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Experimentation in Mathematics (1)

In any science, experimentation plays a major role, and mathematics
(which certain people consider, in my opinion wrongly, not to be a
science) is no exception. It is however true that certain branches of
mathematics are more prone to experimentation than others. Putting
aside applied mathematics, number theory is probably the
mathematical field in which the experimental approach is most
important.
Indeed, so-called “natural” sciences (physics, chemistry, biology,
etc...) justly consider mathematics as a tool (even though certain
parts of theoretical physics are essentially mathematics). Number
theory can in fact also be considered as a “natural” science since its
fundamental objects of study are natural numbers. And indeed, it
uses almost completely the arsenal of the rest of mathematics as a
tool.
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Experimentation in Mathematics (2)

Experimentation in mathematics is evidently quite similar to that of
any other science, and can be summarized in the following way.
As a first step (which is not usually voluntary, but comes often by
accident), we start from an experimental observation, if possible
surprising, new, or curious, obtained for instance after a simple
computation. This is the first step of experimental research in
science: the most important and exciting moment for a scientist is not
“Eureka!, I found the solution”, but rather “Hum, something peculiar is
happening”.
As a second step, one tries to find other examples of the observation,
and if possible, thanks to the accumulated experience, obtain a
plausible conjecture, or at least the beginning of a theory which
explains the observations.
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Experimentation in Mathematics (3)

As a third step, one tries to find still more examples or
generalizations, to convince oneself and others that the theory is
valid. Often, at this stage it is necessary to modify slightly the theory
to be compatible with the new observations. Of course, we may also
find that the conjecture is simply false and must be scrapped.
As a fourth and last step, which is unique to mathematics (and
closely related subjects such as combinatorics, computer science,
certain parts of theoretical physics, etc...), one tries finally to prove
the conjecture. This is certainly the most important step, but it is often
the most boring (although of course some proofs are even more
beautiful than the experiments which led to them).
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Tools: Software

To experiment in mathematics, one needs appropriate software.
Although one can use commercial tools such as Maple or
Mathematica, the vast majority of experiments done in number
theory are done using either the non-free university package Magma,
or the free package Sage, or other free packages such as Gap and
Pari/GP which are in fact included in Sage, and evidently I strongly
recommend the use of these free packages.
In all of these software packages, it is necessary to have at one’s
disposal a number of efficient algorithms. The necessary basic
algorithms are multiprecision algorithms, for integers and for real
numbers (which are two rather different types of objects), as well as
algorithms for handling standard objects such as polynomials (sparse
and non-sparse), power series, vectors, matrices, and so on.
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Tools: Convergence Acceleration (1)

In addition, there exist a number of algorithms which I like to call
magical, for the most part invented after 1980, which are remarkably
powerful and useful, and which have the additional advantage of
being simple to program. I will mention three of them, among my
favorites.
(1). Algorithms for convergence acceleration of series: very
frequently, even though a series S =

∑
n≥0 un converges, its

convergence is very slow (typical example
∑

n≥1 1/n2). There are
several methods for accelerating the convergence of such series, and
therefore to compute S to hundreds of decimals if we so desire. We
will see below why on earth it is necessary to compute so many
decimals (apart from the fun of it). One such method, probably the
oldest but still extremely useful, is the Euler–Mac Laurin summation
formula, discovered a few years after Taylor’s formula.
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Tools: Convergence Acceleration (2)

A much more recent method to accelerate convergence uses
Chebychev polynomials for accelerating alternating series∑

n≥0(−1)nun with un ≥ 0: it only needs 2 or 3 programming lines in
a high level language! It is based on the following idea: one writes un

as the nth moment of some function w(t): un =
∫ 1

0 tnw(t) dt , and then

S =
∑
n≥0

(−1)nun =

∫ 1

0

w(t)
1 + t

dt .

It follows that if P(t) is any polynomial, we have

S =
1

P(−1)

∫ 1

0
w(t)

P(−1)− P(t)
1 + t

dt +
1

P(−1)

∫ 1

0
w(t)

P(t)
1 + t

dt .
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Tools: Convergence Acceleration (3)

However (P(−1)− P(t))/(1 + t) is still a polynomial, so if we write

1
P(−1)

P(−1)− P(t)
1 + t

=
N−1∑
n=0

cntn

(where N is the degree of P), we have

S =
N−1∑
n=0

cnan + R, where R =
1

P(−1)

∫ 1

0
w(t)

P(t)
1 + t

dt ,

so that, assuming that w(t) ≥ 0 on [0,1], we have

|R| ≤
maxt∈[0,1](|P(t)|)

|P(−1)|
S .
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Tools: Convergence Acceleration (4)

Up to a constant factor, the degree N polynomial which minimizes
this expression is the polynomial TN(1− 2t), where TN is the
Chebychev polynomial defined by TN(cos(x)) = cos(Nx).
Assume for instance that we only want to use (or that we only know)
the values of an for n ≤ N, which should produce an error of the order
of 6−N . We use the following algorithm, which is indeed a three-line
algorithm:

Set d ← (3 +
√

8)N , d ← (d + 1/d)/2, b ← −1, c ← −d , and s ← 0.
Then for k = 0 until k = N − 1, repeat the following:

c ← b− c, s ← s + c · ak , b ← (k + N)(k −N)b/((k + 1/2)(k + 1)).
The result is s/d .
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Tools: Numerical Integration (1)

(2). Second example: algorithms for numerical computation of
definite integrals

∫ b
a f (t) dt . There exist very old methods for doing

that (Trapezoid, Simpson’s, Gauss’s), or more recent (Richardson’s),
but it is only in the 1970’s that a group of Japanese scientists (Mori,
Takahashi) found a really revolutionary method, infinitely more
efficient than all others: the doubly exponential method (it applies to a
much more restricted class than previous methods, but that class
includes all functions that you or me would like to integrate). It
permits the computation of integrals to thousands of decimal digits if
desired (once again see below for the reason), which is absolutely
impossible with previous methods; it can just as easily be applied to
improper integrals, such as functions with integrable algebraic
singularities at endpoints, or integrals where a and/or b is infinite. It
can even be extended to deal with indefinite integrals and multiple
integrals, and of course easily to contour integrals. Once more, it is
very easy to program in a few lines.
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Tools: Numerical Integration (2)

The basic idea is very simple: assume that we want to compute
S =

∫ 1
−1 f (x) dx (an affine change of variable transforms any integral

on a compact interval to such an integral). We then do the magical
change of variable x = φ(t), with

φ(t) = tanh(sinh(t)), where S =

∫ ∞
−∞

f (φ(t))φ′(t) dt .

The function F (t) = f (φ(t))φ′(t) tends to 0 extremely fast (as 2/eet
,

hence doubly exponentially), and to compute its integral from −∞ to
+∞, we simply use the Riemann sum formula S ≈ h

∑N
n=−N F (nh),

with h and N suitably chosen. Analysis of the method and experiment
shows that for instance h = 1/128 and N = 332 are sufficient to
obtain 100 decimal digits!!!).
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Tools: Numerical Integration (3)

For improper integrals, we must simply change the magical function.
For instance:

– For
∫∞

0 f (x) dx , where f (x) does not tend to 0 exponentially fast
when x →∞, we choose x = φ(t) = esinh(t).

– For
∫∞

0 f (x) dx , where f (x) tends to 0 exponentially fast when
x →∞, as e−g(x) say, where g is increasing and tends to infinity with
x (for instance g(x) = x), we choose x = φ(t) = g−1(et−e−t

).

– For
∫∞

0 f (x) dx , where f (x) is oscillatory (for instance
f (x) = sin(x)/x), we must adapt the function φ. For instance, if
f (x) = g(x) sin(x) with g(x) not oscillatory, we can choose
x = φ(t) = (π/h)t/

(
1− e− sinh(t)). Note that this depends on h.
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Tools: Numerical Integration (4)

Three remarks: (a). The relative ignorance of this method by
specialists in numerical analysis comes in particular from the fact that
it is mainly useful for the computation of integrals to tens of decimals,
which is often useless in numerical analysis, but certainly not in
number theory.
(b). Considering its importance and its simplicity, it should be taught
in the first years of university, at least in parallel with the other
methods. I am willing to admit that there is a pedagogical problem: it
is not easy to justify its validity rigorously. Note also that one can
show that doubly exponential is optimal: it would be of no use for
instance to use triply exponential methods.
(c). The method works when the function to integrate is the restriction
to the real line of a complex analytic function whose poles are away
from the line. However the function may also have reasonable
(algebraic) singularities.
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Tools: Numerical Integration (5)

One version of the algorithm on [−1,1] is the following: given a C∞

function on [−1,1], with an error ε, and a small integer r ≥ 2, we are
going to compute

∫ 1
−1 f (x) dx with an error less than to ε.

– Initialize: h← 1/2r , e1 ← eh, e2 ← 1, and i ← 0.
– Precomputations, to be done once and for all: c ← e2 + 1/e2,
s ← e2 − c, e3 ← 2/

(
e2s + 1

)
, x [i] = 1− e3, w [i]← ce3(1 + x [i]),

e2 ← e1e2. If e3 > ε, set i ← i + 1 and start again the
precomputations. Otherwise, set w [0]← w [0]/2, n← i , S ← 0, and
p ← 2r (note: we will always have n ≤ 20 · 2r ).
– L: Set p ← p/2 and i ← 0.
– While i ≤ n do the following: if (2p) - i or if p = 2r−1 set
S = S + w [i](f (−x [i]) + f (x [i])). Then set i ← i + p.
– If p ≥ 2, go back to L, otherwise the result is pS/2r .
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Tools: The LLL Algorithm (1)

(3). One last magical algorithm that I would like to mention is the LLL
algorithm, the acronym coming from the name of its discoverers Arjen
Lenstra, Hendrik Lenstra, and Laszlo Lovasz. It is considered as one
of the most important algorithms invented in the second half of the
twentieth century. I will not explain it here, although it is not difficult
and quite easy to implement.

This algorithm has numerous applications, also well outside the field
of mathematics, but in the examples I will give, the main application is
to find linear or algebraic relations between real or complex numbers.
I give two examples.
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Tools: The LLL Algorithm (2)

(a). Thanks to doubly exponential numerical integration or to series
summation, it is easy to compute that

J =

∫ α

0

log(1− t)
t

dt = −0.755395619531741469386520028 · · · ,

with α = (
√

5− 1)/2, the inverse of the golden ratio. Now since I have
a good intuition, I believe that J should be a linear combination with
rational coefficients of π2 and of log2(α). Thanks to LLL, in 10−4

seconds we find that, at least to 28 decimal digits, we indeed seem to
have:

J = log2(α)− π2

10
.

I emphasize that this relation has been found without searching
naively for the coefficients: I repeat, it is magical.
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Tools (7): The LLL Algorithm (3)

(b). The computation of the value of a certain transcendental function
that we will meet later gives

F = −191657.8328625472074713534448 · · ·

I believe that F should be the root of a second degree equation with
integer coefficients.
I give this to LLL, which again in less than 10−4 seconds tells me
that, at least to 28 decimals digits of accuracy, F is indeed the root of
the second degree polynomial

x2 + 191025x − 121287375 .

Once again, this has been found without doing a systematic search.
There remains to prove the above two assertions, but that is another
story.
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Two Historical Examples (1)

I am now going to give a series of examples coming from number
theory and also from analysis (restricted to the computation of series
and integrals) to illustrate what I have said up to now. Cheating
slightly with historical facts, one of the first numerical conjectures in
analysis has been the famous formula

∞∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 +

1
42 + · · · =

π2

6
.

Let us stop for a moment to look at this formula from an experimental
point of view.
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Two Historical Examples (2)

First of all, it is absolutely necessary to compute numerically the
series on the left hand side, which converges very slowly: if we
compute as written a thousand terms (think of the poor
mathematicians of the 18th century!), we only obtain 3 correct
decimals. Luckily, geniuses such as Euler, Bernoulli, and others
already knew methods for accelerating convergence. In fact, the
Euler–Mac Laurin summation formula was invented essentially for
this precise purpose, and it is only after the invention of this
summation formula that any conjecture could be made on the value
of the sum.
After the computation of the sum 1.644934066848 · · · , it is of course
necessary to guess that it is equal to π2/6, which is not too difficult
when one has some experience and/or one is a genius like Euler (it is
much more difficult in the second example). There remains to prove
the conjecture, and this harder. One way is to continue the
experimental work: one finds that numerically one seems to have∑

n≥1 1/n4 = π4/90,
∑

n≥1 1/n6 = π6/945, etc...
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Two Historical Examples (3)

The proof of these formulas is more difficult: although historically it
did not happen in this way, it is in fact not too difficult to show that if
we set P =

√
6
∑

n≥1 1/n2 (which should therefore be equal to π),

then by definition
∑

n≥1 1/n2 = P2/6, but also
∑

n≥1 1/n4 = P4/90,∑
n≥1 1/n6 = P6/945, etc... The difficulty is in showing that P = π.

This is a well-known undergraduate exercise: one can either first
prove the elementary trigonometric identity∑

1≤k≤n−1

cotan2(kπ/2n) =
(n − 1)(2n − 1)

3
,

from which the result follows by using the elementary estimate
cotan2(x) < 1/x2 < 1 + cotan2(x) for |x | < π/2, or more naturally by
the theory of Fourier series.
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Two Historical Examples (4)

As a second example, I would like to mention the discovery by Gauss
of the link between the arithmetic-geometric mean (AGM) and the
lemniscatic integral (generalized later to all elliptic integrals), which
illustrates the incredible intuition of Gauss.
The AGM agm(a,b) of two positive real numbers a et b is defined as
the common limit of the two sequences defined by a0 = a, b0 = b,
and an+1 = (an + bn)/2, bn+1 =

√
anbn. It is very easy to show that

the two sequences converge to the same limit, and very rapidly. At
the age of 18, Gauss “observes” experimentally that to more than 10
decimal digits we have

1
agm(1,

√
2)

=
2
π

∫ 1

0

dt√
1− t4

.
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As a second example, I would like to mention the discovery by Gauss
of the link between the arithmetic-geometric mean (AGM) and the
lemniscatic integral (generalized later to all elliptic integrals), which
illustrates the incredible intuition of Gauss.
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Two Historical Examples (5)

As mentioned, the numerical computation of the AGM on the left is
extremely fast. The integral on the right is known as the lemniscatic
integral, and its value was given in the books on integrals at Gauss’s
disposal. What is really amazing is that he had the intuition to
compute specifically the AGM of 1 and of

√
2, then to compute its

inverse, and finally to multiply the integral by 2/π (and also he had no
a priori reason to think that there was any link between the left hand
side and the integral).
As Gauss himself said, this discovery (which he indeed proved not
long after, it is not difficult once you get a hint) will open an entirely
new field of mathematics, and indeed it was the beginning of the vast
theory of elliptic functions developed in the 19th century by Gauss,
Weierstrass, Jacobi, and others.
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Numerology or not (1) ?

Any computer algebra system will tell you that

eπ
√

163 = 262537412640768743.99999999999925007259 · · ·

Is this a numerical coincidence ? Even though you have probably
seen this example before, I want to convince you in two different ways
that it is not a coincidence.
First of all, we can try to replace 163 by other integers, or even by
other rational numbers. Indeed, we find for instance that

eπ
√

67 = 147197952743.9999986624542 · · ·

eπ
√

43 = 884736743.99977746603490 · · ·

Less spectacular of course, but not too bad.
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Numerology or not (2) ?

We can make the above examples much more striking by noticing
that the numbers all end with 743.999 · · · . In addition, if we compute
the cube root after subtracting 744, it remains extremely close to an
integer!!! Thus:

(eπ
√

163 − 744)1/3 = 640319.99999999999999999999999939031 · · ·

(eπ
√

67 − 744)1/3 = 5279.9999999999999840073 · · ·

(eπ
√

43 − 744)1/3 = 959.999999999919511 · · ·

We are now morally certain that something is going on (remember my
citation at the beginning: “Hum, something peculiar is happening” ?)
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Numerology or not (3) ?

Convinced that we are now confronted with an interesting
phenomenon, the second step consists in trying to understand the
phenomenon more closely, by finding more precise identities or
analogous examples.
In the present case, let us continue experimenting with the same
data. We are going to set q = e−π

√
163 = 3.8089 · · · 10−18, and try to

go further in the approximation. We have seen that 1/q = eπ
√

163 is
very close to the integer N = 262537412640768744. More precisely,
we compute that N − 1/q = 7.499274 · · · 10−13. Until now, nothing
new.
However q also is very small! With a sudden inspiration, we divide
the error N − 1/q by q, and we find:

(N − 1/q)/q = 196883.999999999918130 · · ·

Curiouser and curiouser!. It follows that N is very close to
1/q + 196884q.
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Numerology or not (4) ?

There is of course no reason to stop there. In the same way, we
compute that the new error divided by q2 is:

(N − (1/q + 196884q))/q2 = −21493759.999999996707 · · · ,

again very close to an integer, so N is very close to
1/q + 196884q − 21493760q2.
Continuing in this way, we find that apparently N = S(q) with

S(q) =
1
q

+ 196884q − 21493760q2 + 864299970q3

− 20245856256q4 + 333202640600q5

− 4252023300096q6 + 44656994071935q7

− 401490886656000q8 + 3176440229784420q9 + · · ·
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Numerology or not (5) ?

This is absolutely remarkable. However there still remains one thing
to check before stopping this specific experimentation: is the series in
q that we just obtained linked in some way to the number 163, or is it
universal ?
Thus, to check this, let us replace 163 by 67. We can either do the
same thing to check whether the coefficients are the same (this is
indeed the case), or directly set q = e−π

√
67 in the above series, and

see whether we get an integer. Recall that
eπ
√

67 = 147197952743.99999866 · · · , which is not too bad but not
so amazing.
Indeed, we find that

S
(

e−π
√

67
)

= 147197952744 + 4.72 · · · 10−96

S
(

e−π
√

43
)

= 8847836744 + 7.67 · · · 10−74 ,

so clearly this series is universal.
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Numerology or not (6) ?

Is this really always true ? In fact, I cheated and forgot on purpose to
mention that it also works for 58: we have

eπ
√

58 = 24591257751.99999982221 · · ·

Here, we check that the series S(q) does not work. Exactly in the
same way, we find instead that the series which does work for 58 is
the series

T (q) = 1/q + 4372q + 96256q2 + 1240002q3

+ 10698752q4 + 74428120q5 + 431529984q6 + · · ·

If we write a small program, one checks that S(e−π
√

D) is Very Close
to an Integer (much closer than eπ

√
D itself), which we abbreviate to

VCI for D = 3,7,11,19,27,43,67,163, that S(−e−π
√

D) is VCI for
D = 4,8,12,16,28,
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Numerology or not (7) ?

that T (e−π
√

D) is VCI for D = 4,6,10,18,22,58, and that T (−e−π
√

D)
is VCI for D = 5,7,9,13,25,37.
The experimental part is far from being finished: if we set

U(q) = 1/q + 79q − 352q2 + 1431q3 − 4160q4

+ 13015q5 − 31968q6 + 81162q7 + · · · ,

then U(e−π
√

D) is VCI for D = 5/3,7/3,11/3,19/3,31/3,59/3,
U(−e−π

√
D) is VCI for D = 2,4/3,10/3,14/3,26/3,34/3, and if

V (q) = 1/q + 783q − 8672q2 + 65367q3 − 371520q4 + · · · ,

then V (e−π
√

D) is VCI for D = 17/3,25/3,41/3,49/3,89/3, and
V (−e−π

√
D) is VCI for D = 16/3,20/3.

For an example with larger denominators, if

W (q) = 1/q + 9q2 − 6q3 + 4q4 + 46q5 + 79q6 + · · · ,

then W (e−π
√

D) is VCI for D = 82/19.
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Numerology or not (8) ?

Although there still remains experiments to be done on this subject, I
will stop here. Of course we must now understand what these series
S(q), T (q), etc... are, and what are these rational numbers
D = 3,7,11,19,27,43,67,163, etc...
The series S(q),... are called modular functions, and more precisely
in our case they are called Hauptmoduln: for instance, if we set

η(q) = q1/24
∏
n≥1

(1− qn) and E4(q) = 1 + 240
∑
n≥1

n3 qn

1− qn

(of course you do not need to have any knowledge of modular forms
to understand these definitions, but you do need this knowledge to
understand where they originate from), we have

S(q)−744 =
E4(−q)3

η(−q)24 and T (q)−24 =

(
η(q)

η(q2)

)24

+4096
(
η(q2)

η(q)

)24

.
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Numerology or not (9) ?

The phenomenon that we have observed (the fact that the values of
the modular functions are integral (more precisely VCI) for certain
values of D) is at the heart of the theory of complex multiplication. In
fact, we can observe a phenomenon which is closely connected to
this: For the values of D given above which are not divisible by 3
(D = 7,11,19,43,67,163), the polynomial x2 + x + (D + 1)/4 takes
only prime values for 0 ≤ x < (D − 3)/4, the most spectacular being
Euler’s polynomial x2 + x + 41 which gives prime numbers for all x
such that 0 ≤ x < 40.
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Other non numerological phenomena (1)

It is of course easy to give many examples of apparent numerological
facts which come in fact from very serious mathematical theories. I
give two such examples. First, recall that

4
∞∑

n=1

(−1)n−1

2n − 1
= 4

(
1− 1

3
+

1
5
− 1

7
+ · · ·

)
= π .

The convergence of this series is slow (in fact the same speed as∑
1/n2): for instance one needs 1 million terms to have 6 decimals.

It is in fact easy to modify the Chebychev-based acceleration method
explained above to compute this series, but it is not my purpose here.
Instead, let us compute the sum S of the first 500000 terms. We find
that S = 3.1415906 · · · , while π = 3.1415926 · · · , whence an error of
2 · 10−6, which is exactly what is expected.
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Other non numerological phenomena (2)

Nothing surprising up to now. Nonetheless, without computing any
more terms, let us compute S to more decimals. We find that

S = 3.141590653589793240, while
π = 3.141592653589793238 .

Thus, even though the 6th decimal is wrong, the next 9 are correct!
And this goes on! We have

S = 3.1415906535897932404626433832695028841972913993751030509749
π = 3.1415926535897932384626433832795028841971693993751058209749

and we can continue this game a long time. This phenomenon is a
simple consequence of the Euler–Mac Laurin summation formula that
we already mentioned.
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Other non numerological phenomena (3)

For another example, I give the following very pretty false identity:

∞∑
n=1

e−(n/10)2
= 5
√
π − 1

2
.

If we want to check this on a computer, we indeed find that both sides
are equal to 8.3622692545275 · · · , even if we do the computation to
100 decimals. Nonetheless, the identity is false, but it is necessary to
work to more than 430 decimals to notice it, since the difference
between the right and left hand side is of the order of 10−427. Once
again, this type of numerology has a mathematical explanation: here
it is the functional equation of the theta function.
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A Difficult Integral (1)

During the CNTA meeting in Montreal in 2002, H. Muzzafar
announced that he knew how to compute explicitly integrals of the
type

J(a) =

∫ 1

0

log(1 + ta)

1 + t
dt ,

where a is a real quadratic unit, in other words a root of an equation
of the type x2 − tx ± 1 = 0, and he challenged the audience to prove
the identities that he obtained in an “elementary” way. Indeed, since
then I have not succeeded in doing so, and I have not even been able
to reproduce the author’s proof (although I know where to look in the
old German literature to find suitable pointers). Using the tools of
numerical integration and the LLL algorithm (this is where it is
essential to compute the series and the integrals to hundreds of
decimal digits), I have noticed experimentally that the following
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A Difficult Integral (2)

J(1 +
√

2) =
log2(2)

2
+

log(2) log(1 +
√

2)

2
− π2

24
,

J(3 + 2
√

2) =
log2(2)

2
+

3 log(2) log(1 +
√

2)

2
+

3π2

8
− π2(3 + 2

√
2)

12
,

J(2 +
√

3) =
log2(2)

2
+

log(2) log(2 +
√

3)

2
+
π2

4
− π2(2 +

√
3)

12
,

J(2 +
√

5) =
log2(2)

2
+

2 log(2) log(2 +
√

5)

3
− π2

12
,

J(4 +
√

17) =
log2(2)

2
+ log(2) log(4 +

√
17)− π2

6
,

J(4 +
√

15) = log(2) log(
√

3 +
√

5) + log(2 +
√

3) log

(
1 +
√

5
2

)

+
π2

2
− π2(4 +

√
15)

12
.

Exercise: compute explicitly J(6 +
√

35) and J(12 +
√

143), and
generalize the above evaluations to

∫ 1
0 atan(ta)/(1 + t2) dt .
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The Birch and Swinnerton-Dyer Conjecture (1)

Although it involves slightly more advanced notions, in my opinion the
Birch and Swinnerton-Dyer (BSD) conjecture is one of the most
elegant and important problems in the whole of mathematics
(notwithstanding the fact that it is one of the 1 million $ Clay
problems). It is a typical example of modern experimental
mathematics.
In the 1960’s, two British mathematicians, Bryan Birch and Peter
Swinnerton-Dyer (now Sir Peter), computed numerically an analytic
quantity called “the value at 1 of the L-function of elliptic curves”. No
need to define precisely this here, but they observed, and of course
this is part of their experimental genius, that this value seemed to
vanish if and only if the elliptic curve had an infinity of points with
rational coordinates.
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The Birch and Swinnerton-Dyer Conjecture (2)

Soon after, they generalized this observation, which I repeat was
purely experimental, by giving a precise relationship between the
leading coefficient of the Taylor expansion of the L-function at 1 and
purely algebraic and arithmetic invariants of the elliptic curve. I
emphasize that even in its initial formulation the BSD conjecture
remains unproved.
Many theorems, for the most part deep and difficult, have been
proved on this conjecture, by some of the best number theorists in the
world (Coates–Wiles, Kolyvagin, Gross–Zagier, Rubin, Nekovar,...).
Nonetheless one can say that the conjecture is far from being solved.
Although I do not want to give the precise definitions, I will give a
general idea based on some examples, either related to Diophantine
problems, or purely numerical.
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The Birch and Swinnerton-Dyer Conjecture (3)

As a first example, consider the problem of representing an integer or
a rational number c as a sum of two cubes of rational numbers, in
other words the Diophantine equation c = a3 + b3, with a and b in Q.
Clearing denominators, this is equivalent to the solubility in integers
of the equation x3 + y3 = cz3 with z 6= 0. For instance the number 15
is representable since

15 = (397/294)3 + (683/294)3 ,

and it is the simplest representation. On the contrary, one can show
that the number 14 is not representable.
A consequence of the BSD conjecture, which is also far from being
proved, is that any squarefree integer (not divisible by a square other
than 1) and congruent to 4, 6, 7, or 8 modulo 9 is indeed a sum of two
cubes of rational numbers. Note that BSD does not give us any such
representation, and that the converse is false: for instance
91 = 33 + 43 although 91 ≡ 1 (mod 9).
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The Birch and Swinnerton-Dyer Conjecture (4)

As a second example, I mention the congruent number problem. It is
I believe the last problem coming from the ancients Greeks that is still
not completely solved! Let me give some definitions: an integer S is
called congruent if it is equal to the area of a Pythagorean triangle, in
other words a right-angled triangle with all sides rational, such as the
well-known triangle (3,4,5), with area 6, which shows that 6 is a
congruent number. The problem is to give a simple characterization
of congruent numbers. The BSD conjecture gives a complete answer
to this problem, in two different ways, but I will mention only one of
them (the least elegant, but closest to what I want to show).
One can of course always reduce to the case where S is squarefree.
In that case, analogously to the problem of sums of two cubes, BSD
predicts that if S is congruent to 5, 6 or 7 modulo 8 then S is indeed
congruent (as usual without giving any indication on the
corresponding Pythagorean triangle).
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The Birch and Swinnerton-Dyer Conjecture (5)

For S congruent to 1, 2, or 3 modulo 8, the condition is more difficult
to explain, so please forgive me if I now give technical details. Let us
define an arithmetic function a(n) in the following way. Set a(1) = 1
and otherwise:
(1). For n = p prime, set a(p) = 0 if p | S, or if p = 2, or if p ≡ 3
(mod 4). Otherwise we have p ≡ 1 (mod 4), so by a well-known
theorem due to Fermat there exist a and b such that p = a2 + b2, and
without loss of generality we may assume that a ≡ −1 (mod 4). We
set a(p) = −2a if 2S is a square modulo p, and a(p) = 2a otherwise.
(2). If k ≥ 2 and p is prime, we define a(pk ) by the recursion

a(pk ) = a(p)a(pk−1)− χ(p)pa(pk−2) ,

where χ(p) = 1 except when p | 2S, in which case χ(p) = 0.
(3). Finally, for an arbitrary n we set

a(n) =

g∏
i=1

a(pki
i ), where n =

g∏
i=1

pki
i .
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The Birch and Swinnerton-Dyer Conjecture (6)

Assuming the BSD conjecture, the result is then as follows: if S is a
squarefree integer congruent to 1, 2, or 3 modulo 8, then S is a
congruent number if and only if

∞∑
n=1

a(n)

n
e−πn/(2S

√
δ) = 0 ,

where δ = 1 if S is even, and δ = 2 if S is odd.
This admittedly very complicated statement is in fact a reformulation
of BSD in the context of congruent numbers; however I emphasize
that the series is very easy to compute since the convergence is fast.
On the other hand, proving that the sum is exactly equal to 0 cannot
be done numerically: indeed, if a certain mathematical quantity is
different from 0, this can be proved numerically on a computer by
taking sufficient accuracy, but if some other mathematical quantity is
equal to 0 this cannot be proved on a computer. In the present case,
it can be proved mathematically.
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The Birch and Swinnerton-Dyer Conjecture (7)

Let me give two examples of this: if S = 210 then one can prove that
the above sum is exactly equal to 0. For experts: in this case, the
elliptic curve has algebraic rank equal to 2 and sign of the functional
equation +1. If the above sum, equal up to a nonzero factor to the
value at 1 of the L-function, was not equal to 0, then by the known
results on BSD (here the Coates–Wiles theorem) the algebraic rank
would be equal to 0, a contradiction.
The same phenomenon is true for S = 29274: the above sum is
indeed exactly equal to 0. However in this case the BSD conjecture
says more. (For experts: this is a curve of algebraic rank 4, and we
will compute the second derivative of the L-function at 1.)
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The Birch and Swinnerton-Dyer Conjecture (8)

For any x > 0 define a function f by the formula

f (x) =

∫ ∞
1

e−xt log(t)2 dt ,

and let T be the series

T =
∞∑

n=1

a(n)f
(

2πn
4 · 29274

)
,

which also converges exponentially fast since f (x) ∼ 2e−x/x3.
An easy numerical computation shows that to thousands of decimal
digits T is close to 0. However this is a conjecture: even though it is a
special case of BSD, it is almost certainly as difficult to prove as the
general case, which is of the same type.
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A Scoop (1)

To finish, I will show you a piece of numerical evidence which is still
unexplained.
Recall that a Dirichlet character χ modulo N is an arithmetic function
such that χ(xy) = χ(x)χ(y), χ(x + N) = χ(x), and χ(x) = 0 if and
only if gcd(x ,N) > 1. It is primitive if it is not the restriction of a
character coming from some nontrivial divisor of N. If χ(−1) = 1 (χ
even), we associate the theta function

θ(χ, t) =
∑
n≥1

χ(n)e−πn2t/N .

(if χ(−1) = −1, replace χ(n) by nχ(n)).
By the Poisson summation formula we have

θ(χ,1/t) = ε(χ)t1/2θ(χ, t) ,

where |ε(χ)| = 1 is the so-called root number, easily expressible in
terms of Gauss sums.
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A Scoop (2)

This implies the well-known functional equation of the L-function:

Λ(1− s, χ) = ε(χ)Λ(s, χ) where Λ(s, χ) = π−s/2Γ(s/2)L(s, χ) .

Efficient method to compute ε(χ):

ε(χ) =
θ(χ,1)

θ(χ,1)
,

if denominator nonzero (otherwise can choose t 6= 1 close to 1).
Question: can we have

¿¿¿¿¿ θ(χ,1) = 0 ?????

Conjectural answer by Louboutin: never.
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A Scoop (3)

However conjecture probably false: nearly 5 million primitive
characters modulo N ≤ 5000 exist, apparently TWO (closely related)
counterexamples (and their conjugates). Specifically:

(Z/300Z)∗ = (Z/20Z)[277]⊕ (Z/2Z)[151]⊕ (Z/2Z)[101] .

Define
χ(277) = e4iπ/5 χ(151) = χ(101) = −1 ,

so χ is an even primitive character modulo 300 of order 10.
Then apparently

θ(χ,1) =
∑
n≥1

χ(n)e−πn2/300 = 0 ,

at least to 10000 decimals.
Questions:
¿ How does one prove this ?
¿ Is there any significance to these two examples ?
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