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F5?
F5: algorithm to compute Gröbner bases of polynomial ideals

(J-C Faugère, 2002)
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Gröbner bases?
Gröbner basis: “nice form” for generators of polynomial ideal

• “nice”:���
��: easy!

difficult questions

(B Buchberger, 1965)

Generalizes linear algebra
• Vector space: Gaussian elimination −→ echelon form











∗ ∗ ∗ ∗ = ∗
∗ ∗ ∗ ∗ = ∗
∗ ∗ ∗ ∗ = ∗
∗ ∗ ∗ ∗ = ∗

−→











∗ ∗ ∗ ∗ = ∗
∗ ∗ ∗ = ∗
∗ ∗ = ∗
∗ = ∗

• Polynomial ring: Buchberger’s algorithm −→ Gröbner basis
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Buchberger’s algorithm
Given F ∈ F

�

x1, . . . ,xn
�m:

1 G := F
2 Consider all p,q ∈G

1 Compute S := up− vq
(u,p cancel lcm (ltp, ltq))

2 Top-reduce S over G
(divisibility of lts: S− u1g1− u2g2− · · · )

3 S= 0? =⇒ Append S to G

3 Termination: no new polynomials created
(Ascending Chain Condition)

• All GB algorithms follow this general outline
(F5 too!)

• Omitting some details (lt=???)
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Gröbner bases: review

Rough idea

Signatures

Predicting zero
reductions

The algorithm

Implementation
Why?

Where?

Two variants

Termination (?)
The difficulty

Faugère’s original
argument

Non-terminating
example. . . terminates!

Variants that guarantee
termination

Quick example
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
1 G=

�

xy+ 1,y2+ 1
�

1 S= y (xy+ 1)− x
�

y2+ 1
�

= y− x
No top-reduction

2 G=
�

xy+ 1,y2+ 1,x− y
�

1 S= (xy+ 1)− y (x− y) = 1+ y2

Top-reduces to zero
2 S= x

�

y2+ 1
�

− y2 (x− y) = x+ y3

Top-reduces to zero
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Gröbner bases: review

Rough idea

Signatures

Predicting zero
reductions

The algorithm

Implementation
Why?

Where?

Two variants

Termination (?)
The difficulty

Faugère’s original
argument

Non-terminating
example. . . terminates!

Variants that guarantee
termination

Quick example
Problem: Find Gröbner basis of
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Quick example
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
1 G=

�

xy+ 1,y2+ 1
�

1 S= y (xy+ 1)− x
�

y2+ 1
�

= y− x
No top-reduction

2 G=
�

xy+ 1,y2+ 1,x− y
�

1 S= (xy+ 1)− y (x− y) = 1+ y2

Top-reduces to zero
2 S= x

�

y2+ 1
�

− y2 (x− y) = x+ y3

Top-reduces to zero

∴GB
�


xy+ 1,y2+ 1
��

=
�

xy+ 1,y2+ 1,x− y
�

.
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Bottleneck
• Bottleneck

• New polynomials→ new information
• Top-reduction to zero 6→ no new polynomial

6→ new information
• (100− ε)% of time: verifying GB, not computing
• Top-reduction very, very expensive
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Past work
• Predict zero reductions

(B Buchberger 1985, R Gebauer-H Möller 1988,
CKR 2002, H Hong-J Perry 2007)

• Selection strategy: Pick pairs in clever ways

(B Buchberger 1985, A Giovini et al 1991,
H Möller et al 1992)

• Forbid some top-reductions: Involutive bases

(V Gerdt-Y Blinkov 1998)

• Homogenization: d-Gröbner bases
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Gröbner bases: review

Rough idea

Signatures

Predicting zero
reductions

The algorithm

Implementation
Why?

Where?

Two variants

Termination (?)
The difficulty

Faugère’s original
argument

Non-terminating
example. . . terminates!

Variants that guarantee
termination

F5: overview
F5: combined approach
• Homogenize
• d-Gröbner bases
• New point of view:

• New way to predict zero reductions
• New selection strategy

• Some systems: no zero reductions!

“A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5)”
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View from linear algebra
• Compute GB⇐⇒ Triangularize Sylvester matrix of G

(D Lazard, 1983)

• Triangularize sparse matrix (F4)

(Faugère, 1999)

• Avoid using different rows to re-compute reductions

(Faugère, 2002)
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�

d = 2:

No cancellations of degree 2. . .
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�

d = 3:














x2y xy2 y3 xh2 yh2

1 1 xg1
1 1 yg1
1 1 xg2

1 1 yg2















Rows 2, 3 cancel. . .
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�

d = 3:


















x2y xy2 y3 xh2 yh2

1 1 xg1
1 1 yg1
1 1 xg2

1 1 yg2
1 −1 g3



















New! g3 = xh2− yh2
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�

d = 3:


















x2y xy2 y3 xh2 yh2

1 1 xg1
1 1 yg1

�1 �1 ��*
g3xg2

1 1 yg2
1 −1 g3



















linear dependence:��*
g3xg2

(xg2 = g3+ yg1)
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Quick example, revisited
Problem: Find Gröbner basis of




xy+ 1,y2+ 1
�

.
Homogenize: G=

�

xy+ h2,y2+ h2�

d = 4:






































x3y x2y2 xy3 y4 x2h2 xyh2 y2h2 h4

1 1 x2g1
1 1 xyg1

1 1 y2g1
1 1 h2g1

�1 �1 �
��>

xg3

x2g2

�1 �1 ��
�*

yg3xyg2
1 1 y2g2

1 −1 xg3
1 −1 yg3







































linear dependence:�
��>

xg3

x2g2,��
�*

yg3xyg2
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Rows 4, 7 cancel. . .
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Rows 4, 7 cancel. . . but we will not consider them!
Why not?

Later.
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Signatures
• Relation b/w rows



















x3y x2y2 xy3 y4 x2h2 xyh2 y2h2 h4

...
1 1 h2g1

...
1 −1 yg3



















and generators g1,g2?
• h2g1: obvious
• yg3: g3 = xg2− yg1
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Signatures
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x3y x2y2 xy3 y4 x2h2 xyh2 y2h2 h4

...
1 1 h2g1

...
1 −1 yg3



















and generators g1,g2?
• h2g1: obvious
• yg3: g3 = xg2− yg1

Signature of g3: Sig (g3) = xg2.
∴ Sig (yg3) = xyg2.
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Signatures: Observations
• Sig (p) = tgi?

• 1≤ i≤m (inputs:
�

g1, . . . ,gm
�

)
• g= h1g1+ · · ·+ hi−1gi−1+(t+ · · · )gi (∃h1, . . . ,hi, lt

�

hi
�

= t)

• this definition = algorithmic behavior
6= Faugère’s definition

• “easy” record-keeping: list of rules
• “easily” reject certain useless pairs:

• Use yg3 w/sig xyg2, not xyg2
• Use xg3 w/sig x2g2, not x2g2
• . . .

• Criterion “Rewritten”

( J-C Faugère 2007?, J Gash 2008,
C Eder-J Perry submitted)
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Faugère’s characterization

Theorem (Faugère, 2002)

(A)⇐⇒ (B) where

(A) G a Gröbner basis
(B) ∀p,q ∈G where
• uSig (p), vSig (q) not rewritable, and
• uSig (p), vSig (q)minimal

S-polynomial up− vq top-reduces to zero w/out changing signature

(highly paraphrased, slightly generalized)
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We did not cancel. Why not?

• S-poly top-reduces to zero
• can predict this

How?
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Faugère’s criterion

Theorem
If
• uSig (p) = ugi; and
• lt (q) | u, ∃q ∈GBprev

�

g1, . . . ,gi−1
�

;

then uSig (p) is not minimal.

Definition
FC(uSig (p)): lt (q) | u ∃q ∈Gprev

Corollary
In S-polynomial up− vq,

if FC(uSig (p)) or FC(vSig (q))
then we need not compute S.
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• Gprev = (g1)
• Sig (g3) = xg2

• ySig (g3) = xyg2, and lt (g1) | xy. . .

FC =⇒ no need to compute S-polynomial

Why?
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Why? Trivial syzygies

Recall yg3 = y[xg2− yg1]. . .
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Why? Trivial syzygies

Recall yg3 = y[xg2− yg1]. . .

∴ yg3 = y[xg2− yg1]

= xyg2− y2g1
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Why? Trivial syzygies

Recall yg3 = y[xg2− yg1]. . .

∴ yg3 = y[xg2− yg1]

= xyg2− y2g1

Trivially g1g2− g2g1 = 0.
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Why? Trivial syzygies

Recall yg3 = y[xg2− yg1]. . .

∴ yg3 = y[xg2− yg1]

= xyg2− y2g1

Trivially g1g2− g2g1 = 0.

∴ yg3 = xyg2− y2g1

−
��

xy+ h2
�

g2−
�

y2+ h2
�

g1

�

=−h2g2+ h2g1
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Why? Trivial syzygies

Recall yg3 = y[xg2− yg1]. . .

∴ yg3 = y[xg2− yg1]

= xyg2− y2g1

Trivially g1g2− g2g1 = 0.

∴ yg3 = xyg2− y2g1

−
��

xy+ h2
�

g2−
�

y2+ h2
�

g1

�

=−h2g2+ h2g1

Sig (yg3) not minimal!
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The F5 Algorithm
1 Each stage: Incremental strategy

1 Compute GB (g1)
2 Compute GB (g1,g2)
3 . . .

2 d-GB’s  GB
�

g1, . . . ,gi
�

3 only S-polys with
• signatures that do not satisfy (FC); and
• non-rewritable components.

4 Top-reduce, but not if reduction. . .

1 satisfies (FC); or
2 rewritable.

5 Track new polys with signature
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The F5 Algorithm
1 Each stage: Incremental strategy

1 Compute GB (g1)
2 Compute GB (g1,g2)
3 . . .

2 d-GB’s  GB
�

g1, . . . ,gi
�

3 only S-polys with
• signatures that do not satisfy (FC); and
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The F5 Algorithm
1 Each stage: Incremental strategy

1 Compute GB (g1)
2 Compute GB (g1,g2)
3 . . .

2 d-GB’s  GB
�

g1, . . . ,gi
�

3 only S-polys with
• signatures that do not satisfy (FC); and
• non-rewritable components.

4 Top-reduce, but not if reduction. . .

1 satisfies (FC); or
2 rewritable.

5 Track new polys with signature

Certain details omitted. . .
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Zero reductions?

Definition
If G=

�

g1, . . . ,gm
�

has trivial syzygies only,
then G is a regular sequence.

Many systems are regular sequences;
many non-regular systems can be rewritten as regular.

Corollary
If input to F5 is a regular sequence,
then no zero reductions occur.
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Corollary
If input to F5 is a regular sequence,
then no zero reductions occur.
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Relation to Buchberger’s criteria?
None.

• F5 needs to compute signatures
• Buchberger’s criteria ignorant of signatures
• Mixing leads to non-termination
• (but see Gash, 2008)
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Motivation
• little public code. . .

• Stegers: Magma
• I don’t have Magma
• I like Sage, can use Maple
• FGb source code not public

• compare with other algorithms
• selection strategy
• predicting zero reduction
• time/space tradeoff?
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Implementations (1)
• Faugère (2002)

• C, interfaces w/Maple
• Very fast
• Several variants: F5, F5’, F5”, . . . ?
• Souce code not publicly available, binary download

• Stegers (2005)
• Interpreted Magma code
• Respectable timings
• Variant “F5R”
• http://wwwcsif.cs.ucdavis.edu/~stegers/

• Others
• Unstable implementations
• Magma implementation?
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Implementations (2)
• Perry (2007)

• Interpreted Maple code
• Embarassingly slow

• Source code
���

���
��: unmaintained

publicly available

• Eder, Perry (2008)
• Interpreted Singular code
• Respectable timings
• New variant “F5C”
• http://www.math.usm.edu/perry/research.html
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Implementations (3)
• Albrecht (2008)

• Interpreted Sage/Python code
• Faster than Eder, Perry (2008)
• Variants F5, F5R, F5C
• http://bitbucket.org/malb/algebraic attacks/

• King (2008)
• Compiled Sage/Cython code
• Faster than Eder, Perry (2008) and Albrecht (2008)?
• Variant F5R; variants F5 and F5C by Perry
• http://www.math.usm.edu/perry/research.html

• Eder (in progress)
• F5 in Singular kernel
• Access to many Singular optimizations
• Sage uses Singular, so direct benefit to Sage
• Source code will be publicly available
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So you want to implement F5. . .
• Faugère’s pseudocode:

www-spaces.lip6.fr/@papers/F02a.pdf

(2004 edition, corrected!)

• Stegers’ pseudocode:

wwwcsif.cs.ucdavis.edu/~stegers/

(contains errors)

• Perry’s pseudocode:

www.math.usm.edu/perry/research.html

(used for Singular, Sage implementations)
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Reduced Gröbner basis
• Some inefficiency in F5

• Not all top-reductions allowed
• Redundant lt’s added
• Necessary this stage, but. . .
• . . . not next stages, not for GB

• Reduced Gröbner basis?
• Pruning of redundant lt’s
• Well-known optimization

• “Näıve” F5 does not use RGB
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Reduced Gröbner basis
• Some inefficiency in F5

• Not all top-reductions allowed
• Redundant lt’s added
• Necessary this stage, but. . .
• . . . not next stages, not for GB

• Reduced Gröbner basis?
• Pruning of redundant lt’s
• Well-known optimization

• “Näıve” F5 does not use RGB
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F5R (Stegers, 2006)
• Compute GB G of 〈f1, . . . .fi〉 (usual F5)
• Compute RGB B of 〈G〉 (easy: interreduce G)
• Compute GB of




f1, . . . , fi+1
�

• Use G for critical pairs, B for top-reduction

• Many fewer reductions than F5, but. . .
• Same # polys considered, generated
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F5C (Eder and Perry, 2008–2009)
• Compute GB G of 〈f1, . . . , fi〉 (usual F5)
• Compute RGB B of 〈G〉 (usual F5R)
• Compute GB of




f1, . . . , fi+1
�

• Use B for top-reduction and for critical pairs
• Modify rewrite rules

• Significantly fewer reductions than F5R, and. . .
• Fewer polys considered, generated
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#Critical pairs, #Polynomials in
variants

F5, F5R
i #Gcurr max{#Pd}
2 2 N/A
3 4 1
4 8 2
5 16 4
6 32 8
7 60 17
8 132 29
9 524 89
10 1165 276

F5C
i #Gcurr max{#Pd}
2 2 N/A
3 4 1
4 8 2
5 15 4
6 29 6
7 51 12
8 109 29
9 472 71
10 778 89
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#Reductions

variant: F5 F5R F5C
Katsura-5 346 289 222
Katsura-6 8,357 2,107 1,383
Katsura-7 1,025,408 24,719 10,000
Cyclic-5 441 457 415
Cyclic-6 36,139 17,512 10,970

(Top-reduction, normal forms)
(Many more in Gebauer-Möller: > 1,500,000 in Cyclic-6)
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Termination: the difficulty
Termination?
• Buchberger: ACC =⇒ S-polys reduce to zero eventually

• Faugère: S-polys w/minimal signatures computed, but. . .
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Termination: the difficulty
Termination?
• Buchberger: ACC =⇒ S-polys reduce to zero eventually

• Faugère: S-polys w/minimal signatures computed, but. . .
• Some top-reductions forbidden
• Regular system: no zero reductions
• How recognize GB property?
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Faugère’s original argument

Theorem
If reduction stage concludes without zero reductions,
then ideal of lt’s has increased.

Example
S-polynomial of f1 = xy+ 1, f2 = y2+ 1 did not reduce to zero;
new polynomial x− y;
new lt x!
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Faugère’s original argument

Theorem
If reduction stage concludes without zero reductions,
then ideal of lt’s has increased.

This theorem is wrong.

Example (Gash, 2008)

• Uses Faugère’s example (2002 paper)
• Consider S-polynomials in different order
•   no reduction to zero

and ideal of lt’s does not increase.
• “redundant polynomials”
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Redundant polynomials:
necessary?

Why does F5 compute redundant polynomials?
• Some top-reductions forbidden
• Redundant polynomials restore necessary top-reductions

Example

• p1 top-reducible by p2, but forbidden
• p1 added to GB  new rewrite rule
• p3 top-reducible by p1? now allowed
• equivalent to top-reduction by p2
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Why does F5 compute redundant polynomials?
• Some top-reductions forbidden
• Redundant polynomials restore necessary top-reductions

Example

• p1 top-reducible by p2, but forbidden
• p1 added to GB  new rewrite rule
• p3 top-reducible by p1? now allowed
• equivalent to top-reduction by p2
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Possible resolution. . . ?
An idea:
• Suppose reduction stage returns redundant polynomials

• d-Gröbner basis!

• keep polys, but. . .
• not their S-polys

• multiples of reducers’ S-polynomials

• Guaranteed termination! but. . .

• No longer guaranteed correct!
• Non-trivial concern: Cyclic-7 oops!
• Rewrite rules =⇒ non-computed S-polys!
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Possible resolution. . . ?
An idea:
• Suppose reduction stage returns redundant polynomials

• d-Gröbner basis!

• keep polys, but. . .
• not their S-polys

• multiples of reducers’ S-polynomials

• Guaranteed termination! but. . .

• No longer guaranteed correct!
• Non-trivial concern: Cyclic-7 oops!
• Rewrite rules =⇒ non-computed S-polys!
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Regular case
• General agreement: termination
• Proof in Faugère’s HDR? (2007)
• Another idea (J Gash, 2009)

• Non-termination? chain of divisible lt’s
• Subchain of divisible signatures (ACC)
• Cannot occur in regular case
• Still working on this. . .
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Non-terminating examples
• Widespread belief: F5 does not always terminate
• Proposals for non-terminating systems

• Stegers’ nonTerminatingExample.mag
• Brickenstein’s example
(private communication, exploit iterative computation)

• However. . .
• Singular and Sage: both systems terminate
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nonTerminatingExample.mag
Termination in Singular and Sage, not in Magma?!?
• Error in implementation

• Rewrite rules sometimes not assigned
• Some top-reductions not completed

• Correction  termination!

(R Dellaca-J Gash-J Perry, 2009)
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Private communications
• Faugère, 2007 HDR: proof fixed

• Regular sequences only?
• Find me a copy?

• Zobnin, 2008: Restructured algorithm
• Proceeds by increasing signature, other changes
• Implementation?
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F5t
Gash (2008 PhD Dissertation)
• Redundant polynomials  special bin D
• Test for GB: force carefully-chosen zero reductions
• If failure, add D to GB and proceed
• Loss of efficiency via zero reductions vs.

guaranteed termination and correctness



Remarks on
Faugère’s F5

algorithm

John Perry

F5
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Another solution?
Another idea: modified F5C
• Suppose reduction stage returns redundant polynomials

• d-Gröbner basis!

• Immediately interreduce, discard all redundant polynomials
• Re-examine all pairs

• S-polynomials of degree ≤ d: good! new rewrite rule
• S-polynomials of degree > d: bad! compute S-poly

• WARNING:

The above has not (yet) been proved or implemented.
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Finis

Thank you!
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