:

Spol(p, q) = hc(q)upp − hc(p)uqq where S (Spol(p, q)) = upS(p)

where we assume that upS(p) ≻ uqS(q).

13 / 47



Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

14 / 47



Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

It follows that Spol(g3, g1) = yg3 − z2g1 has

S (Spol(g3, g1)) = yS(g3) = (xy , 2).

14 / 47



Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

It follows that Spol(g3, g1) = yg3 − z2g1 has

S (Spol(g3, g1)) = yS(g3) = (xy , 2).

Note that S (Spol(g3, g1)) = (xy , 2) and hm(g1) = xy .

14 / 47



Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

It follows that Spol(g3, g1) = yg3 − z2g1 has

S (Spol(g3, g1)) = yS(g3) = (xy , 2).

Note that S (Spol(g3, g1)) = (xy , 2) and hm(g1) = xy .
⇒ In F5 we know that Spol(g3, g1) will reduce to zero!

14 / 47



How does this work?

Remember that F5 computes a Gröbner basis incrementally.

15 / 47



How does this work?

Theorem (F5 Criterion)

An S-polynomial Spol(p, q) = hc(q)upp − hc(p)uqq does not need

to be computed, let alone reduced, if S(p) = (m, ℓ) and there

exists an element g in Gℓ−1 such that

hm(g) | upt.

A similar statement holds for S(q).

Remember that F5 computes a Gröbner basis incrementally.

15 / 47



How does this work?

Theorem (F5 Criterion)

An S-polynomial Spol(p, q) = hc(q)upp − hc(p)uqq does not need

to be computed, let alone reduced, if S(p) = (m, ℓ) and there

exists an element g in Gℓ−1 such that

hm(g) | upt.

A similar statement holds for S(q).

Example

In our example g = g1 and upt = xy ⇒ hm(g1) = xy | xy .

Remember that F5 computes a Gröbner basis incrementally.

15 / 47



How does this work?

Theorem (Rewritten Criterion)

An S-polynomial Spol(p, q) = hc(q)upp − hc(p)uqq does not need

to be computed, let alone reduced, if S(p) = (t, ℓ) and there exists

an element g with S(g) = (v , ℓ) in G which was computed after p

and such that

v | upt.

A similar statement holds for S(q).

16 / 47



How does this work?

Theorem (Rewritten Criterion)

An S-polynomial Spol(p, q) = hc(q)upp − hc(p)uqq does not need

to be computed, let alone reduced, if S(p) = (t, ℓ) and there exists

an element g with S(g) = (v , ℓ) in G which was computed after p

and such that

v | upt.

A similar statement holds for S(q).

Remark
OK, and now forget about all this stuff.

Faugère’s criteria are based on the signatures.

16 / 47



Idea behind the signatures

The main idea is to have

• small data added to polynomials, and

• strong criteria detecting useless S-polynomials based on this
data.

17 / 47



Idea behind the signatures

The main idea is to have

• small data added to polynomials, and

• strong criteria detecting useless S-polynomials based on this
data.

Remark

signature ↔ monomial plus an integer

17 / 47



Implementation of signatures

Remark
Monomials are terms without coefficients.

monomial ↔ integer vector

18 / 47



Implementation of signatures

Remark
Monomials are terms without coefficients.

monomial ↔ integer vector

Example

Assume the ring Q[x , y , z ] in the 3 variables x , y , z .
xy3z2 ⇒ (1, 3, 2)
Note that the length of the integer vector equals the number of
variables of the ring.

18 / 47



Implementation of signatures

The data structure of a signature follows easily:

integer vector for the monomial of the signature
+

integer for the index of the signature

19 / 47



Implementation of signatures

The data structure of a signature follows easily:

integer vector for the monomial of the signature
+

integer for the index of the signature

Example

S(g) = (xy3z2, 7) ⇒ (1, 3, 2, 7).

19 / 47



Implementation of signatures

The data structure of a signature follows easily:

integer vector for the monomial of the signature
+

integer for the index of the signature

Example

S(g) = (xy3z2, 7) ⇒ (1, 3, 2, 7).

⇒ signature ↔ integer vector with length #var+1

19 / 47



Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

20 / 47



Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

Remark
We will see in the following example that we do not only need to be
careful if we are allowed to reduce an element, but also must
be able to generate new polynomials during reduction when
reducing with elements generated in the current iteration step.

20 / 47



Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

Remark
We will see in the following example that we do not only need to be
careful if we are allowed to reduce an element, but also must
be able to generate new polynomials during reduction when
reducing with elements generated in the current iteration step.

Example

Assume the polynomial p = xy2 − z3 with S(p) = (tp, ℓ) and a
possible reducer q = y2 − xz with S(q) = (tq, ℓ).

20 / 47



Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

Remark
We will see in the following example that we do not only need to be
careful if we are allowed to reduce an element, but also must
be able to generate new polynomials during reduction when
reducing with elements generated in the current iteration step.

Example

Assume the polynomial p = xy2 − z3 with S(p) = (tp, ℓ) and a
possible reducer q = y2 − xz with S(q) = (tq, ℓ).
In Buchberger-like implementations the top-reduction would take
place, i.e. we would compute p − xq.

20 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

21 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

2 If xq satisfies the Rewritten Criterion ⇒ no reduction!

21 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

2 If xq satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

21 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

2 If xq satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

4 None of the first two cases holds and xS(q) ≻ S(p) ⇒, which
leads to

21 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

2 If xq satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

4 None of the first two cases holds and xS(q) ≻ S(p) ⇒, which
leads to

(a) No reduction of p, but searching for another possible reducer
of it.

21 / 47



Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xq satisfies the F5 Criterion ⇒ no reduction!

2 If xq satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

4 None of the first two cases holds and xS(q) ≻ S(p) ⇒, which
leads to

(a) No reduction of p, but searching for another possible reducer
of it.

(b) a new S-polynomial r := xq − p whereas S(r) = xS(q).

21 / 47



Difficulty of top-reduction

Remark
Note the following important details:

• If we reduce with elements which signatures have lower
index than the current index, we do not check for any
criterion. Moreover due to the definition of ≺ we do not need
to compare the signatures.

• F5 only performs top-reductions, so no interreductions are
done.

• Due to the last case of the previous example it is possible that
the top-reduction procedure returns two polynomials, i.e. the
number of elements to be reduced increases!

22 / 47



Redundant polynomials

Example

Assuming the first two cases of the previous example and moreover
that there exists no other top-reducer of p we would end up with
both, p and q being in G whereas clearly hm(q) | hm(p).
Thus p is redundant for G .

23 / 47



Redundant polynomials

Example

Assuming the first two cases of the previous example and moreover
that there exists no other top-reducer of p we would end up with
both, p and q being in G whereas clearly hm(q) | hm(p).
Thus p is redundant for G .

But. . .
For the F5 Algorithm itself and the criteria based on the signatures
p could be necessary in this iteration step!
⇒ Disrespecting the way F5 top-reduces polynomials would harm
the correctness of F5 in this iteration step!

23 / 47



Points of inefficiency

The difficulty of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers, i.e. more checks for divisibility
and the criteria have to be done, and

2 with which we compute new S-polynomials, i.e. more (for the
resulting Gröbner basis redundant) data is generated.

24 / 47



Points of inefficiency

The difficulty of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers, i.e. more checks for divisibility
and the criteria have to be done, and

2 with which we compute new S-polynomials, i.e. more (for the
resulting Gröbner basis redundant) data is generated.

Question
How can these two points be avoided as far as possible?

24 / 47



The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5
F5R: F5 Algorithm Reducing by reduced Gröbner bases
F5C: F5 Algorithm Computing with reduced Gröbner bases

4 Further improvements in F5C

5 Comparison of the variants of F5

6 Symbolic preprocessing in F5

25 / 47



F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in
2005. His slight optimization of F5 using reduced Gröbner bases
for reduction is called F5R in the following:

26 / 47



F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in
2005. His slight optimization of F5 using reduced Gröbner bases
for reduction is called F5R in the following:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Gi is used to build the new pairs with fi+1,
(b) Bi is used to reduce polynomials.

26 / 47



F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in
2005. His slight optimization of F5 using reduced Gröbner bases
for reduction is called F5R in the following:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Gi is used to build the new pairs with fi+1,
(b) Bi is used to reduce polynomials.

⇒ Fewer reductions in F5R but still the same number of pairs
considered and polynomials generated as in F5.

26 / 47



Bi only for reduction?

Question
Why is Bi only used for reduction purposes, but not for new-pair
computations?

27 / 47



Bi only for reduction?

Question
Why is Bi only used for reduction purposes, but not for new-pair
computations?

Answer

Interreducing Gi to Bi ↔ reduction steps rejected by F5

27 / 47



Bi only for reduction?

Question
Why is Bi only used for reduction purposes, but not for new-pair
computations?

Answer

Interreducing Gi to Bi ↔ reduction steps rejected by F5

⇒ Reducing Gi to Bi renders the data saved in the signatures of
the polynomials useless!

27 / 47



F5C: Computations with reduced GB

In 2008 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.

28 / 47



F5C: Computations with reduced GB

In 2008 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:

28 / 47



F5C: Computations with reduced GB

In 2008 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Bi is used to build new pairs with fi+1,
(b) Bi is used to reduce polynomials.

28 / 47



F5C: Computations with reduced GB

In 2008 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Bi is used to build new pairs with fi+1,
(b) Bi is used to reduce polynomials.

⇒ Fewer reductions than F5 & F5R and fewer polynomials
generated and considered during the algorithm

28 / 47



How to use Bi for computations?

We have seen that if we interreduce Gi then the current
signatures are useless in the following.

29 / 47



How to use Bi for computations?

We have seen that if we interreduce Gi then the current
signatures are useless in the following.
⇒ If the current signatures are useless, then throw them away
and compute new useful ones!

29 / 47



How to use Bi for computations?

We have seen that if we interreduce Gi then the current
signatures are useless in the following.
⇒ If the current signatures are useless, then throw them away
and compute new useful ones!

Recomputation of signatures

29 / 47



How to use Bi for computations?

We have seen that if we interreduce Gi then the current
signatures are useless in the following.
⇒ If the current signatures are useless, then throw them away
and compute new useful ones!

Recomputation of signatures

1 Delete all signatures.

2 Interreduce Gi to Bi .

3 For each element gk ∈ Bi set S(gk) = (1, k).

4 For all elements gj , gk ∈ Bi recompute signatures for
Spol(gj , gk).

5 Start the next iteration step with fi+1 by computing all pairs
with elements from Bi .

29 / 47



Recomputation of signatures?

Why do we recompute the signatures of the S-polynomials in Bi?

1 Both criteria are based on signatures.

2 More signatures ⇒ possibly more rejections of useless
elements.

3 Also a zero polynomial should have a signature.

30 / 47



Recomputation of signatures?

Why do we recompute the signatures of the S-polynomials in Bi?

1 Both criteria are based on signatures.

2 More signatures ⇒ possibly more rejections of useless
elements.

3 Also a zero polynomial should have a signature.

Question
Do we really need them?

30 / 47



Recomputation of signatures?

Why do we recompute the signatures of the S-polynomials in Bi?

1 Both criteria are based on signatures.

2 More signatures ⇒ possibly more rejections of useless
elements.

3 Also a zero polynomial should have a signature.

Question
Do we really need them?

Answer
Not in F5C :)

30 / 47



The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5

4 Further improvements in F5C
Simplified signatures
Avoiding recomputations of signatures
Fewer criteria checks
Implementation of signature revisited

5 Comparison of the variants of F5

6 Symbolic preprocessing in F5
31 / 47



Simplified signatures

The implementation of F5C has some nice improvements for the
usage of the criteria.
These are based on the following fact:

Each element gk in Bi has the signature (1, k).

32 / 47



Simplified signatures

The implementation of F5C has some nice improvements for the
usage of the criteria.
These are based on the following fact:

Each element gk in Bi has the signature (1, k).

When generating Spol(gj , gk) during the computations of Gi+1 we
get

Spol(gj , gk) = hc(gk)ujgj − hc(gj )ukgk .

32 / 47



Simplified signatures

The implementation of F5C has some nice improvements for the
usage of the criteria.
These are based on the following fact:

Each element gk in Bi has the signature (1, k).

When generating Spol(gj , gk) during the computations of Gi+1 we
get

Spol(gj , gk) = hc(gk)ujgj − hc(gj )ukgk .

Closer look at the signatures:

ukS(gk) = uk(1, k) = (uk , k).

32 / 47



Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in Bi is the
only part of F5C which seems to be annoying.

33 / 47



Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in Bi is the
only part of F5C which seems to be annoying.

Further improvement

In 2009 Perry & Eder have shown that:

Theorem
In F5C there is no need to recompute the signatures of the

S-polynomials of elements of the previous iteration step.

33 / 47



Re-doing stuff is never nice

Thus we have to do the following after each iteration of F5:

1 Delete all signatures.

2 Interreduce Gi to Bi .

3 For each gk ∈ Bi set S(gk) = (1, k).

4 Start the next iteration step with fi+1.

34 / 47



Re-doing stuff is never nice

Thus we have to do the following after each iteration of F5:

1 Delete all signatures.

2 Interreduce Gi to Bi .

3 For each gk ∈ Bi set S(gk) = (1, k).

4 Start the next iteration step with fi+1.

Remark
Note that this also leads to fewer criteria checks.

34 / 47



Differences using F5 Criterion

Faugère: F5 Criterion only for polynomials computed in
current iteration step

Stegers: F5 Criterion for all polynomials, also those computed
in the previous iteration steps

35 / 47



Differences using F5 Criterion

Faugère: F5 Criterion only for polynomials computed in
current iteration step

Stegers: F5 Criterion for all polynomials, also those computed
in the previous iteration steps

Clearly Faugère’s attempt performs fewer checks than Stegers’.
But possibly Stegers’ attempt rejects more elements.

35 / 47



Differences using F5 Criterion

Faugère: F5 Criterion only for polynomials computed in
current iteration step

Stegers: F5 Criterion for all polynomials, also those computed
in the previous iteration steps

Clearly Faugère’s attempt performs fewer checks than Stegers’.
But possibly Stegers’ attempt rejects more elements.

Using F5C we have the following wonderful position:

Faugère’s way ⇒ Stegers’ way

35 / 47



Which elements are even checked now?

1 Polynomials computed in the current iteration step are
checked by both criteria.

2 Polynomials computed in previous iteration steps are not
checked at all.

36 / 47



Which elements are even checked now?

1 Polynomials computed in the current iteration step are
checked by both criteria.

2 Polynomials computed in previous iteration steps are not
checked at all.

Benefits

1 No need to distinguish the signatures by their index anymore.

2 Less criteria checks.

3 Signatures are just monomials added to polynomials in the
current iteration step.

36 / 47



Which elements are even checked now?

1 Polynomials computed in the current iteration step are
checked by both criteria.

2 Polynomials computed in previous iteration steps are not
checked at all.

Benefits

1 No need to distinguish the signatures by their index anymore.

2 Less criteria checks.

3 Signatures are just monomials added to polynomials in the
current iteration step.

⇒ signature ↔ integer vector with length #var

36 / 47



The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5

4 Further improvements in F5C

5 Comparison of the variants of F5
Implementations
Comparison of the variants
Comparison of F5, F5R & F5C

6 Symbolic preprocessing in F5

37 / 47



Implementations

Three free available implementations:

1 F5, F5R & F5C as a Singular library (Perry & Eder)

2 F5, F5R & F5C implemented in Python for Sage (Perry &
Albrecht): F4-ish reduction possible.

3 F5, F5R & F5C implementation in the Singular kernel:
under development

38 / 47



Preliminaries

We are comparing the three variants of F5 in the way that we use
the same implementation of the core algorithm for all variants.

39 / 47



Preliminaries

We are comparing the three variants of F5 in the way that we use
the same implementation of the core algorithm for all variants.

Moreover we do not only compare

1 timings, but also

2 the number of reductions, and

3 the number of polynomials generated.

39 / 47



Timings

Instead of the timings themselves we present the ratios of the
timings comparing the three variants.

40 / 47



Timings

Instead of the timings themselves we present the ratios of the
timings comparing the three variants.

system F5R / F5 F5C / F5R F5C / F5

Katsura 7 1.13 0.94 1.06

Katsura 8 1.09 0.75 0.83

Katsura 9 1.14 0.54 0.62

Schrans-Troost 1.01 0.70 0.71

Cyclic 6 0.60 1.00 0.60

Cyclic 7 0.80 0.61 0.49

Cyclic 8 0.93 0.66 0.62
Singular 3.1.0, kernel implementation; Linux-gentoo-r8 2009 x86 64, Intel Xeon @ 3.16 GHz, 64 GB RAM

40 / 47



Number of reductions

system # red in F5 # red in F5R # red in F5C

Katsura 4 774 289 222

Katsura 5 14,597 5,355 3,985

Katsura 6 1,029,614 77,756 58,082

Cyclic 5 512 506 446

Cyclic 6 41,333 23,780 14,167
Sage 3.2.1, Python implementation; Ubuntu Linux 8.10, Intel Core 2 Quad @ 2.66 GHz, 3 GB RAM

41 / 47



Number of polynomials generated

In the following we present internal data from the computation of
Katsura 9.

42 / 47



Number of polynomials generated

In the following we present internal data from the computation of
Katsura 9.

i # Gi in F5 # Gi in F5C max #P in F5 max #P in F5C

2 2 2 none none

3 4 4 1 1

4 8 8 2 2

5 16 15 4 4

6 32 29 8 6

7 60 51 17 12

8 132 109 29 29

9 524 472 89 71

10 1,165 778 276 89
Sage 3.2.1, Python implementation; Ubuntu Linux 8.10, Intel Core 2 Quad @ 2.66 GHz, 3 GB RAM

Skip

42 / 47



The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5

4 Further improvements in F5C

5 Comparison of the variants of F5

6 Symbolic preprocessing in F5
F5’s reduction revisited

43 / 47



F5’s reduction revisited
F5’s reduction with current iteration polynomials:

1 Only top-reductions

2 Some top-reductions rejected

3 Possibly new polynomials generated

44 / 47



F5’s reduction revisited
F5’s reduction with current iteration polynomials:

1 Only top-reductions

2 Some top-reductions rejected

3 Possibly new polynomials generated

Remark
The 2nd and 3rd property of reduction cannot be changed due to
the signatures. But the 1st property can be changed!

44 / 47



F5’s reduction revisited
F5’s reduction with current iteration polynomials:

1 Only top-reductions

2 Some top-reductions rejected

3 Possibly new polynomials generated

Remark
The 2nd and 3rd property of reduction cannot be changed due to
the signatures. But the 1st property can be changed!

reduce polynomials “F5-completely” ⇒ sparser polynomials
sparser polynomials ⇒ faster reduction in higher degree

44 / 47



F5’s reduction revisited
F5’s reduction with current iteration polynomials:

1 Only top-reductions

2 Some top-reductions rejected

3 Possibly new polynomials generated

Remark
The 2nd and 3rd property of reduction cannot be changed due to
the signatures. But the 1st property can be changed!

reduce polynomials “F5-completely” ⇒ sparser polynomials
sparser polynomials ⇒ faster reduction in higher degree

Question
What is an F5-complete reduction?

44 / 47



F5-complete reduction

Let’s try some F4-ish symbolic preprocessing.
Assume the element p to be reduced in F5:

1 Set M := {monomials of p}, G := ∅, B := ∅.

2 Choose the greatest monomial m w.r.t. < from M and set
M = M\ {m}.

3 Check for reducers of m.

45 / 47



F5-complete reduction

Let’s try some F4-ish symbolic preprocessing.
Assume the element p to be reduced in F5:

1 Set M := {monomials of p}, G := ∅, B := ∅.

2 Choose the greatest monomial m w.r.t. < from M and set
M = M\ {m}.

3 Check for reducers of m.

4 Reducer q ⇒ Generate pair (u, q) where uhm(q) = m.

45 / 47



F5-complete reduction

Let’s try some F4-ish symbolic preprocessing.
Assume the element p to be reduced in F5:

1 Set M := {monomials of p}, G := ∅, B := ∅.

2 Choose the greatest monomial m w.r.t. < from M and set
M = M\ {m}.

3 Check for reducers of m.

4 Reducer q ⇒ Generate pair (u, q) where uhm(q) = m.

(a) If uS(q) ≻ S(p) ⇒ B = B ∪ {q}.
(b) If uS(q) ≺ S(p) ⇒ G = G ∪ {(u, q)},

M = M∪ {monomials of u (q − hm(q))}.

45 / 47



F5-complete reduction

Let’s try some F4-ish symbolic preprocessing.
Assume the element p to be reduced in F5:

1 Set M := {monomials of p}, G := ∅, B := ∅.

2 Choose the greatest monomial m w.r.t. < from M and set
M = M\ {m}.

3 Check for reducers of m.

4 Reducer q ⇒ Generate pair (u, q) where uhm(q) = m.

(a) If uS(q) ≻ S(p) ⇒ B = B ∪ {q}.
(b) If uS(q) ≺ S(p) ⇒ G = G ∪ {(u, q)},

M = M∪ {monomials of u (q − hm(q))}.

5 When M = ∅
(a) Reduce p with all generated polynomials uq of G.
(b) Check again if hm(q) | hm(p) for any q ∈ B.

If so: New S-polynomial r = vq − p with S(r) = vS(q) where
vhm(q) = hm(p).

45 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

46 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

2 Note also that when computing vq in the last step of the
reduction it is clear that vS(q) ≻ S(p).

46 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

2 Note also that when computing vq in the last step of the
reduction it is clear that vS(q) ≻ S(p).

3 Assume a given reduction procedure R reducing one element
w.r.t to an ideal. Then it is highly problematic to implement
the stated reduction:

46 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

2 Note also that when computing vq in the last step of the
reduction it is clear that vS(q) ≻ S(p).

3 Assume a given reduction procedure R reducing one element
w.r.t to an ideal. Then it is highly problematic to implement
the stated reduction:

(a) The ideal I must be homogeneous.

46 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

2 Note also that when computing vq in the last step of the
reduction it is clear that vS(q) ≻ S(p).

3 Assume a given reduction procedure R reducing one element
w.r.t to an ideal. Then it is highly problematic to implement
the stated reduction:

(a) The ideal I must be homogeneous.
(b) The multiple uq must be computed and given to R.

46 / 47



Some last remarks

1 Note that the elements in G are the non-signature corrupting
reducers.

2 Note also that when computing vq in the last step of the
reduction it is clear that vS(q) ≻ S(p).

3 Assume a given reduction procedure R reducing one element
w.r.t to an ideal. Then it is highly problematic to implement
the stated reduction:

(a) The ideal I must be homogeneous.
(b) The multiple uq must be computed and given to R.

Remark
Without these constraints signature corrupting reductions can
happen: An element q ∈ G can be a “good” reducer and a “bad”
reducer at the same time.

46 / 47



References

G. Ars and A. Hashemi.

Extended F5 Criteria

B. Buchberger.

Ein Algorithmus zum Auffinden der Basiselement des Restklassenrings nach einem nulldimensionalen
Polynomideal

J.-C. Faugère.

A new efficient algorithm for computing Gröbner bases without reduction to zero F5

R. Gebauer and H.M. Möller.

On an Installation of Buchberger’s Algorithm

G.-M. Greuel, G. Pfister and H. Schönemann.

Singular 3-1-0. A computer algebra system for polynomial computations, TU Kaiserslautern, 2009,
http://www.singular.uni-kl.de.

H. M. Möller, T. Mora and C. Traverso.

Gröbner bases computation using syzygies

W.A. Stein et al.

Sage Mathematics Software (Version3.2.1), The Sage Development Team, 2008,
http://www.sagemath.org.

T. Stegers.

Faugère’s F5 Algorithm Revisited

47 / 47


	What is this talk about?
	Introducing Gröbner bases
	Gröbner basics
	Computation of Gröbner bases
	Problem of zero reduction

	The F5 Algorithm
	F5 basics
	Implementation of signatures
	The inefficiency of F5

	Optimizations of F5
	F5R: F5 Algorithm Reducing by reduced Gröbner bases
	F5C: F5 Algorithm Computing with reduced Gröbner bases

	Further improvements in F5C
	Simplified signatures
	Avoiding recomputations of signatures
	Fewer criteria checks
	Implementation of signature revisited

	Comparison of the variants of F5
	Implementations
	Comparison of the variants
	Comparison of F5, F5R & F5C

	Symbolic preprocessing in F5
	F5's reduction revisited


