
How to get started with developing Sage

Sage Days 16, Barcelona, June 23, 2009

How to start developing Sage

1. get tenure

2. ???

3. profit

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

Enhancing Sage for your own research

I There is some bug which just plainly annoys you . . .

I There is some function which just isn’t documented properly
and you keep getting it wrong . . .

I There is this functionality (which would be easy to add) but
no developer bothered . . .

“It’s easy, implement it and send me a patch.”

– William Stein

Enhancing Sage for your own research

I There is some bug which just plainly annoys you . . .

I There is some function which just isn’t documented properly
and you keep getting it wrong . . .

I There is this functionality (which would be easy to add) but
no developer bothered . . .

“It’s easy, implement it and send me a patch.”

– William Stein

Enhancing Sage for your own research

I There is some bug which just plainly annoys you . . .

I There is some function which just isn’t documented properly
and you keep getting it wrong . . .

I There is this functionality (which would be easy to add) but
no developer bothered . . .

“It’s easy, implement it and send me a patch.”

– William Stein

Enhancing Sage for your own research

I There is some bug which just plainly annoys you . . .

I There is some function which just isn’t documented properly
and you keep getting it wrong . . .

I There is this functionality (which would be easy to add) but
no developer bothered . . .

“It’s easy, implement it and send me a patch.”

– William Stein

Enhancing Sage for your own research

I There is some bug which just plainly annoys you . . .

I There is some function which just isn’t documented properly
and you keep getting it wrong . . .

I There is this functionality (which would be easy to add) but
no developer bothered . . .

“It’s easy, implement it and send me a patch.”

– William Stein

Writing your own non-trivial Sage programs

I there isn’t that much of a difference between developing for
the Sage core library and writing your own program.

I Most of the comments below apply to both.

I Please consider submitting your code to Sage if it implements
functionality not in Sage yet (or better than Sage)

Using Sage as a frontend for your own library

I you wrote this amazing C/C++/whatever library and need to
test it out

I you can either write tedious testcode or

I you can write a slim Sage interface which allows to test your
library much more rigorously.

I you can use this interface to convert between your native
format and many other systems (Pari, Magma, Mathematica,
. . .)

Let’s face it

You are stuck at this workshop anyway so you might as well write
some code while you are here.

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

Python

I Sage fundamentally depends on Python.

I Speaking Python is a requirement for properly using and
developing Sage.

I Python is a very easy to learn language.

I Learning Python has benefits far beyond Sage, it is widely
used.

http://www.diveintopython.org/ and
Python in a Nutshell by Alex Martelli

http://www.diveintopython.org/

Cython

Sage depends on Cython to provide

I a compiled fast language for low-level arithmetic and

I a language to easily interface with C/C++ code and libraries.

If you want to work on this level, it makes sense to learn some
Cython:

http://docs.cython.org/

http://docs.cython.org/

The Preparser

Sage commands get preparsed.

I 1/2 is 0 in Python, but 1/2 in Sage

I P.<x,y> = GF(2)[] is not valid Python, but valid in Sage

sage: preparse("1/2")
’Integer (1)/ Integer (2)’
sage: preparse("P.<x> = ZZ[]")
"P = ZZ[’x ’]; (x,) = P._first_ngens (1)"
sage: preparse("0.5")
"RealNumber (’0.5’)"

When writing code for the Sage Library you must write valid
Python and you have to expect Python behaviour (e.g. 1/2 == 0).

Components

I Sage comes in various SPKGs: Sage Packages.

I Sage 4.0.1 contains 99 such SPKGs like bzip2, MPIR, Pari,
NTL, FLINT, Maxima, Singular etc.

I This way Sage is self contained and behaves reasonably similar
across platforms.

I The code which ties all these packages together is the “Sage
Library”. Naturally, it comes in an SPKG.

I Each copy of Sage allows you to hack the Sage Library
straight away – batteries included.

I will focus on modifying the Sage Library in this talk.

Directory structure

$SAGE ROOT

local where the SPKGs are installed to

bin executables go here (e.g. Singular)
lib e.g. shared libraries go here (e.g.

libsingular.so)

devel/sage the Sage Library

doc the reference manual, tutorial etc.
sources

sage the code that makes things happen
c lib some low-level code, can be ignored by

most

spkgs this is where the SPKGs are stored

Directory structure of the Sage library

Excerpt:
algebras free, group, quaternion, steenrod . . .

combinat very comprehensive combinatorics
graphs all things graph theory
groups group theory

interfaces interfaces to other system (e.g. Magma)
libs raw interfaces to C/C++ libraries

matrix matrices over all kinds of fields
misc a lot of useful utility functions!

modular modular forms and symbols
plot 2d and 3d plotting

quadratic forms guess what.
rings integers, rationals, finite fields, polynomials, p-adics

schemes curves (e.g. elliptic, hyperelliptic)
server the notebook server

structure coercion and Sage parent–element infrastructure
symbolic all things symbolic manipulation

Finding that function I

sage: search_src("Integer","create")

...

misc/preparser.py:We create a raw integer.

misc/preparser.py:first one computes a list of SAGE integers ...

monoids/free_monoid.py: One can create a free monoid

...

combinat/sf/sfa.py: integer n as its input and ...

server/notebook/js.py: string ...

matrix/matrix2.pyx: We create the zero matrix over ...

misc/parser.pyx:variables) and how integer and floating ...

rings/integer.pyx: You can create an integer from ...

rings/integer.pyx: A global pool for performance when ...

rings/integer.pyx: if available , otherwise a new Integer ...

rings/integer_ring.pyx:To create an ‘‘Integer ‘‘, coerce ...

rings/integer_ring.pyx: We can create integers from ...

...

Finding that function II
sage: search_def("rank")

algebras/free_algebra_quotient.py: def rank(self):

combinat/choose_nk.py: def rank(self , x):

...

combinat/subset.py: def rank(self , sub):

misc/functional.py:def rank(x):

modules/free_module.py: def rank(self):

modules/matrix_morphism.py: def rank(self):

combinat/posets/hasse_diagram.py: def rank(self ,element=None):

...

combinat/words/alphabet.py: def rank(self , letter):

libs/mwrank/interface.py: def rank(self):

modular/abvar/abvar.py: def rank(self):

...

modular/modsym/ambient.py: def rank(self):

quadratic_forms/genera/genus.py: def rank(self):

...

matrix/matrix0.pyx: def rank(self):

matrix/matrix_integer_dense.pyx: def rank(self):

matrix/matrix_mod2_dense.pyx: def rank(self):

matrix/matrix_modn_dense.pyx: def rank(self):

matrix/matrix_modn_sparse.pyx: def rank(self , gauss=False):

matrix/matrix_rational_dense.pyx: def rank(self):

...

Finding that function III

edit() tries hard to an editor at the right line in the right file TM.

sage: edit(ZZ)

cdef class IntegerRing_class(PrincipalIdealDomain):

r"""

The ring of integers.

In order to introduce the ring ‘\ZZ ‘ of integers , we

illustrate creation , calling a few functions , and

working with its elements.

...

Finding that function IV

sage: ZZ??

Type: IntegerRing_class

Base Class: <type ’sage.rings.integer_ring.IntegerRing_class ’>

String Form:Integer Ring

Namespace: Interactive

File: .../ local/lib/python2 .5/site -packages/sage/rings/integer_ring.so

Docstring:

The ring of integers.

In order to introduce the ring ‘ZZ‘ of integers , we

illustrate creation , calling a few functions , and working with its

elements.

I sage.rings.integer ring.IntegerRing class

I .../site-packages/sage/rings/integer ring.so

−→ $SAGE ROOT/devel/sage/sage/rings/integer ring.pyx

site-packages vs. devel

I on the last slide the source file for ZZ was given as
local/lib/python2.5/site-packages/sage/rings/integer ring.so

I this is where the code that is actually run is stored

I the sources are in
devel/sage/sage/rings/integer ring.pyx

I the command sage -b compiles and copies the sources for you

Always edit the files in the devel subdirectory and call sage -b to
(compile and) copy them over.

Built-in documentation I

sage: ZZ?

...

The ring of integers.

In order to introduce the ring ‘ZZ‘ of integers , we

illustrate creation , calling a few functions , and working with its

elements.

::

sage: Z = IntegerRing (); Z

Integer Ring

sage: Z.characteristic ()

0

sage: Z.is_field ()

False

We next illustrate basic arithmetic in ‘ZZ ‘::

sage: a = Z(1234); b = Z(5678); print a, b

1234 5678

...

Built-in documentation II

sage: help(ZZ)

Help on IntegerRing_class object:

class IntegerRing_class(sage.rings.ring.PrincipalIdealDomain)

| File: sage/rings/integer_ring.pyx (starting at line 104)

|

| The ring of integers.

|

| In order to introduce the ring ‘\ZZ‘ of integers , we

| illustrate creation , calling a few functions , and working with its

| elements.

|

| ::

|

| sage: Z = IntegerRing (); Z

| Integer Ring

| sage: Z.characteristic ()

| 0

| sage: Z.is_field ()

| False

...

Source code

sage: ZZ??

...

def __init__(self):

ParentWithGens.__init__(self , self , (’x’,), normalize=False)

self._populate_coercion_lists_(element_constructor=integer.Integer ,

init_no_parent=True ,

convert_method_name=’_integer_ ’)

def __cinit__(self):

This is here because very old pickled integers ...

global number_of_integer_rings

if type(self) is IntegerRing_class:

if number_of_integer_rings > 0:

self._populate_coercion_lists_ (\

element_constructor=integer.Integer , \

init_no_parent=True , \

convert_method_name=’_integer_ ’)

number_of_integer_rings += 1

def __reduce__(self):

"""

TESTS::

sage: loads(dumps(ZZ)) is ZZ

True

"""

return IntegerRing , ()

...

Writing documentation I

I Every function or class added to Sage must have
documentation of its functionality and inputs.

I Sage docstrings are formated using the ReStructuredText.

Build the reference manual by typing sage -b first and then sage
-docbuild reference html and check

I that it produces no errors and

I that the HTML looks okay.

Writing documentation II

Examples

I *foo*: foo

I **foo**: foo

I ‘‘x^i‘‘: verbatim environment

I ‘x^i‘: LATEX math mode x i

I Any line ending with :: means that the following indented
things are a literal block (usually sage: commands)

See

http:
//www.sagemath.org/doc/developer/sage_manuals.html

for more details.

http://www.sagemath.org/doc/developer/sage_manuals.html
http://www.sagemath.org/doc/developer/sage_manuals.html

Running tests I

I Every new function included with Sage must have doctests.

I doctests are examples on how to use a function and are run
on a regular basis to test for regressions.

sage: e.log?

EXAMPLES ::

sage: Integer (124). log (5)

sage: Integer (125). log (5)

3

sage: Integer (125). log(5,prec =53)

3.00000000000000

sage: log(Integer (125))

log (125)

For extremely large numbers , this works::

sage: x = 3^100000

For tests which are not end-user friendly use TESTS::.

Running tests II

I You can run doctests on a single file as
sage -t filename_or_directory.

I You can run doctests in parallel as
sage -tp num_threads filename_or_directory

I You can and should also add and run doctests on your private
code to test for regressions in Sage and/or your code.

I Before submitting a patch to Trac you should run doctests on
the complete Sage tree (make test).

I If your computer is too slow for this, ask William about an
account on http://sage.math.washington.edu.

http://sage.math.washington.edu

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

Mercurial

Mercurial is the source control system that is used with Sage.

See

http://www.selenic.com/mercurial/

for full documentation on Mercurial.

http://www.selenic.com/mercurial/

Batteries included

All of the Mercurial repositories related to Sage are included with
Sage. Thus the complete change history and setup for doing
development is available in your copy of Sage.

Before using Mercurial, make sure to define your username so the
patches you make are identified as yours. Make a file ~/.hgrc in
your home directory like this one:

[ui]
username = John Doe <doe@example.com >

[extensions]
hgext.mq =

Running Hg

There are several ways to run Mercurial:

I from the command line, run sage -hg (Hg is the chemical
symbol for mercury),

I or from within Sage, run hg_sage. Most of the examples
below use the second method.

Before you modify Sage library files, you might want to create a
copy of the Sage library in which to work.

Do this by typing sage -clone myver, for example; then Sage
will use Mercurial to clone the current repository and call the result
myver.

You can switch between copies by sage -b main and
sage -b myver.

Building changed source files

Once you have copied the library to a new branch myver and
edited some files there, you should build the Sage library to
incorporate those changes: type sage -b myver, or just sage -b
if the branch myver is already the current branch: that is, if
SAGE_ROOT/devel/sage links to SAGE_ROOT/devel/sage-myver.

Note that devel/sage is a symlink to whatever branch/clone is
currently “active.”

You can also type sage -br myver to build the library and then
to immediately run Sage.

How to revert changes

I If you did sage -clone myver you can simply
sage -b main to return to the upstream version of Sage

I You can also enter hg_sage.revert() to undo uncommitted
changes.

I You can use hg_sage.update() to return to a previous
revision to “undo” committed changes.

Preparing patches I

If you want to submit your changes to the Sage development team
for refereeing (and inclusion into Sage if the referee’s report is
positive), you should produce patch files.
To do this:

I Type hg_sage.status() and hg_sage.diff() to see
exactly what you’ve done (you can pass options to diff to
see information about certain files).

I If you’ve added new files, not just edited existing ones, type
hg_sage.add([filenames]) to add those new files to your
repository.

Preparing patches II

I Commit your changes by typing
hg_sage.commit([optional filenames]) to commit the
changes in files to the repository – if no filenames are given,
all files are committed. First the output of hg diff is
displayed: look at it or just enter q. Then you are dumped
into an editor to type a brief comment on the changes. The
default editor is vi, so type i, write some meaningful one line
description, hit Escape and type :wq.
(In bash, to make emacs the default editor, type
export EDITOR=emacs.)

Preparing patches III

I Now create a patch file using hg_sage.export(...). This
command needs a revision number (or list of revision
numbers) as an argument; use hg_sage.log() to see these
numbers. An optional second argument to
hg_sage.export(...) is a filename for the patch; the
default is (changeset_revision_number).patch.

I Then post your patch on the Sage Trac server (see below).

Other stuff

Finally, if you want to apply a patch file (perhaps you’ve
downloaded a patch from the Trac server for review), use the
command hg_sage.patch(’filename’).

Most Sage developers seem to use a Mercurial extension called
Mercurial Queues these days to manage their patches. See

http://www.selenic.com/mercurial/wiki/MqExtension
http://wiki.sagemath.org/MercurialQueues

for details.

http://www.selenic.com/mercurial/wiki/MqExtension
http://wiki.sagemath.org/MercurialQueues

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

How Alice gets code into Sage I

How Alice gets code into Sage II

1. Alice writes some awesome code, opens a trac ticket at
http://trac.sagemath.org and attaches her patch. The
subject line of the ticket is now: [with patch, needs
review] ...

2. Bob reviews Alice’s patch and finds an issue. The subject line
of the ticket is now: [with patch, needs work] ...

3. Alice fixes the issues, Bob checks the changes and decides it is
okay now: [with patch, positive review].

4. Eve is acting release manager for Sage X.Y.Z and applies
Alice’s patch to her tree. If everything is fine she closes the
ticket, otherwise the ticket gets [with patch, needs
work].

http://trac.sagemath.org

Requesting a Trac Account

I To prevent Spam, we have had to disable anonymous creation
and editing of tickets.

I Please write an email to wstein@gmail.com and provide an
account name and password.

I The account name should be non-silly, i.e. no first names, no
leet-handles.

Opening Tickets

Tickets can either be opened to submit a patch or to request a
bugfix or enhancement.

I Before opening a ticket, make sure that nobody else has
opened a ticket about the same or closely related issue.

I It is better to open several specific tickets than one that is
very broad.

I Be precise: If foo doesn’t work on OSX, but is fine on Linux,
mention that in the title. Also use the keyword option to
make searches pick up the issue.

Finding someone to review your patch

I Components on Trac have defaults assigned, so hopefully that
will take care of it already.

I If you know someone who can review your patches, it makes
sense to ask directly.

I If you are fixing a bug in/adding documentation to
sage -hg annotate -u filename is a good tool to identify
who wrote that function.

I You can ask the release manager or on [sage-devel] to find
someone to review your patch.

Reviewing Patches

I The code makes sense and reads okay.

I 100% doctests: All new code must be 100% doctested.
There is no way around this.

I Bug fixes must be doctested: The patch that fixes an issue
must also contain a doctest specifically to test the problem.
This is not always possible, so this is not enforced in certain
situations.

I Test the reference manual: sage -docbuild reference
html must produce no errors

I Test the Sage Library: make test or make ptest (edit
number of threads in makefile before using ptest!)

Outline

Why Would You Care?

Overview

Revision Control

The Sage Development Process

The Sage Community

Asking Questions

Definitely do ask a lot of questions!

sage-devel the main development list: 900 members, 1000
messages per month

sage-support end-user support list: 1220 members, 800 messages
per month

#sage-devel on freenode: main development IRC channel, 30
members, medium activity, usually at least two ‘core’
developers around

real people this might be a good moment for the Sage developers
in the room to stand up and introduce themselves.

Netiquette

I Many Sage developers are volunteers and have day jobs or
other obligations.

I Usually, questions are answered quickly if someone knows the
answer straight away.

I If your question goes unanswered, it is probably just because
people didn’t get around to it yet. Don’t hesitate to ask again!

I Keep it friendly though, we take pride in the fact that our
mailing lists hardly see any insults and flame wars.

Other Resources

I The wiki (http://wiki.sagemath.org) a wonderful
collection of useful outdated information.

I The developer guide
(http://www.sagemath.org/doc/developer/) should
contain everything to get started, if not write it and send us
a patch! or let us know at least.

I The archive of [sage-devel]
(http://groups.google.com/group/sage-devel)
contains tons of useful information.

http://wiki.sagemath.org
http://www.sagemath.org/doc/developer/
http://groups.google.com/group/sage-devel

Thank You!

Building the Cube instead of reinventing the Warp drive!

	Why Would You Care?
	Overview
	Revision Control
	The Sage Development Process
	The Sage Community

