Craig Citro and William Stein
UCLA Math / UW Math

January 21, 2009

«O>r «Fr <

DA

http://www.sagemath.org

What does Sage do?

What Sage Does: The Details
m Some of Sage's mathematical strengths
m Cython
m Parallel Computing in Sage
m Interact
m The Notebook
m Open Source in Sage
m Sage and Correctness Testing

«O>r «Fr <

Sage solves interesting mathematical problems

sage: factor(2009)
772 x 41

sage: time n = number_of_partitions(1078)

CPU times: user 2.39 s, sys: 0.00 s, total: 2.39 s
sage: len(n.digits())

11132

sage: integrate(sin(x)*exp(x),x)
e x#*(sin(x) — cos(x))/2

sage: time w = pi.str(1076)
CPU times: user 1.22 s, sys: 0.00 s, total: 1.22 s

Sage solves interesting mathematical problems quickly

sage: G = AlternatingGroup (4); H = G.cayley_graph(); H.show3d()

sage: A = H.automorphism_group (); A

Permutation Group with gens [(1,2,12)(3,5,4)(6,7,8)(9,11,10),

(1.4)(2,6)(3,8)(5,9)(7,10)]

sage: A.order ()

24

sage: for n in [3..7]:
An = AlternatingGroup(n); G = An.cayley_graph ()
print n, An.order(), G.automorphism_group (). order ()

333

4 12 24 # <—— theorem or bug?

5 60 60

6 360 360

7 2520 2520

Sage solves interesting mathematical problems quickly

sage: E = EllipticCurve([12,3,4,5,6]); show(E)

y2+12xy+4y:x3—|—3x2+5x+6

/’ 250

sage: factor(E.conductor())
274 % 5 % 11 % 13 % 277

sage: time E.rank()
2
CPU time: 0.02 s, Wall time: 0.49 s

sage: time E.gens()
[(-6 : 66 : 1), (-2 : :1)]
CPU time: 0.00 s, WaII time: 0.64 s

Sage makes mathematical experimentation easy ...

(2.3) Conjecture. If E(K) has rank 1, then the integer ¢-m-uy - | |* is divis-
ible by t.

def data(E, D):
F = E.quadratic_twist (D). minimal_model ()
rE = E.rank(); rF = F.rank()
T = E.torsion_order ()*F.torsion_order ()
cqprod = E.tamagawa_product ()

L.E = E.lIseries ().dokchitser (). derivative (1, rE)

L.F = F.lIseries ().dokchitser (). derivative(1, rF)

om2 = 2xabs(E. period_lattice (). basis_matrix ().det())

sha = round(abs((L_-ExL_F / (factorial(rE) % factorial(rF)))

* T°2 % sqrt(abs(D),prec=53) /

(om2 *x E.regulator() % F.regulator() * cqprod”2)))
sha = odd_part(sha)
return odd_part(T), odd_part(cqprod), sqrt(sha)

sage: E = EllipticCurve('1862al’); E.rank()

2

sage: for D in E.heegner_discriminants_list (10):
print D, data(E,D)

31 (3, 3, 1)

. using modern tools

sage: N = 2"217—-1; M = 27218-1; Is = [N,M]

sage: time factor(N)

127 % 5209 * 62497 x 2147483647 * 6268703933840364033151 =
CPU time: 1.00 s, Wall time: 1.17 s

sage: time [factor(x) for x in Is]
[127 % 5209 =* 62497 x ..., 3 % 104124649 x 745988807 =
CPU time: 2.23 s, Wall time: 2.44 s

sage: Qparallel (2)

. def f_para(n):

return factor(n)

sage: time v = list(f_para(ls))

CPU time: 0.03 s, Wall time: 1.50 s

Sage draws pretty pictures ...

fy = sin(u) % sin(2 % v)
sage: fz = cos(u) * sin(2xv)
sage: (sphere((0,0,0), 0.7, opacity=0.5) +
parametric_plot3d ([fx, fy, fz], (u, —pi/2, pi/2)
(v, —pi/2,pi/2), frame=False, color="red”))

Steiner surface/Roman’'s surface with embedded sphere
sage: u, v = var('u,v’)
sage: fx = sin(2%u) % cos(v) * cos(v);

... and makes them movel!

from scipy import io

x = io.loadmat (DATA + ’'yodapose.mat’)

from sage.plot.plot3d.index_face_set import IndexFaceSet

V =x['V']; F3 = x['F3']—1; F4 = x['F4']-1

Y IndexFaceSet(F3, V, color = Color('#00aa00")) +
IndexFaceSet(F4, V, color = Color('#00aa00"))

Y = Y.rotateX(—1)

Y.show(aspect_ratio = [1,1,1], frame = False, figsize = 4)

u]
8]

I

i
it
N)
»
i)

Even by themselves!

sage: a = animate([circle ((i,i), 1-1/(i+1), hue=i/10)
for i in srange(0,2,0.2)],
xmin=0,ymin=0,xmax=2,ymax=2,figsize =[2,2])

sage: show(a)

1.5

0.5

05 1152

Sage provides interfaces to other mathematical software

sage: gp(2) + singular(5)
7

sage: var('x")
sage: f = sin(x"2) + pi/2
sage: show(f.integrate())
ﬁ<(ﬁi+\@)erf<@>+(\/§,-,\/§)e,f<m>>
4+ X
8 2

sage: g = mathematica(f); g

Pi/2 + Sin[x"2]

sage: g.lIntegrate(x)

(Pi*x)/2 4+ Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*x]

F+VEs (V)

Sage provides includes lots of mathematical software

sage: r_console ()

R version 2.6.1 (2007—-11-26)
Copyright (C) 2007 The R Foundation for Statistical Computing

ISBN 3-900051—-07-0

> 3

[1] 3

> x <— ¢(1,2,3,4)

> X

[1] 12 3 4

> 1/x

[1] 1.0000000 0.5000000 0.3333333 0.2500000
> q()

sage:

Sage makes visualizing mathematics easy

var('x")

x0 =0

Qinteract

def _(f = input_box(sin(x)*xe”(—x)), order = (1..12)):

p = plot(f, —1, 5, thickness = 2)
dot = point((x0,f(x0)), pointsize = 80, rgbcolor = (1,0,0))
ft = f.taylor(x, x0, order)
pt = plot(ft, —1, 5, color = 'green’, thickness = 2)
html("$F(x)\;=\;%s$ "%latex(f))

(

"$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x"{%s })$ " %(
x0, latex(ft), order+1))
show(dot + p 4+ pt, ymin = —.5, ymax = 1)

£ [enxrsin(rx

order) 2

f(z) = ae*sin(z)
F(&50) = 2?+ 0@

Curious? Easy access to source code. Change anything.

sage: n = 5.1
sage: n.floor??
def floor(self):

Returns the floor of this number

EXAMPLES:
sage: R = RealField ()
sage: (2.99).floor ()

2

sage: (2.00).floor ()

2

sage: floor (RR(—-5/2))

-3

sage: floor (RR(+infinity))
Traceback (most recent call last):

ValueError: Calling floor() on infinity or NaN
cdef RealNumber x
if not mpfronumber_p(self.value):
raise ValueError, 'Calling floor () on infinity or NaN’
x = self._new()
mpfr_floor(x.value, self.value)
return x.integer_part()

u]
8]

I

i
it
N)
»
Q

Very Curious? Look at MPFR'’s source...

Look at spkg/standard/mpfr-2.3.2/src/rint.c
mpfr_floor (mpfr_ptr r, mpfr_srcptr u)

return mpfr_rint(r, u, GMPRNDD);
}

mpfr_rint (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)

about 270 lines nested 8 levels deep
/+* More limbs in the integer part of u than in r.
Just round u with the precision of r. %/
MPFR_ASSERTD (rp != up && un > rn);
MPN_COPY (rp, up + (un — rn), rn); /*x r = u %/
if (rnd_away < 0)

/* This is a rounding to nearest mode (GMP_RNDN or G
Decide the rounding direction here. x/
if (rnd_mode =— GMP_RNDN &&
(rp[0] & (MPFR_LIMB_.ONE << sh)) = 0)
{ /* halfway cases rounded towards zero x/
mp_limb_t a, b;
/* a: rounding bit and some of the following bit
/* b: boundary for a (weight of the rounding bit

if (rnd_away && mpn_add_1(rp, rp, rn, MPFR.LIMB_.ONE << sh))

Very Very Curious? Look at MPIR's source...

Look at spkg/standard/gmp-mpir-svn1555.p0/src/mpn/x86_64/add_n.as

; Copyright 2004 Free Software Foundation, Inc.
; Copyright 2008 William Hart
; This file is part of the MPIR Library.

. INPUT PARAMETERS

;orp rdi

;oup rsi

;ovp rdx

;N rex

%include '../yasm_mac.inc’

BITS 64

GLOBAL_FUNC mpn_add_.n
lea rsi, [rsi+rcx=8]
lea rdi, [rdi+rcx=8]
lea rdx, [rdx+rcx=8]
neg rex
xor eax, eax ; clear cy

align 4 ; minimal alignmen

Outline

What Sage Does: The Details
m Some of Sage's mathematical strengths
m Cython
m Parallel Computing in Sage
m Interact
m The Notebook
m Open Source in Sage
m Sage and Correctness Testing

What does Sage do?

Sage:

solves interesting problems quickly.

makes experimentation easy.

interfaces with everything under the sun.

makes creating and interacting with graphics simple.
makes sharing resources and collaborating natural.
shows you every line of source code.

local or on the Web — no difference.

is completely and totally FREE.

Some of Sage's strengths

[~ I o I > I |

= I I o I > I~ I |

N N

Numerical linear algebra, optimization (numpy, scipy, gsl)
Exact linear and commutative algebra (Linbox, IML, etc.)
Group theory

Number theory

Symbolic calculus

Coding theory

Cryptography and cryptanalysis

Graph theory

Combinatorics

2d and 3d plotting

Statistics (Sage includes R)

Fast compiled code

Use Fortran in the notebook

Numerical computation using scipy/numpy/matplotlib (Matlab
replacement)

Using 11 columns Original
oo NI R |) [SageDavsiZBugsmash

190 ama T, ;A >
1y TN x

—

200 4| 200r 5|
250 -‘.',__. e 250 | _3_§2.. @'
3001 % 4 300 o
' 5 s] il — A

0 100 200 300 400 500 600 0 100 200 300 400 500 600

import pylab
A = pylab.imread (DATA + "bug.png’)
Agray = pylab.mean(A, 2)
def svd_.image(Agray, i):
siz = pylab.shape(Agray)
u,s,v = pylab.linalg.svd(Agray)
Anew = s[0]*pylab.outer(u[0:,0],v[0,0:])
for j in range(i):
uu = uf0:,j+1]; vw = v[j+1,0:]
op pylab.outer(uu,vv)
Anew = copy(Anew) + pylab.dot(s[j+1],0p)
pylab. figure (); pylab.subplot(121)
pylab .imshow (Anew); pylab.gray ()
pylab. title (' Using ' + str(i+l) + ' columns’)
pylab.subplot(122); pylab.imshow(Agray)
pylab.gray(); pylab.title(Original’); pylab.savefig('x.png")

Qinteract
def energy.-in_svd (i=slider (0,50,1)):
svd.image (Agray, i)

Determinants of Integer Matrices

sage: a = random_matrix(ZZ, 200, x=-2"128,y=2"128)
sage: time d = a.det()
CPU time: 4.25 s, Wall time: 4.49 s

Table 9.2: Time in seconds to compute the determinant of a random n x n matrix whose
entries are uniformly distributed in the interval [—2°, 2°], where b =bits.

n 8 bits | 32 bits | 128 bits | 256 bits | 512 bits

Sage 50 0.0 0.1 0.3 0.8 3.7
250 | 1.3 2.0 9.1 315 138.2
500 | 7.2 12.6 54.9 190.2 646.6

1000 | 55.6 105.0 397.3 1057.4 3435.1
1500 | 230.6 | 407.0 1242.7 | 3255.8 8133.3
2000 | 544.1 | 997.1 2828.0 | 6138.2 15533.5
3000 | 1991.8 | 3132.5 | 7473.8 14385.3 | 39834.7
Magma | 50 0.1 0.1 0.3 0.6 1.8

250 | 0.4 12.8 62.9 192.3 659.2
500 | 3.8 108.5 455.7 1175.5 4362.9
1000 | 40.1 677.7 3871.2 | 9406.8 25430.3
1500 | 122.4 | 3085.8 | 12327.8 | 28987.9 | 78741.3
2000 | 219.7 | 6097.1 | 26438.8 | 63898.0 | 185228.1
3000 | 1175.2 | 17868.7 | 82417.0 | 207316.0
NTL 50 0.0 0.0 0.1 0.1 0.3

250 | 2.2 9.5 40.3 43.0 93.2
500 | 46.6 119.3 359.3 1104.5 2100.8
1000 | 659.8 | 1943.2 | 7158.3 14538.8 | 28711.5

GAP 50 0.1 0.5 2.9 5.5 20.5
250 | 107.7 | 548.4 4533.3
Pari 50 0.0 0.1 0.4 1.0 3.2

Sage — What's inside?

Sage comes standard with over 70 packages, including:

Arithmetic

GMP, MPFR, Givaro, MPFI

Commutative Algebra

PolyBoRi, SINGULAR (libSINGULAR)

Linear Algebra

LinBox, M4RI, IML, fpLLL

Cryptosystems

GnuTLS, PyCrypto

Integer Factorization FlintQS, ECM

Group Theory GAP

Combinatorics Symmetrica, sage-combinat
Graph Theory NetworkX

Number Theory

PARI, NTL, Flint, mwrank, eclib

Numerical Computation

GSL, Numpy, Scipy, ATLAS

Calculus, Symbolic Comp.

Maxima, Sympy, Pynac

Statistics R, Scipy.stats

User Interface Sage Notebook, jsmath, Moin wiki, IPython
Graphics Matplotlib, Tachyon, libgd, JMol
Networking Twisted

Databases ZO0DB, SQLite, SQLAIchemy, Python pickle

Programming Language

Python, Cython (compiled)

Python

@, python

Sage is written in Python, a widely used and well regarded programming
language, and also uses Python as the user language. So unlike every other
piece of mathematical software in the world, Sage uses a mainstream

programming language as the user language, instead of creating our own new
language.

Python

The choice of Python has a huge number of positive impacts, including:

m lots of well-written introductions and reference material for Python
already out there, for programmers of every level of experience

m an extremely fast development cycle — companies such as Google and
LucasFilm use Python for rapid prototyping and development

m an insane number of standard and third-party libraries available, for
everything from web programming to image compression to scientific
computing

m we don’t have to be in the business of being language designers!

However, there is one disadvantage: since it's such a dynamic programming
language, Python programs are often slower than their direct equivalents in C.
The answer: Cython.

Cython

@ python & @gthon

Cython (http://www.cython.org) lets you:
m declare attributes for your classes with C datatypes
m declare methods to take and return C datatypes

m interface with your existing C/C++ libraries

http://www.cython.org

Cython

sage: def mysum(N):

s = int(0)
for k in range(1,N):
s += k
return s
sage: time mysum(1076)
499999500000L

CPU time: 0.18 s, Wall time: 0.26 s

sage: %cython
sage: def mysum_cython(N):

cdef int k

cdef long long s =0

for k in range(N):

s += k

return s
sage: time mysum_cython(1076)
499999500000L
CPU time: 0.00 s, Wall time: 0.00 s

Cython

sage: timeit('mysum(1076)")
5 loops, best of 3: 254 ms per loop

sage: timeit(mysum_cython(1076)")
625 loops, best of 3: 1.24 ms per loop

sage: 254/1.24
204.838709677419

sage: mysum_cython(10710)
Traceback (click to the left for traceback)

OverflowError: long int too large to convert to int

Cython

No one wants to declare types for all of their objects, and manually allocate
and deallocate our C objects — this is one of the reasons we aren't using C in
the first place!
We don't have to. The Cython development model:

m Write code in Python.

m Get it working correctly.

m Profile the code.

m Move the inner loops to Cython.

Cython: It Works

Jason Grout:

> | spent two or three days working on this. Here is the end result: 0.24

> seconds compared to 150 seconds. Such is the power of Cython :). That's
> a speedup of a factor of 150.64/0.24=627!

This particular function, because it is so fast now, has become a regular tool in
our research and has led to discovering at least one counter-example to a
conjecture that was open for several months.

Cython

Not that you needed any more reasons, but here are a few more amazing things
that Cython has to offer:
m Built-in profiling/annotation tools for performance analysis
m Automatic conversion between most Python and C types (whenever it
would make sense)

m Cython can also be used to interface with C++ libraries (only a small
amount of black magic needed!)

Parallel and Distributed Computing

By now, everyone's heard that we need to move to multicore and distributed
computing to be taking advantage of tomorrow’s finest hardware. Sage has two
primary ways of doing this:

m Python is an excellent scripting language, which means it's fairly trivial to
write Python scripts to queue up jobs on your local supercomputing
cluster. Unlike other math software, Sage has no site licenses — which
makes this completely straightforward. We've done this on the
supercomputers at UT Austin, with hundreds of Sage processes running
concurrently for a week or more at a time.

m The @parallel decorator, built using the pyprocessing Python
extension. This gives a quick and easy way to take advantage of multiple
cores. The @parallel decorator is simple to use and quite robust —
there's nothing to learn, it just works.

. using modern tools

sage: Is = [2"n—1 for n in [190..210]]

sage: time v = [factor(x) for x in Is

[127 % 5209 % 62497 % ..., 3 % 104124649 x 745988807 x ...]
Time: CPU 9.32 s, Wall: 9.32 s

sage: Qparallel (6)
sage: def f_para(n):
.. return factor(n)
sage: time v = list(f_para(ls))
Time: CPU 0.04 s, Wall: 2.95 s # 2.95s = longest factorization

Interact

m Interact is a great example of a useful tool: it turns one moderately
annoying task (running the same series of commands on varying inputs)
into a ridiculously easy task. Therein lies its utility.

m Interact allows you to visually explore a data set, and get data as you
explore — regardless of whether you want textual or visual information (or
both!).

Interact at work

S = finance.Stock('java').close ()
Qinteract
def _(days=(80,(20..len(S))), alpha=(0.2,(0,1))):
print "%s days of Sun stock & geometric moving average”%days
Z = S[—days]
G = Z.exponential_moving_average (alpha)[1:]
(Z.plot() + G.plot(rgbcolor="red")).show(frame=True)

days |:| 192
alpha @ 0.164328657315

Last 192 days stock price and geom moving average

2.5

Inheritance hierarchy of 1

def class_hierarchy(cls, v):
v.append(str(cls))
for supercls in cls.__bases__:

class_hierarchy (supercls, v)
Qinteract

def _(object=1):
print '<html><hl>Inheritance hierarchy of %r</hl>"%object
print '<pre>’
v = []; class_hierarchy(object.__class__, v)
print '\n’.join (['. *(3xi)+w for i, w in
enumerate(reversed(v))]). replace('<’, '<")
print '</pre></html>’

object |1

Inheritance hierarchy of 1

<type 'object'>
<type 'sage.structure.sage_object.SageObject'>
<type 'sage.structure.element.Element'>
..<type 'sage.structure.element.ModuleElement'>
...<type 'sage.structure.element.RingElement'>
.<type 'sage.structure.element.CommutativeRingElement'>
..<type 'sage.structure.element.IntegralDomainElement'>
....<type 'sage.structure.element.DedekindDomainElement '>
+see0e.<type 'sage.structure.element.PrincipalldealDomainElement’'>
e ..<type 'sage.structure.element.EuclideanDomainElement'>
.............................. <type 'sage.rings.integer.Integer'>

Sage on the Web

Sage has the command line interface you'd expect, but Sage also comes with a
web interface that works with your favorite browser.

Guido van Rossum, creator of Python

In recent times, | have not had either the need or the desire to do any GUI
development at all. Probably not at all in the last three years. |'ve done plenty
of web development. In general there is a lot of focus change where people
don’t develop as many desktop apps anymore. ... There is less and less need
for GUI apps.

On the face of it, the Notebook is a smooth and clean way to build a graphical
interface on several platforms, without having to devote a huge amount of our
resources on designing and maintaining a Ul ourselves. However, the Notebook
gives you so much more ...

The Sage Notebook

Here are some of the many uses of the Sage Notebook:

m By starting a Notebook server on your work machine, you can now use any
computer with a web browser (read: any computer made after 1994) to
connect to it and make use of that hardware.

m The Notebook makes an excellent tool for teaching.
m Sage worksheets are excellent for giving presentations.

m By sharing your worksheets with other users on a common Notebook

server, you can easily collaborate with anyone who has access to that
machine.

Inspecting Every Detail

We've taken several important lessons from the world of mathematics and
applied them to Sage.

m As you've seen, you can inspect every line of code used in a computation
in Sage, just as you can look at every line in a proof of a theorem, and a
proof of every theorem it uses, etc.

m Just as with mathematical papers, every line of code that makes it into
Sage nowadays goes through a formal refereeing process.

But do you trust it?

Before every single release, we:

m build Sage on dozens of different combinations of CPU and operating
system (the “build farm™),

m run the doctest suite on every one of these machines, currently around
77000 doctests (not counting the testing we do on the various components
of Sage),

m ask volunteers on sage-devel to do the same, and

m report all issues, and wait to release until these are fixed.

We also keep track of all known bugs on our bug tracker,
http://trac.sagemath.org.

Unit Tests and You

So it's really reassuring to find out that we take so much care to maintain the
correctness of the Sage codebase, and that we regularly test before releasing. It
makes trusting Sage much easier. However ... it should also make you want to
contribute your code to Sage right now.

Why should you want to drop what you're doing and contribute code to Sage?
Because it means that we will do the job of testing and maintaining your code
for the rest of the life of the Sage project. If you can get your code cleaned up
and in shape enough to be part of the Sage codebase, it becomes part of the
Sage doctest suite. This is particularly nice for examples in books or papers.

Sage Design Principles

There are a number of important principles that guide Sage development. Here
are a few of the key ones:

m Don’t reinvent the wheel. Build the car instead. This means that as
much as possible, Sage uses existing open source libraries and packages
instead of spending time repeating existing efforts.

m If it isn’t tested, it’s broken. We want Sage to be powerful and robust
system that people can use and trust for their research. Having an
extensive test suite is absolutely vital for this purpose.

m Talk is cheap. Show me the code.

m Development should be a public process.

Thanks for listening!

«O>r «Fr <

ae

	What does Sage do?
	What Sage Does: The Details
	Some of Sage's mathematical strengths
	Cython
	Parallel Computing in Sage
	Interact
	The Notebook
	Open Source in Sage
	Sage and Correctness Testing

