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1. Introduction

In the 1990s Rudolf Scharlau and I had a joint project concerned with computations
for and with integral quadratic (and later also hermitian) forms over Z and also over
the rings of integers of (mainly quadratic) number fields. The project originated
in Rudolf Scharlau’s group of Diplom and doctoral students, where it also got its
name ZAK, I don’t really now why (from the German word Zahlkörper (number
field) perhaps?). It turned later into a project funded by Deutsche Forschungsge-
meinschaft; in this time Alexander Schiemann worked for the project, coordinated
the programming work and wrote several C++ programs. The programs developed
in the project were the basis of the articles [19, 20, 18, 22, 5] and were used for
Schiemann’s computation of tables of integral hermitian forms [23]. After Schie-
mann left academia we continued to use the programs for a while on our HP-UX
workstations. When these went out of service it turned out to be difficult to adapt
the programs to other environments; I will describe some of the problems later.
All experiments I did now are under Linux (Suse 11.0) using gcc 4.3. The present
new interest in such computations, in particular in the SAGE project, raises the
question whether it is worthwhile (and possible) to revive these programs.

2. The programs

The programs in the ZAK project are centered around the task of classifying positive
definite quadratic and hermitian forms. Classifying means here: Enumerate a full
set of representatives of isometry classes of forms of fixed dimension, either in a
fixed range of discriminants or even in a fixed genus.

2.1. Class-list. The case of ternary quadratic forms is somewhat atypical: Here
one can (following Seeber) sharpen the usual reduction conditions on a matrix
in such a way, that each isometry class contains a unique matrix satisfying the
full set of conditions. Consequently, one can just enumerate the matrices of fixed
determinant satisfying all the conditions to obtain the desired list. This is done
in the programs in our folder Class-list: We have ternrep, which takes as input a
positive definite ternary form and outputs the unique reduced form in its class, and
ternclass, which lists all ternaries in a given range of discriminants (with options
to list only even, only primitives etc.) Both programs are in C, were written by
Alexander Schiemann and are functional (recompiled under Linux using gcc 4.3
and run). Schiemann developed them during the work on his thesis which was later
published as [21] and modified them while working with ZAK.
A similar tool is rep-list; this generates representatives of genera of forms of spec-
ified signature in a given discriminant range. I could compile this program but had
runtime errors, probably due to the bigint-routines (see the section about prob-
lems).
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2.2. Isometry problem. In higher dimensions there is no unique reduction. More-
over, from dimension 5 on the reduction conditions become impractical, from dimen-
sion 8 on one doesn’t even have an explicit finite set of reduction conditions. One
can of course still use the LLL algorithm to keep the coefficients of a representative
manageable but this does not even come close to finding unique representatives.
It is therefore necessary to test quadratic forms for equivalence efficiently. The
programs isom and auto(m) of Bernd Souvignier (who is now, i. e. in 2009, in
Nijmegen), described in [13], have been used in our project, with marginal modifi-
cations made by Schiemann. The program isom tests for equivalence, the program
auto(m) determines the group of units (automorphisms) of a given set of forms.
The testing of sets of forms can be used to perform equivalence tests over rings of
(quadratic) integers. As far as I know these programs are also still part of MAGMA.

2.3. Listing forms–Isolist. During the project a variety of routines was developed
for computing various invariants of a set of quadratic forms (also called lattices
in the sequel), for example dual lattice, root system, order of the automorphism
group, list of short vectors, theta series of degree one and two or Jacobi theta series,
dimension of the space of modular forms generated by these theta series, closure of
this space under Hecke operators, mass of the set of forms at hand. Schiemann wrote
a C++-program isolist which takes as input a list of quadratic forms, extracts a set
of representatives of the different classes and, depending on options handed to the
program, computes various invariants of the forms and organizes the representatives
into a list.
More precisely and quoting from Schiemann’s documentation, isolist offers the fol-
lowing possibilities:

”isolist” is a program to sort Z-lattices by isometry and/or compute
data (theta-series, order of automorphism group) belonging to these
lattices. It can also compare the span of (different kinds of) theta-
series of a set of lattices with the span of theta-series of a subset.

isolist performs in different stages (some of which are optional):
Stage 1: Parsing of standard input for Z-lattices until end-of-file

or &End is read. Result is a list of lattices with some related
data that was also read from standard input.

Stage 2: Perform reduction on the lattices, check the list for
isometric lattices and delete all but one representative of iso-
metric ones. Depending on the options some invariants of each
lattice may be computed to simplify tests for isometry. Result
is a list of representatives of the classes of lattices that where
read.

Stage 3: Compute the theta-series of the representatives (if not
known already) and sort the list depending on the theta-series.
Compute additional information about the spaces of different
kinds of theta-series belonging to the lattices and print this
information on standard output.

Stage 4: Compute additional invariants of each representative
and print the representative together with the invariants. The
order in which the lattices are processed and printed depends
on their theta-series or on their number.

The output is in a format that can be processed by isolist again. So
you may accumulate information in different runs of isolist (without
loss of performance, since the tags &begin block/&end block are
used to mark the list sorted by isometry).
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To give an impression of the way in which Schiemann organized his programs, here
is a file list of the folder Isolist:

assign.h
asub.c
asub.h
asub_isolist_templ_I.cc
asub_templ.cc
asub_templ.h
bigbin_modular_form.cc
bigbin_modular_form.h
bigfloat_adapt.h
bigfract_call.cc
bigfract.cc
bigfract.h
bigint_adapt.h
bin_IO.h
bin_modular_form.cc
bin_modular_form.h
bin_theta_series.cc
bin_theta_series.h
blocked_vectorC_stack_templ.cc
blocked_vectorC_stack_templ.h
blocked_vectorV_stack_templ.cc
blocked_vectorV_stack_templ.h
block_link_templ.cc
block_link_templ.h
classlist_util.cc
classlist_util.h
COPYING-2.0
COPYRIGHT_isolist
cp_rm_diff
datatypes_templ_I.cc
datavec.cc
datavec_templ.cc
datavec_templ.h
fract.cc
fract.doc
fract.h
Global_DimensionC.cc
Global_DimensionC.doc
Global_DimensionC.h
Glob_int2.cc
handle_uninit_templ.cc
handle_uninit_templ.h
include_param_isolist.h
integer_util_templ.cc
integer_util_templ.h
int_PF.cc
int_PF.h
iso_aut_source.c
iso_aut_source.h
isolist.cc
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isolist.doc
isolist.h
isom-list.cc
isom-list.doc
isubspace_templ.cc
isubspace_templ.h
isubspace_templ_I.cc
jac_theta_series.cc
jac_theta_series.h
lidia_param.h
list_errors.cc
list_errors.h
list_with_positions_templ.cc
list_with_positions_templ.h
lower_triangleC_templ.cc
lower_triangleC_templ.h
Makefile
maklib.h
malloc_redefine
malloc_unredefine
math_types.h
matrixC.cc
matrixC_templ.cc
matrixC_templ.h
matrixC_templ_I.cc
matrix_row_ref_templ.h
matrix*_templ.doc
matrix_templ_I.cc
matrix_util_templ.cc
matrix_util_templ.h
matrixV.cc
matrixV_templ.cc
matrixV_templ.h
new_nothrow.cc
new_nothrow.h
new_version_file
option_util.cc
option_util.h
option_util_isolist.cc
option_util_isolist.h
orbits_iter_p.cc
orbits_iter_p_isolist_templ_I.cc
orbits_iter_p_templ.cc
orbits_iter_p_templ.doc
orbits_iter_p_templ.h
ppointer_templ.cc
ppointer_templ.h
README.1st
README.AUTO
README.ISOM
redu_util_isolist_templ_I.cc
redu_util_templ.cc
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redu_util_templ.h
s_malloc.c
s_malloc.h
s_malloc.usage
strongly_mod.c
strongly_mod.h
sym_matrixC_templ.cc
sym_matrixC_templ.h
sym_matrix_IO.cc
sym_matrix_IO.h
Tests
theta_series.cc
theta_series.h
types.h
unmaklib.h
vectorC.cc
vectorCp_templ.h
vectorC_templ.cc
vectorC_templ.h
vector_templ_I.cc
vectorV.cc
vectorV_templ.cc
vectorV_templ.h
VERSION
version_isolist.h
Zclassdata2.cc
Zclassdata2.h
Z_isoautC_templ.cc
Z_isoautC_templ.h
Z_isoautC_templ_I.cc
Z_isoaut_options.h
Z_latticeC_class_templ.cc
Z_latticeC_class_templ.h
Z_latticeC_class_templ_I.cc
Z_latticeC_shortvecs_templ.cc
Z_latticeC_shortvecs_templ.h
Z_shortvecs_orbit_util_templ.cc
Z_shortvecs_orbit_util_templ.h
Z_shortvecs_orbit_util_templ_I.cc

Attempts to recompile Isolist failed, see section Problems. A different program for
organizing lists of lattices is invar, it is essentially a part of Hemkemeier’s routine
tn and will be discussed together with it in the next subsection.

2.4. Neighbouring lattices. The method of neighbouring lattices has been in-
troduced by Kneser in [10]. Its use for computer calculations was described in
[24, 18, 22]. Over Z it can be used to determine all classes in a given genus, over
the integers of number fields one has to be careful about obtaining all spinor genera
in the genus. Our project produced the routines tn (written by Boris Hemkemeier)
calculating neighbours at the prime 2 of a Z-lattice and thereby obtaining all classes
in the genus, pn, pn-sh (written mainly by Markus Stausberg) for doing the same
using neighbours at some prime p, qn (written mainly by Fabian Wichelhaus) for
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doing the same over a real quadratic field, and hn (written by Alexander Schie-
mann) for doing the same for hermitian forms over the integers of an imaginary
quadratic field.
Of these, hn could not be recompiled (see section Problems). Some years ago
Abshoff created an executable which was used on Linux PCs in Dortmund and
Saarbrücken and still runs on older Linux systems, it crashes with linking errors on
my present PC.
tn has been maintained by its author Boris Hemkemeier and is available in the web
[3]. The programs pn, pn-sh,qn could be recompiled, running has not yet been
tested, except for one or two runs with pn-sh. All three programs have a number of
utilities for generating additional information, e. g. the Anzahlmatrix showing the
number of neighbours of class A in class B, the shortest vectors etc. The program
tn has more utilities than pn,qn for generating such additional information, e.g.
root systems of lattices. These facilities of tn have been collected by Schiemann in
the program invar which takes as input a list of lattices generated by one of the
other programs. invar could (with marginal changes) be recompiled but has not
yet been tested for running.
I include the doc-file of hn to give an impression of what it does when properly
activated:

/*
Copyright (C) 1997 Alexander Schiemann
(try ’hn --copyright’ for more information)

*/

this file describes VERSION 2.8.6 of hn (15.3.99)

SHORT INFO:
==========

This program (hn) deals with positive definite integral hermitian
forms over an imaginary quadratic field.
It collects all functionality that I have implemented for
hermitian forms. This is:
- filter for different IO-formats (see: --invar, -I, -O )
- reduction of hermitian forms with respect to Gl(n,O_K) (see: --invar,

--reduce, --herm_lll )
- calculating invariants for hermitian forms, e.g. automorphism group,
theta-series: (see: --invar, --autom, --groups, --shell -O )

- sorting of lists of hermitian forms for isometry
(see: --invar, --isom_test )

- generating the neighbourhood (representatives of all classes)
of a given form
(‘‘unmodified normal mode’’ of the program).

- heuristic search for forms with large minimum in a neighbourhood
(modifications of the ‘‘normal mode’’).

(see also below under ‘‘OPTIONS AFFECTING THE TYPE OF ACTION ...’’)

In its normal mode this program computes one or more special genera
of integral hermitian forms over an imaginary quadratic field K
using the neighbour method of Kneser. This method for the
hermitian case is described in detail in the
paper "Classification of hermitian forms with the neighbour method"
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that can be obtained at http://www.math.uni-sb.de/~aschiem.
In its normal mode (with isometry tests and construction of orbits
of neighbour vectors under the action of the automorphism group) the
program works in dimensions (over K) 2,..,10 (,11,12) with neighbours
at small primes P. The runtime is O(N*M*I), where N is the number of
neighbours at P of a lattice, M the number of classes in the union of
special genera that will be computed and I the time consumed by one
isometry test or construction of an automorphism group. Isometry tests
and construction of automorphism groups are subroutines based on the
programs ’isom’ and ’bravais’ (alias ’autom’) by BERND SOUVIGNIER
1995, whom I want to thank for the permission to use the code of his
programs.

SOME REMARKS:
============
There are many options and not all combinations are meaningful. Some
options cancel other options without warning. At the beginning you
should rely on the defaults and only specify options for the ’overall
choices’. Use --defaults to find out which options really are in effect.

If you use ’hn --invar’ you should read the help given with ’hn
--invar --help’ to understand how to pass a list of lattices (possibly
with known invariants) to ’hn’. Usually you will write the
specification of the imaginary quadratic field, the dimension of the
hermitian space and one or more lattices into a file and say ’hn
--invar < file’.
Critical applications may need fine-tuning.
-- pass known invariants of lattices to ’hn --invar’ as described in

’hn --invar --help’. Especially known automorphisms may speed up the
calculation of the automorphism group and isometry tests (use the
’Aut_subgroup’ invariant)

-- try to collect information in successive runs, starting with
reduction only. optimize the parameters of each subalgorithm.

DETAILED DESCRIPTION OF OPTIONS:
===============================
Feel free to try combinations of options. Inconsistent combinations
should result in warnings or errors (but may sometimes also lead to
strange results).
We made quite an effort to ensure that the output is not misleading
whatever strange input was made.
Use --defaults to learn which of the options actually remain in effect.

INVOCATION ( [..] stands for optional):
--------------------------------------

hn [options]

INPUT depends on options. In the normal mode, there will be prompts for input
on standard output. The input is
D dim lattice prime
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where:
D : specifies an imaginary quadratic field K=Q(sqrt(D))
dim : dimension (over K) of the hermitian space
lattice : [ list of ideals ] [ {factor}* ] gram_matrix

for an exact description of the input format start the
program with the --verbose (-v ) option

prime : prime_number or ~prime_number (for the conjugate prime ideal)

OPTIONS : [[-]single_character_options] [[-]key_character[inner_options] ]
[--word_options]

single-character options: [hH?svltn A’n’ T’n’ S’n’ G’n’ D’n’]
key-character options : [O[csbwpPLTOU] I[bwPLB] ]
word options : [--invar --recover --recover’filename’

--neighbours’n’ --neighbour_orbits’n’
--only_even --only_odd
--max_stable’n’--isom_test --no_isom_test --help
--Help --silent --verbose --neighbour_verbose
--neighbour_silent --graph_max’i’
--trace_isom_search --no_trace_list
--blank_format --w_format --pari_format
--shells[’i’] --Depth’i’ --mass --no_mass ...]

Options can be given as single character options (with an optional leading ’-’
and optional space between) or as a keycharacter followed by a keyword or an
inner list of character options (ending with a blank) or as a word-option
(that stands for a combination of other options in some cases).
Single character options and word-options may have arguments.
Most options have inverse options. In case of competing options, the last
given overrides the others (important for --recover (see below)).

OPTIONS AFFECTING THE TYPE OF ACTION THAT ’hn’ WILL TAKE:
--------------------------------------------------------
(if none of these options is given, the expansion of
the (whole) neighbour-graph takes place, this is the
normal action of ’hn’. Modifications of the normal mode are described
below.)

--version : show the version number and date

--copyright : inform about copyright

[-]h : give this help
[-]H
[-]?
--help
--Help

--help --invar : give help about the input parsing with --invar

--help --isom : prints original description of the isometry test
for sets of bilinear forms over Z (by Bernd Souvignier).
This test is used within the isometry test of the lattices
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over the ring of integers of a quadratic field here.
You may set the option for this algorithm using
‘set_isoaut_options(...)’ (see below).

--help --autom : prints original description of the computation
of the automorphism group of a set of bilinear forms over Z
(by Bernd Souvignier). This test is used within such
computations for lattices over the ring of integers of a
quadratic field here.
You may set the option for this algorithm using
‘set_isoaut_options(...)’ (see below).

--defaults : show the default settings, i.e. show the settings
that would take place with the given options except ’defaults’
(the defaults may depend on given options!)

--recover’filename’ : (no space between recover and ’filename’)
(not interactive) if possible a run of hn generates a logfile
to save partial results in case of a crash. A new logfile gets
the first non-existing name from hn.log,hn.log1,hn.log2..
If a run ends successfully the log file is destroyed.
With the recover option a crashed run that produced the logfile
’filename’ is resumed and new results are appended to that file.
A recover-job will use the same options as the original
job with the new options appended to the old ones and
possibly overriding them. All meaningful changes of parameters
are allowed with --recover and all other combinations of
options (e.g. --only_odd recovered with --only_even) will
(hopefully) lead to an error message and abort the program.
The representatives of the classes and their order in the
output of a recovered job may be different to that of a
completed job with the same input. This is because a
recovered job may recalculate the last (incomplete)
expansion with another representative, if a better
representative was found during the last expansion and
no ’&Neighbour #n’-directive with n>1 has been saved in
the logfile. Also the counter of the max_stable option is
reset when a job is restarted.
The logfile is removed after a complete run unless
the expansion was terminated because of --stop_mass.

--recover : (not interactive) same as above but the filename
will be the first of hn.log,hn.log1,...,hn.log19 with an
existing file.

--invar : (not interactive) do not construct lattices but read
lattices (and related data) from standard input, perform reduction/
tests for isometry and/or compute invariants of these lattices
(depending on other options).
The input is parsed according to the rules described with
’hn --help --invar’, everything but lines following special ’tags’
is ignored . Output and log-files are in a suitable format to
be used as input to ’hn --invar’.
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If a logfile is passed to hn --invar, the invariants
of the lattices found up to the crash are computed.

--neighbours’n’ : (interactive) Compute at most ’n’ neighbours of
the start lattice without orbit construction and without tests
for isometric lattices.

--neighbour_orbits’n’ : (interactive) As above but compute the automorphism
group of the start lattice and compute only neighbours belonging to
different orbits under the action of the automorphism group.

MODIFICATIONS OF THE NORMAL MODE (all interactive):
--------------------------------------------------
--min_search[’L’ [’M’ ’S’]] : heuristic option to search for lattices with large

minimum in large genera (which can not be classified completely).
Implies --maxmin -G0 and --no_intermediate_mass. ’L’ and ’M’,’S’
are positive integers.
A run with --min_search writes not only a logfile (see --recover) but
also a file named "largest_minimum.D-’disc’.dim’DIM’.det’DET’.tmp"
(with the values ’disc’ the discriminant of K, ’DIM’ the K-dimension
and ’DET’ the discriminant of the hermitian lattices. Whenever a
lattice with a larger minimum is found, the lattice is appended to
this file (thus a file of such a name may be altered by hn). This
file is the usual output. If a run ends, it gives the classes that
were expanded on standard output. In general, this will not be the
whole neighbourhood.
The expansion strategy is plainly as discribed below with --maxmin,
but the list for the unexpanded classes has limited length ’L’.
If it grows longer, the last class in this list (i.e. that with
the most short vectors up to the current bound ’maxmin’) will be
dropped.
Let at a moment ’l’ be the length of the list for the unexpanded
classes. Given a new neighbour with minimum ’m’, this neighbour will
be dropped (without any notice) if (M,S) is given and m<M and there
are >=S unexpanded lattices better than the new one.

Otherwise
if l<L or (l==L and the new lattice would NOT be last of (unexpanded

without the one being expanded) in the order described
with --maxmin)

the new lattice is checked against all classes for isometries and
is added to the list of all and of the unexpanded classes if it
belongs to a new class.
if (l_new=l+1) == L, then the last item (without the one being
expanded) is dropped from unexpanded.

otherwise (i.e. l==L and the new lattice has the ’most short vectors’)
the lattice is dropped (without any notice).

NOTE: the list of expanded classes is not limited and
isometry tests take place. The logfile may contain lattices that are
dropped later on. It may be recovered (see above). You may change the
--min_search parameters. This will NOT prevent lattices marked as
&dropped in the logfile from being dropped, even if the new queue
of unexpanded lattices is longer.
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If the isometry tests fail or need to much time, you may combine this
option with the following ones, which imply --min_search:

--no_isom[’k’] : never test for isometry.
Every new lattice is dropped under the conditions
described above. If not (i.e. if the algorithm stated above would
start isometry tests), the new lattice is dropped
IF the number of expanded classes with the same theta series
(up to a bound ’B’)+ the number of such lattices that had ever been
added to the queue ’unexpanded’ is >= k (this is to avoid infinite
loops). Otherwise it is appended to unexpanded.
The bound ’B’ used above is the current value of theta_bound (see
also --maxmin). Whenever ’B’ changes, all theta-series-counters are
re-evaluated. You should use -T to give a reasonable start value
for B.
It does not seem very useful to restart such a run, although
this should be possible (in that case all the theta-series-counters
are set to the number of matching thetaseries in unexpanded).

--jump[’k’] : ’k’ is an optional integer. Without this option, to
every class being expanded all neighbours will be computed. If the
number of neighbours is very large, that may be unefficient. If a
better lattice shows up, the current expansion is aborted after ’k’
more neighbours have been constructed unless another even better
lattice is found. Whenever this occurs, the counter for ’k’ is reset.
If --no_isom is given, the theta-series-counter of the theta series
belonging to the currently expanded lattice is increased when the
expansion is aborted because of --jump exactly as in the case of a
completed expansion. On the contrary, if --no_isom is not active,
the currently expanded lattice will not be marked ’expanded’; it
may be expanded again later, if all better lattices have been
expanded.
To switch off --jump, give a negative value for ’k’.

NOTE: successive options --min_search --no_isom --jump will override
the previous ones, but only with those values that are explicitly
given. The first option --min_search will provide default values if
all or some of the parameters are omitted. Repeated calls will only
override parameters with new values, if those are explicitly given.
e.g. --min_search201 5 17 --min_search300 is --min_search300 5 17

--exclude_by_shortvecs’b’ ’m’ ’f’: implies --min_search: ’b’ and ’m’
are non-negative integers and ’f’ a floating value between 0 and 1.
Let L denote the currently expanded lattice (the father) and S be
the set of vectors of L with length <=b.
If #S<=’m’ then a neighbour L(x) of L is ignored if S intersected
with L_x:=(L intersected with L(x)) has more than #S*’f’ elements:
In short: We may exclude neighbours only by computing how many of
the vectors in S are in L_x (which is only the computation of one
scalar-product for each of the vectors).
If ’b’ is 0 then the option is reset.

--pre_exclude_bound’b’ ’m’: implies --min_search: ’b’ and ’m’
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are non-negative integers. After a neighbour passed the ’exclude_
by_shortvecs’ test (described above) the theta-series is computed
up to lenght <=’b’. If there are more than ‘m’ vectors up to length
’b’ then the lattice is dropped.
If ’b’ is 0 then the option is reset.

OTHER GENERAL OPTIONS:
---------------------
[-]s
--silent : do not print input requests and explanations
[-]v
--verbose : print input reqests and some explanations on cerr

--reduce : reduce the lattices that are read from a logfile or
from standard input (the start lattice/all lattices with --invar)

--no_reduce : do not reduce the lattices given.

--no_autom : never compute automorphism groups. This option implies
-A INT_MAX --no_mass and disables the orbit construction on the set
of neighbour-vectors.

--autom : allow construction of automorphism groups

--isom_test : only with --invar: test the given classes for isometric
ones and give a list of the ’best’ representatives

--no_isom_test : only with --invar: do not test the given classes (from
standard input) for isometric ones

--check_disc : only with --recover: check the discriminant of lattices
read from the logfile

--not_check_disc : only with --recover: do not check the discriminants

--groups : whenever an automorphism group is computed it is stored.
This data is useful to avoid recomputation of the automorphism group
as otherwise necessary for orbit computations. It may also be used
to speed up tests for isometry (see --iso_use_known_auts). This option
will increase the storage consumption if there are many classes.
NOTE: The order of the group of automorphisms will be stored whenever
it becomes known, regardless of --groups.
NOTE: the information about the group is lost, if the representative
is changed because of reduction or by &replacing...
This option also enables output of group generators to a logfile,
for a description of this output see -OG below.
Reading of automorphisms from a logfile or from standard input is
controlled by -IG (see below). Printing to standard output is
controlled by -OG (see below).

--no_groups : no group generators are stored nor printed in the logfile

OPTIONS AFFECTING THE INTERPRETATION OF INPUT:
---------------------------------------------
[-]I[bwPLB] : affects the input of integers from O_K and the format

of the hermitian matrices read from stdin (not from a logfile
when read with --recover and not with --invar):
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input options specified by (one or more) characters appended to ’I’:
b : input numbers in O_K in blank_format (e.g. 1 0, 0 1, 3 -2)
w : input of numbers in O_K and K in w_format (compatible to PARI)

(e.g. 1, w, 3-2w, 2-5w, 2-3*w or 1/3-2w, 1/2+3/5*w )
P : Gram-matrix input is in PARI mode (e.g. [*,* ; *,*] )
L : Gram-matrix input is the lower triangle of the hermitian matrix)
B : " " " is given as a full matrix or a lower

triangle. The end of input for a row is given by newline
G : store elements of the automorphism group that are read from a

logfile or with --invar from standard input. For the format see
’hn --invar --help’ (either the generators of the full group of
automorphisms or just some automorphisms may be specified).
WARNING: of course, the generators are no invariants of the
class. Nevertheless, they may be given after &invariants in the
logfile. Then they belong to the most recently given Gram matrix
of this class. The automorphisms are given as matrices with
respect to the same base as the Gram matrix. The automorphism
matrices Gi are subject to Gi*H*(~Gi).transpose() == H (where
H is the Gram matrix).
NOTE: the information about the group is lost, if the
representative is changed because of reduction or by &replacing...

N : ignore automorphisms given in a logfile or in standard input

--blank_format : I/O of numbers in O_K as two components separated by
Gram matrices as lower triangle

--w_format : I/O of numbers in O_K and K using ’w’ (e.g. 1, w, 3-2w,
Gram matrices as lower triangle

--pari_format : I/O of numbers in O_K and Gram matrices in PARI-format,
(e.g. [2,3-2*w ; 3+2*w, 4] (given conjugate(w)=-w))

--multiply_by’I’ : multiply any given lattice (i.e. multiply every
ideal of a given lattice) with the ideal ’I’, where ’I’ is an
ideal given in standard format (Note: ’I’ will not be
processed until the quadratic field K is initialized.
at startup everything enclosed by <...> (including
< and >) is assigned to a string that later defines the
ideal). Note: in most shells it will be necessary to
enclose the arguments by "".."", because ’<’ and ’>’
stand for the redirection of input. To learn about
input of an ideal, start the program with --verbose.
Multiplying will affect every form read from standard
input (e.g. with --invar) but has no effect when
logfiles are read

--scale_by’f’ : scale any given hermitian form (i.e. multiply the
Gram matrix) by the factor ’f’, where ’f’ is a fract written
as numerator/denominator without blanks. This will change
the hermitian space where the form lives in iff f^dim is
not in Norm(K). Scaling will affect every form read from
standard input (e.g. with --invar) but has no effect when
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logfiles are read. The result of multiplying and scaling
(if both --multiply_by and --scale_by are given) must be
integral for every lattice that is entered.

OPTIONS CONTROLLING THE NEIGHBOUR CONSTRUCTION:
----------------------------------------------
--neighbour_verbose : print each neighbour and the vector used to construct

it to the logfile or to standard output in case of
--neighbours or --neighbour_orbits

--neighbour_silent : do not print the neighbours

--only_even : only if neighbours are computed at a prime above 2
and the start lattice is even: Only even neighbours are
generated. This will result in computing all even
lattices in the neighbourhood, because the even lattices
are a connected subset in the neighbour graph. This option may
not be combined with --recover (only_odd or only_even of the
original run will be remembered automatically)

--only_odd : only if neighbours are computed at a prime above 2
and the start lattice is odd: Only odd neighbours are
generated. WARNING: The odd lattices are not necessarily
a connected subset in the neighbour graph. Possibly not
all odd lattices in the neighbourhood are generated
This option may not be combined with --recover (only_odd or
only_even of the original run will be remembered automatically)

--max_stable’n’ : after ’n’ successive expansions of classes in one
depth that did not produce a new class, the next class
to expand is choosen from another depth (if possible)
The 1st depth bigger than the current with an unexpanded
class is choosen or (if there is no such class) the
smallest depth with an unexpanded class. Here the ’depth’
of a lattice means the minimal number of neighbour steps
from the start lattice to this lattice along a path that
’the program knows about’ (not exactly the depth in the
neighbour-graph)

--stop_mass’bf’ : expansion of the neighbour graph is stopped if the
mass becomes >=’bf’, where ’bf’ is a bigfract (written in the
form numerator/denominator without blanks). This option
implies --graph_max0 and --intermediate_mass. After the run
the logfile is not deleted. If the mass ’bf’ was reached and
the expansion left incomplete, this is notified in the output.
if ’bf’==0, a former stop_mass is erased (can be used to
reset this option in a recovered run).
if --invar, --neighbours or --neighbour_orbits is given,
--stop_mass has no effect.

[-]A’n’
--autom_bound’n’ : the order of the automorphism group is used as an

invariant to avoid isometry tests if more than ’n’
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classes are already found.

[-]T’n’
--theta_bound’n’ : the theta series of each lattice is computed up to

norm ’n’ to avoid isometry tests. This is just a start value.
When 1000 classes have been found, ’n’ will automatically be set
(increased) such that it is maximal with <=5% of the thetaseries
being shorter than ’n’ (at that time). In a resumed run this
setting will take place at the beginning if there are more than
1000 classes in the logfile. If --maxmin is given, theta_bound
may be increased whenever a lattice with larger minimum is found.

--compute_missing_groups: only with --groups and --iso_use_known_auts,
redundant if -A0.
the automorphism group of every new class is computed and stored
so that it can be used in future isometry tests. NOTE: Differently
to -A0 the automorphism groups of new neighbours are not
(necessarily) computed, only after isometry testing has been
performed and the neighbour found to be in a new class.
This option guarantees that in each isometry test at
least the automorphism group of one lattice is known.

--not_compute_missing_groups: switch off --compute_missing_groups

--intermediate_mass : whenever a class is found, the sum of the inverse
orders of the automorphism groups is written into the logfile.
(implies --mass).

--no_intermediate_mass: the mass is computed only at the end of the run (or
never), to avoid intermediate automorphism calculations

--mass : the mass of the family of lattices (i.e. is the sum of
the inverse orders of the automorphism groups) is given in output
at the end of the run.

--no_mass : the mass is not computed at all
(implies --no_intermediate_mass).

[-]G’i’
--graph_max’i’ : ’i’ is an integer. The adjacence-matrix will be

computed up to a class number <=i (to avoid quadratic storage
consumption)

--maxmin[’n’[’b’]] : ’n’,’b’ optional integers (’n’ will be set to the
maximal minimum+1 of all forms known at the beginning or resuming
of the neighbour-construction if it is omited).
Changes the expansion strategy:
Briefly: Searches for forms with large minima, starts with a
strategy to find minimum ’n’. Whenever such a form is found, ’n’
is increased by 1 until the bound ’b’ is reached. Then more forms
with minimum ’b’ are searched.
Case n>0: The next class to be expanded is the best (i.e. smallest)
with respect to the following total order:
0. a form with 2*minimum >=n is better (i.e. < ) than

one with 2*minimum <n.
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1. smallest #{x| h(x,x)<n} among these with
2. largest minimum and among these
3. minimal number (as detected in the expansion)
Whenever the new largest minimum l becomes>n,
n is set to l or to min(b,l) if b was given
and the unexpanded classes are reordered.
Whenever ’n’ is increased, theta_bound is set to
max(n-1,theta_bound)
Case n<=0: Reset this option and resume the usual expansion strategy
depending on the number and switching depth according to
--max_stable. Used to reset the option in recovered runs.

OPTIONS CONTROLLING (PARAMETERS OF) SUBALGORITHMS:
-------------------------------------------------

--set_isoaut_options(’string’): (FOR EXPERTS, rely on defaults or try
more than once!) ’string’ must not contain ’)’.
and the closing brace must be seperated from the next option by
whitespace. This option can be used to set all parameters of the
subalgorithms developed from ISOM and AUTOM of Bernd Souvignier
which compute the automorphism group/perform isometry test for
sets of bilinear forms over Z.
Some options also may be set directly (see below).
’string’ may contain options as described in ’README.ISOM’ and
’README.AUTOM’ which you may print using --help --isom or
--help --autom (see above). Different options in this string
shall be separated by whitespace. If a suboption of this whole
option is ommited then reasonable default parameters are used.
This option is accumulative even interweaved with -D or -B.
Note: The options will affect all computations of automorphism
groups as well as isometry tests. Some options are not meaningful
and will be ignored or overridden depending on the situation.
more precisely: the -S’n’ option with ’n’!=0 leads to the
computation of a stabilizer subgroup of all automorphisms in
‘autom2’. But such a setting is overridden in all methods of
herm_lattice_class and hneighbour_orbits. Thus nothing but
the computation of the automorphism group for output with -OG
is affected by -S.

[-]D’i’
--isoaut_depth’i’ : ’i’ is an integer. the C-subroutines isom2 and bravais2

(isometries, automorphism groups) work with ’depth i’
use i=0..6. higher depth increases performance and
storage consumption of these subroutines

[-]B’i’
--isoaut_bachdepth’i’: ’i’ an integer. the C-subroutines isom2 and bravais2

(isometries, automorphism groups) work with ’bachdepth i’
use i=0..dim. higher depth increases performance if the automorphism
groups of the lattices are small

--iso_use_known_auts: changes strategy for tests for isometry: if
(some) automorphisms of the lattice which is passed to isom2
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as 2nd one are known, these are used to construct orbits of
the short vectors. This may increase computation time in easy
cases but should improve performance for most difficult
cases. implies --groups -IG
(There is a related parameter ‘‘noaut_norm_threshold’’ that affects
cases where iso_use_known_auts is set and only one lattice has known
automorphisms and this lattice has also the smaller maximal diagonal
entry in its Gram matrix with respect to a Z-base.
Then minimizing the
bound for the needed short vectors contradicts use of the known
automorphisms. This is resolved as follows: If the necessary
bound for the short vectors increases by a factor <=
noaut_norm_threshold then this is acceptable and the
automorphisms are used (that is: the lattice with
automorphisms is passed as 2nd lattice parameter to
the Z-isometry test).
by now, noaut_norm_threshold is set to 1.3 )

--iso_ignore_known_auts: switch off --iso_use_known_auts (does NOT
reset --groups) see also --compute_missing_groups above

/* related hidden parameter (for developers only):
noaut_norm_threshold */

--use_K_linearity : the calculation of the automorphism group of hermitian
lattices and isometry test make use of the hermitian
structure but thus cannot use reduction of the Z-basis
by the usual LLL. Only O_K-linear transformations are
done to find a better basis (the hermitian LLL is
performed). Switch it off, if the basis found by this
means is too bad and causes isom/autom troubles

--Z_or_K_linearity : try Z-reduction of the trace form and use either the
hermitian structure or the Z-reduction in isom2/autom2 depending on
what strategy leads to smaller lists of ’short vectors’ involved in
isom2/autom2).

--herm_lll’i’ ’f’ : perform the reduction of the O_K lattices by a
hermitian version of LLL with blocksize 2<=’i’<=dim and an
LLL-constant 0<’f’<=1. (disabled to avoid overflow,
if hn is compiled without dynamic integers (LEDA or LiDIA))

[-]S’n’
--storage_bound’n’ : the maximal size of the workspace for the construction

of the orbits will be ’n’ kilobytes. This should fit into the
memory of your machine. If the workspace cannot hold all neighbour
vectors, the construction of the orbits needs more time.

--orbit_searchdepth’n’ : if there are so many neighbours, that the neighbour
vectors do not fit into the workspace (see -S), then vectors that
have a representative in their orbit that can be found with <=’n’
iterations of ‘representative-search’ (see description of
orbits_iter_p_templ.h) are no longer held in the workspace.
Increasing ’n’ increases computation time
but allows more vectors to be sorted into orbits (given a fixed -S).
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If no more space in the workspace is left and the maximal search-
depth ’n’ is reached, the orbit construction switches to ‘pseudo
orbits’, i.e. simply gives a set of vectors that covers all orbits
(as small as is possible with the given limits) but without exactly
computing the orbits. If this happens, the order of the orbits
cannot be tracked and the adjacence-matrix will not be computed.

OPTIONS CONTROLLING THE OUTPUT:
------------------------------
[-]l
--trace_list : list the trace forms with their invariants after the

hermitian forms. Do not check them for isometries. The format of
the list is similar to that of ’invar’ and ’isolist’

[-]t
--trace_isom_search : check the trace forms for isometries and list them

the format of this list is the same as above
[-]n
--no_trace_list : no list of trace forms

--shells[i] : i is an optional integer. print the numbers of vectors
of (square)norm 0<n <=b with
b= -i (if i<0)
b= maxnorm (if i is omitted)
b= min(i,maxnorm) (if i>=0)

where maxnorm is the maximal norm of a base vector *
generator of its coefficient ideal intersected with Z.

--shells_all : output at least all theta coefficients that have been
read or computed (see --shells above)

--not_shells_all : switch off --shells_all

[-]O[csbwpPLUOTRFGN]: output options specified by single characters
appended to ’O’:
c : copy or skip comments in input according to the identifying

character at the beginning (% : copy; & : skip)
comments start anywhere in input and end with newline.

s : skip all comments
b : output of numbers in O_K in blank_format (e.g. 1 0, 0 1, 3 -2)
w : output of numbers in O_K and K in w_format

(e.g. 1, w, 3-2w, 2-5w or 1/3-2w, 1/2+3/5w )
p : output of numbers in O_K in PARI_format (e.g. 1+3*w)
P : matrix output is in PARI mode (e.g. [*,* ; *,*] )
L : matrix output as the lower triangle of the hermitian

Gram-matrices
U : the lattices have the same order in output as in input or as

they are generated
O : the lattices are ordered depending on their invariants
T : print the trace lattice (scaled by 1/2 iff discr=0 mod 4)

together with each lattice. If L=SUM a_i*e_i (i=1..n) is the
lattice with respect to a pseudo-base e_i and coefficient
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ideals a_i in O_K, the trace lattice is given with respect to
the Z-base
a_1.Zpart()*e_1..a_n.Zpart()*e_n,a_1.Zgen2()*e_1...

...a_n.Zgen2()*e_n
R : print the trace lattice after lll and "triple"-reduction
F : give representatives of the lattices in the ’almost free’

form, i.e. with respect to a pseudo-base with at most one
coefficient ideal that is not the ring of integers.
NOTE: the representatives found without this option may be
much better (have smaller coefficients of the trace lattice
with the respect to the Z-base given above)

G : print a set of generators of the automorphism groups of all
lattices. The automorphisms are given as matrices with respect
to the same base as the Gram matrix. The automorphism
matrices Gi are subject to Gi*H*(~Gi).transpose() == H
(where H is the Gram matrix). (see also ’hn --invar --help’)
If the option --set_isoaut_options(-S’n’) with n>0 is given
and only a subgroup is computed then this subgroup is
printed after "Aut_subgroup"

K : print elements of the automorphism group if these have been
computed but do not compute missing information. Either a
generating set of the group is printed after ’Aut’ or the
known automorphisms are printed after Aut_subgroup

N : do not print automorphisms even if they are known.

CAUGHT SIGNALS:
==============
During the construction of orbits of neighbour-vectors the signal SIGINT
is caught. If the process gets this signal, the construction of orbits
is stopped. The pre-orbits found by then are processed further, the rest will
be processed later. This will save computation time but lead to a partition
of the set of neighbour vectors into pre-orbits that may be finer than the
actual orbit partition. The output on standard error indicates, when a (large)
orbit construction is going on by lines of the form
orbits_iter_p<.>: processed 100000 elements, 4450840 pre-orbits
or later
orbits_iter_p<.>: processed 8000000 elements, 367800 pre-orbits.

During the neighbour construction (when the variable ’porbits’ holds the pre-
computed orbits or pre-orbits) the signal SIGUSR1 is caught. If the process
gets this signal the currently precomputed orbits are dumped in a file
orbit_dump.XXXX (where XXXX contains the discriminant of K, the dimension and
the prime) and this is notified in the logfile. In a recovered run, this
information may be used (if some calling parameters match) to avoid repeating
(part of) the orbit construction. This file will automatically be deleted, if
the current expansion is completed.

KNOWN PROBLEMS:
==============
sometimes subalgorithms do not end within an acceptable period of time.
Because of the logfile, it may be possible to turn off this subalgorithm
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or change its parameters and restart without much loss. To detect which
subalgorithm caused the problem, you might
-- look at the intermediate output on standard error and guess
-- look at the output " "
-- look in the logfile (see --recover) " "
-- attach the debugger to the

running process and look at the backtrace. (If this does not work,
restart with the program hn.debug (if it exists) and retry).

-- just try all possibilities listed below

The following functions are known to cause problems without notifying it:
autom, isom2 : although in most cases the runtime depends only on the

dimension (over K) of the lattices (<=10, 11 is possible) , there are
very rare examples where they fail in dimension 6 (or bigger).
Try to change depth parameter (-D’n’) or Bacher prameter (-B’n’).
For autom: switch off the computation in the special situation with
--no_mass, -A100000 or in the whole run with --no_autom. It may also be
useful to improve the reduction using e.g. --herm_lll3 0.99 (see below).

bigherm_lattice::block_lll, block_lll2 : In rare cases there is a numerical
explosion causing the routine to run for hours or forever. If the
action is --invar or reading a logfile try to avoid reduction by
--no_reduce. Or change the parameters of this process, e.g.
--herm_lll2 0.5

herm_lattice_class::vector_bound, theta_series::theta_series :
computation of the thetaseries up to a bound. Runtime depends on the
dimension and the bound. With --shells (or perhaps as a default) this
bound depends on the current gram matrix, what will cause problems in
dimensions >=8 in some cases. Use --shells’n’ with negative ’n’, e.g.
--shells-1

2.5. Miscellaneous. In this subsection I list (alphabetically) miscellaneous rou-
tines which have been programmed in the project.

decomp: The program decomp, written by Frank Vallentin, computes the
decomposition of a given lattice into its irreducible components. I could
recompile it, but the attempt to run it crashed with

*** glibc detected *** decomp: double free or
corruption (fasttop): 0x08055458 ***

I refrained from attempts to debug it.
gsymbol: The program gsymbol, written by Schiemann computes the genus

symbol (as defined in [2]) of a given (definite or indefinite) integral quadratic
form over Z. It could be recompiled and ran in simple tests.

herm mass: The program herm mass, written by Schiemann, computes the
mass of the hermitian genus of the sum of m squares over a given imaginary
quadratic number field. It could not be recompiled.

perfrk: the program perfrk, written by Axel Pawellek, computes the per-
fection rank (see [11]) of a lattice. I could not compile it at first try, but
the only problem seems to be a proper link to Lapack, being in a hurry I
reserved that for later.
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rootsystem: The program rootsystem, written by Axel Pawellek, computes
the root system of a given lattice. I could not recompile it, due to LiDIA
problems.

shvec: The program shvec, written by Frank Vallentin, computes lists of
short vectors and the theta series of degree 2. According to Vallentin it has
been “almost not” tested. I could recompile it but didn’t test it.

sort-list: This program isn’t really well documented. It is written by Schie-
mann and may have been abandoned for some reason (superseded by gsym-
bol?). According to comment lines found in the main program it takes a
symmetric matrix S (Gram matrix) from standard input and gives the de-
terminant det(S), for all primes p dividing 2 ∗ det(S) the p-adic symbol of
S and the signature of S. The symbols are those in Conway-Sloane. The
2-adic symbol is the unique symbol given there. I didn’t seriously try to
compile it.

strongly modular: This program isn’t really well documented. It is appar-
ently written by Vallentin and seems just to test whether the input lattice
is strongly modular in the sense of Quebbemann [17]. I could compile but
didn’t yet test it.

3. Problems

One rather easy type of problem is the change of environment. Schiemann wrote
his programs for our HP-UX workstations with some alternatives of using egcs
on LINUX machines. Consequently, in the makefiles one has to change all path
declarations and some of the flags set. In some cases I experimented with that and
was successful. Generally this is something at which I am not particularly good
but it should not be a serious problem for an expert.
Another not quite so easy type of problems may be that not all storage allocation
procedures which Schiemann used are still permitted and working. At the time
when the programs were written storage problems were a limiting factor for number
theoretic programming and Schiemann spent a lot of effort in optimizing storage
allocation (in 1995 my newly bought HP-UX station had 144 (=16+128) MB of
RAM and was the biggest machine in the pure math part of the department). My
hope is that an experienced programmer can locate the problematic parts of storage
allocation and fix the problems.
Apart from that there are two main types of problems:

3.1. Changes in the C standard. Some changes in the standards for C and
C++ require adaptations. Relatively harmless are changes in the names of files
that need to be included, e. g. replacing iostream.h by iostream, including stdlib.h
and string.h in several places, adding using namespace std; in several files. The
files making up gsymbol conflict with some other changed conventions which were
easy to fix, I list them in my comments file in that directory.
More serious are changes in the allowed programming style in C++. In particular,
the way in which Schiemann made friend declarations in his templates is now illegal.
It seems that this can be fixed by using forward declarations. At least in gsymbol
that appeared to work:
I changed the original header file sym matrix templ.h in the following way:
/* The following forward declarations inserted by RSP, Jan 2009,
in order to avoid errors of illegal use of friends*/
template<class T>
class sym_matrix;
template<class T>
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void ijvertausch(sym_matrix<T>& A,int ii,int jj);
template<class T>
void ijdiag0add(sym_matrix<T>& A,register int ii,register int jj);
template<class T>
int compare(const sym_matrix<T>& A,const sym_matrix<T>& B);
template<class T>
int transform(sym_matrix<T>& A);
template<class T>
void make_primitive(sym_matrix<T>& A,T &factor);
template<class T>
int jacobistep(sym_matrix<T>& A,T& z,T& n,T*& d);
template<class T>
void jacobidet(sym_matrix<T>& f,T& det,int* dimplus,

int* dimnull,int preserve_matrix);
/*end inserted forward declarations*/
template<class T>
class sym_matrix{
private:
// the order of elements is essential for constructor-initialisation
int Dim;
int maxdim;
T * mat;

void mcopy(const T* Bmat) // Bmat!=this->mat
{int i; T *ap; const T *bp;
for(i=(Dim*(Dim+1))>>1,ap=this->mat,bp=Bmat ;i;

i--,*(ap++)=*(bp++));}

public:
// Konstruktoren
sym_matrix(int vdim=0):Dim(vdim<0? 0:vdim),maxdim(Dim),

mat((Dim>0)? new T[(maxdim*(maxdim+1))>>1]:(T*)NULL)
{if(Dim>0 && mat== NULL)
{cout <<"new failed in sym_matrix<T> constructor\n";exit(-1);};}

sym_matrix(const sym_matrix<T>& B);/*:
Dim(B.Dim),maxdim(B.Dim),mat((Dim>0)? new

T[(maxdim*(maxdim+1))>>1]:NULL)
{if(&B==this){cout<<"initialisation from oneself not possible\n";

exit(-1);}
mcopy(B.mat);}

*/
#ifdef math_types_h
sym_matrix(const smatrix& B); // copy from smatrix
sym_matrix<T>& operator=(const smatrix& B); // " "

#endif
~sym_matrix(){delete[]mat;Dim=maxdim=0;mat=NULL;}
// destructor, leaves behind "empty" matrix

sym_matrix<T>& operator=(const sym_matrix<T>& B);
sym_matrix<T>& suck(sym_matrix<T>& B)

// flat copy, leaves f empty
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{if(&B!=this)
{if(mat!=NULL) delete[]mat;
mat=B.mat;Dim=B.Dim;maxdim=B.maxdim;B.mat=NULL;B.Dim=B.maxdim=0;}

return *this;}
T& coeff(int i,int j)
{int h;if(i>j){h=i;i=j;j=h;}
return this->mat[(j*(j+1)>>1)+i];}

T coeff(int i,int j)const
{int h;if(i>j){h=i;i=j;j=h;}
return this->mat[(j*(j+1)>>1)+i];}

int principal_minor(int i){if(i<=maxdim){Dim=i;return 1;}
else return 0;}
int dimension()const{return Dim;}
int dim()const{return Dim;}
int max_dimension()const{return maxdim;}
int max_dim()const{return maxdim;}

// operators
sym_matrix<T>& operator*=(const T& n);

friend int compare<>(const sym_matrix<T>& A,const sym_matrix<T>& B);
friend void ijvertausch<>(sym_matrix<T>& A,int ii,int jj);
friend void ijdiag0add<>(sym_matrix<T>& A,register int ii,

register int jj);
friend int transform<>(sym_matrix<T>& A);
friend void make_primitive<>(sym_matrix<T>& A,T &factor);
friend int jacobistep<>(sym_matrix<T>& A,T& z,T& n,T*& d);
friend void jacobidet<>(sym_matrix<T>& f,T& det,int* dimplus,

int* dimnull,int preserve_matrix);
/*inserted <> into jacobidet, RSP Jan 2009*/
}; // end sym_matrix<T>

I do not know whether there are more problems of the same type along the way.

3.2. Routines for big integers. This is presently a rather serious problem. Schie-
mann found it convenient to use some routines from LEDA for handling big integers,
big floats, and for sorting. As an alternative he provided switches in the Makefile
and in selected header files (include param.h) to use LiDIA instead. At the time
Schiemann wrote his programs, LEDA was freely available in the scientific domain
(though otherwise already a commercial product), meanwhile it is totally commer-
cial and of no use for developing free software. LiDIA can still be downloaded
but is no longer maintained and could not be compiled with gcc4.3. Consequently
someone has to rearrange the routines that involve bigints and bigfloats; this goes
definitely beyond my powers and time constraints.
For an experienced C++ programmer however, it should be manageable: There
are, as far as I can see, (see also below) only three LEDA types used by Schiemann,
namely integer, bigfloat, sortseq, these are well documented in the LEDA manual
and one can even obtain the source files. Moreover, Schiemann’s files are rather
well documented by comment lines and there is only a small number of files dealing
with the bigint/bigfloat routines explicitly.
Without that issue being properly addressed or better solved the problem is par-
ticularly bad for hn and for isolist. At present, both programs produce endless
error messages and it is hard to distinguish which ones are indirectly caused by
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missing LEDA/LiDIA support and which ones are due to changed programming
style alone.
Let us look at the LEDA/LiDIA problem more closely: In the Copyright file of the
Hn-directory Schiemann writes:

Depending on the switches in the file ’include_param.h’,
this program uses the integer interface to GNU’s gmp
from LiDIA and the LiDIA type bigfloat.
The common setting is to prefer the data types
’integer’ and ’bigfloat’ from LEDA instead of
LiDIAs ’bigint’,’bigfloat’. (LiDIAs bigints need
a lot of time for copying, because they do not follow
a ’handle’ concept as LEDAs integers.
With small numbers, LEDAs integers need about 1/10th
of the time compared with LiDIA. But that may depend
on the installation of LiDIA/LEDA on your system)

In addition, he uses the LEDA data type sortseq for sorting his lists. Information
on these types can be obtained from the LEDA website, my version of the ZAK
archive contains pdf files obtained from there.

4. Further goals

Of course the new SAGE library for quadratic forms should at least recover the
functionality that our old programs had and should be capable of doing the things
that MAGMA can do presently.
By work of Hironaka/Sato [4] and Yang [26, 27] local representation densities can
at least in principle be explicitly calculated. This should be available in SAGE.
Since the formulas of Hironaka/Sato are rather complicated it may be better to
use Katsurada’s recursion formulae [6, 7] instead. Since the densities are given by
known formulas for primes which don’t divide the product of the discriminants of
the representing and the represented form such a program should also compute
the infinite product over all primes of the densities for a pair of global forms and
identify the zeta- and L− values occurring in them.
For the cryptography community it would of course be of interest to have the best
short vector methods and the best variants of the LLL algorithm available.
It would also be nice to have implementations of the coding theoretic constructions
of lattices described in [2] and other places.

Computing with indefinite quadratic forms is not really far developed. It should
be easy to write a program that computes the number of spinor genera in a given
genus (and hence in indefinite cases the class number); this will also be useful for
definite forms. Such a program should then also give for each pair of spinor genera
the congruence condition for primes for which the neighbourhood graph contains
both spinor genera.
It will be a bit more intricate to actually decide for two given forms whether they are
in the same spinor genus (thereby obtaining an equivalence test for indefinite forms
in at least 3 variables), but one should try how far one can get. It appears that this
is the easiest way to obtain an equivalence test for indefinite forms. The problem
becomes easy once one has a rational transformation which transforms one form
into the other, so one is lead to also consider the quite hard problem of constructing
rational isometries between two forms which are known to be rationally equivalent,
for example by the result of a computation of their genus symbols.
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For indefinite anisotropic forms over Q (which exist only in dimension ≤ 4) repre-
sentatives of orbits of representations can in principle be effectively determined; it
would be nice to really do this by computer calculation.

My interest in programming quadratic forms comes presently mainly from applica-
tions to modular forms. Especially for Siegel and (quaternion) hermitian modular
forms there aren’t many methods available for the explicit construction of modu-
lar (especially cuspidal) forms, in particular since it is not known whether Hecke
eigenvalues determine the form uniquely, and there is still a lot of experiments to
be done.
With Schiemann’s programs we could compute Siegel theta series of degree 2, but
the computation of spaces generated by a given set of theta series did in fact
only give a lower bound for the dimension of the space computed since we had
no explicit bound available for the number of Fourier coefficients that are needed
to characterize a Siegel modular form. With respect to that question there has
meanwhile been a lot of progress mainly due to Poor and Yuen [14, 15, 16] (see also
the dissertation of Klein [9] for the hermitian case and for a discussion of level 6= 1).
The last problem also arises for Hilbert modular forms, where bounds (which are not
particularly practical) have been derived in [25, 1]. As far as possible such bounds
should be implemented into programs that determine bases of spaces of modular
forms generated by theta series of the respective type. For the computation of
theta series it should also be possible to consider inhomogeneous theta series (theta
series attached to cosets of lattices) and perhaps “mixed” Siegel theta series, i.
e., theta series of degree n, where the n vectors whose Gram matrix is computed
belong to different lattices (such theta series occur for example if one considers
the Fourier expansion with respect to certain boundary components). In addition,
theta series with spherical harmonics and with characters should be computed in
all cases (elliptic, Hilbert, Siegel, hermitian).

Quaternion algebras play an important role both in modular forms theory and
in quadratic forms theory. MAGMA has some facilities for handling these; they
should be matched by SAGE. Desirable is e. g. an implementation of the algorithm
for computing ideal classes which was recently presented in [8], see also [12], and
an implementation of the class number formulas of Vigneras (which have been
programmed in MAGMA in the Diplom thesis of my PhD student U. Gebhardt).
I understand that an implementation of the algorithms for Hilbert modular forms
attached to ideals in quaternion algebras that have been presented by Dembelé
is under way. Work on similar constructions for orders of arbitrary class number
and using harmonic polynomials is the subject of the PhD thesis of U. Gebhardt
which is about to be finished; due to the current lack of quaternion algebra routines
in SAGE she is using MAGMA again! A good library for Hilbert modular forms
could also be used to test conjectures about cohomology groups of Hilbert modular
surfaces and to test modularity conjectures.
Once the basic quaternion algebra routines have been established in SAGE it will
be desirable to also compute genera of quaternion hermitian lattices and their
quaternionic theta series; there is a lot of fascinating conjectures around generalizing
e. g. the Jacquet-Langlands correspondence.
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[11] J. Martinet: Les réseaux parfaits des espaces euclidiens.[Perfect lattices of Euclidean

spaces] Masson, Paris, 1996. iv+439 pp.

[12] A. Pizer: An algorithm for computing modular forms on Γ0(N). J. Algebra 64 (1980),
no. 2, 340–390.

[13] W. Plesken, B. Souvignier: Computing isometries of lattices, J. Symbolic Comput. 24

(1997), no. 3-4, 327–334.
[14] C. Poor, D. Yuen: Linear dependence among Siegel modular forms. Math. Ann. 318

(2000), no. 2, 205–234.
[15] C. Poor, D. Yuen: Computations of spaces of Siegel modular cusp forms. J. Math. Soc.

Japan 59 (2007), no. 1, 185–222.

[16] C. Poor, D. Yuen: Dimensions of cusp forms for Γ0(p) in degree two and small weights.
Abh. Math. Sem. Univ. Hamburg 77 (2007), 59–80

[17] H.-G. Quebbemann: Atkin-Lehner eigenforms and strongly modular lattices, Enseign.

Math. (2) 43 (1997), no. 1-2, 55–65.
[18] R. Scharlau, B. Hemkemeier: Classification of integral lattices with large class number,

Math. Comp. 67 (1998), no. 222, 737–749.

[19] R. Scharlau, R. Schulze-Pillot: Extremal Lattices, p. 139-170 in: B.H. Matzat, G.-M.
Greuel, G. Hiss (Eds.): Algorithmic Algebra and Number Theory. Springer 1998

[20] R. Scharlau, A. Schiemann, R. Schulze-Pillot: Theta Series of Modular, Extremal, and

Hermitian Lattices, in: M.-H. Kim, J. S. Hsia, Y. Kitaoka, R. Schulze-Pillot (Eds):
Integral quadratic forms and lattices (Seoul, 1998), 221–233, Contemp. Math., 249, Amer.

Math. Soc., Providence, RI, 1999.

[21] A. Schiemann: Ternary positive definite quadratic forms are determined by their theta
series. Math. Ann. 308 (1997), no. 3, 507–517.

[22] A. Schiemann: Classification of Hermitian forms with the neighbour method, J. Symbolic
Comput. 26 (1998), no. 4, 487–508.

[23] A. Schiemann: Tables of integral hermitian forms, available at

http://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/

[24] R. Schulze-Pillot: An algorithm for computing genera of ternary and quaternary qua-

dratic forms, p. 134-143 in Proceedings of the International Symposium on Symbolic and
Algebraic Computation (ISSAC) Bonn 1991

[25] F. Wichelhaus: Wann verschwinden Hilbertsche Modulformen?, Dissertation Saarbrücken

1999

[26] T. Yang: An explicit formula for local densities of quadratic forms. J. Number Theory
72 (1998), no. 2, 309–356

[27] T. Yang: Local densities of 2-adic quadratic forms. J. Number Theory 108 (2004), no. 2,
287–345


