John Perry

F5

- Gröbner bases: review Rough idea Signatures Predicting zero reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

Remarks on Faugère's F5 algorithm

John Perry (based on joint work with Christian Eder)

Department of Mathematics, The University of Southern Mississippi

Sage Days 12, 21 January 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

F5: algorithm to compute Gröbner bases of polynomial ideals

(J-C Faugère, 2002)

F5?

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origina argument
- Non-terminating example...terminates Variants that guarante
- termination

1 F5 Gröbner bases: review

Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variants

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Gröbner basis: "nice form" for generators of polynomial ideal

Gröbner bases?

• "nice": difficult questions

(B Buchberger, 1965)

Generalizes linear algebra

• Vector space: Gaussian elimination \longrightarrow echelon form

• Polynomial ring: Buchberger's algorithm — Gröbner basis

▲□▶▲□▶▲目▶▲目▶ ■ のへの

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origina argument
- Non-terminating example. . . terminates
- Variants that guarantee termination

Gröbner basis: "nice form" for generators of polynomial ideal "nice": difficult questions

(B Buchberger, 1965)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Gröbner bases?

Generalizes linear algebra

• Vector space: Gaussian elimination \longrightarrow echelon form

	*	*	*	*	$\equiv *$		(*	*	*	*	$\equiv *$
					=*)	*	*	*	$\equiv *$
	*	*	*	*	$\equiv *$	\rightarrow)		*	*	$\equiv *$
	*	*	*	*	$\equiv *$					*	$\equiv *$

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origina
- Non-terminating example...terminates
- Variants that guarantee termination

Buchberger's algorithm

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

Given
$$F \in \mathbb{F} [x_1, \dots, x_n]^m$$
:

$$G := F$$

2 Consider all $p, q \in G$

- Compute S := up vq(*u*,*p* cancel lcm(lt*p*,lt*q*))
- 2 Top-reduce S over G (divisibility of lts: S - u₁g₁ - u₂g₂ - ···)
 3 S = 0? ⇒ Append S to G
- Termination: no new polynomials created (Ascending Chain Condition)
- *All* GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The agorithin

Implementation

- Why
- Where?
- Two variants

Termination (?

- The difficulty Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Buchberger's algorithm

- Given $F \in \mathbb{F} [x_1, \dots, x_n]^m$: **1** G := F
 - **2** Consider all $p, q \in G$
 - 1 Compute S := up vq(u, p cancel lcm(ltp, ltq))
 - 2 Top-reduce S over G (divisibility of lts: S - u₁g₁ - u₂g₂ - ···)
 3 S = 0? ⇒ Append S to G
 - \bigcirc 3 0: \longrightarrow Append 3 to \bigcirc
 - 3 Termination: no new polynomials created (Ascending Chain Condition)
 - *All* GB algorithms follow this general outline (F5 too!)
 - Omitting some details (lt=???)

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The agorithin

Implementation

- Why
- Where?
- Two variants

Termination (?

- Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Buchberger's algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Given $F \in \mathbb{F} [x_1, \dots, x_n]^m$: **1** G := F
 - **2** Consider all $p, q \in G$
 - 1 Compute S := up vq(u, p cancel lcm(ltp, ltq))
 - 2 Top-reduce S over G
 (divisibility of lts: S u₁g₁ u₂g₂ ···)
 3 S = 0? ⇒ Append S to G
 - Termination: no new polynomials created (Ascending Chain Condition)
 - *All* GB algorithms follow this general outline (F5 too!)
 - Omitting some details (lt=???)

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- 721 1 51

Implementation

- Why
- Where?
- Two variants

Termination (?)

- Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Buchberger's algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Given $F \in \mathbb{F} [x_1, \dots, x_n]^m$: **1** G := F
 - **2** Consider all $p, q \in G$
 - 1 Compute S := up vq(*u*, *p* cancel lcm(ltp,ltq))
 - 2 Top-reduce S over G (divisibility of lts: S - u₁g₁ - u₂g₂ - ···)
 3 S = 0? ⇒ Append S to G
 - Termination: no new polynomials created (Ascending Chain Condition)
 - *All* GB algorithms follow this general outline (F5 too!)
 - Omitting some details (lt=???)

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's origin: argument

Non-terminating example...terminates

Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. **•** $G = (xy + 1, y^2 + 1)$

•
$$S = y(xy+1) - x(y^2+1) = y - x$$

No top-reduction

$$G = (xy+1, y^2+1, x-y)$$

$$S = (xy+1) - y(x-y) = 1 + y^2$$

Top-reduces to zero

2
$$S = x(y^2 + 1) - y^2(x - y) = x + y^3$$

Top-reduces to zero

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quick example

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. **1** $G = (xy + 1, y^2 + 1)$

Quick example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$$S = y(xy+1) - x(y^2+1) = y - x$$

No top-reduction

2 $G = (xy+1, y^2+1, x-y)$

$$S = (xy+1) - y(x-y) = 1 + y^2$$

Top-reduces to zero

2
$$S = x(y^2 + 1) - y^2(x - y) = x + y^3$$

Top-reduces to zero

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's origin: argument

Non-terminating example...terminates

Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. **O** $G = (xy + 1, y^2 + 1)$

Quick example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

2
$$G = (xy+1, y^2+1, x-y)$$

$$S = (xy+1) - y(x-y) = 1 + y^2$$

Top-reduces to zero
$$S = x(x^2 + 1) - x^2(x - y) = x + 1$$

S =
$$x(y^2+1) - y^2(x-y) = x + y^3$$

Top-reduces to zero

John Perry

F5

Gröbner bases: review

- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. **O** $G = (xy + 1, y^2 + 1)$

$$S = y(xy+1) - x(y^2+1) = y - x$$

No top-reduction

2
$$G = (xy+1, y^2+1, x-y)$$

1
$$S = (xy+1) - y(x-y) = 1 + y^2$$

Top-reduces to zero
2 $S = x(y^2+1) - y^2(x-y) = x + y^3$

Top-reduces to zero

:. GB
$$(\langle xy+1, y^2+1 \rangle) = (xy+1, y^2+1, x-y).$$

Quick example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bottleneck

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Bottleneck

- New polynomials \rightarrow new information
- Top-reduction to zero \neq no new polynomial

\rightarrow new information

- (100ϵ) % of time: verifying GB, *not* computing
- Top-reduction very, very expensive

Gröbner bases: review

Remarks on Faugère's F5

algorithm John Perry

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?

- The difficulty Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

• Predict zero reductions

(B Buchberger 1985, R Gebauer-H Möller 1988, CKR 2002, H Hong-J Perry 2007)

• Selection strategy: Pick pairs in clever ways

(B Buchberger 1985, A Giovini et al 1991, H Möller et al 1992)

Past work

• Forbid some top-reductions: Involutive bases

(V Gerdt-Y Blinkov 1998)

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

• Homogenization: d-Gröbner bases

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zer

The algorithm

Implementation

Why

Where?

Two variants

Termination (?)

The difficulty Faugère's origina argument

Non-terminating example...terminates

termination

1 F5

Gröbner bases: review Rough idea

Kougn idea

Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variant

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

Outline

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates!
- Variants that guarantee termination

F5: combined approach

- Homogenize
- *d*-Gröbner bases
- New point of view:
 - New way to predict zero reductions
 - New selection strategy
- Some systems: *no* zero reductions!
 - "A new efficient algorithm for computing Gröbner bases without reduction to zero (F_5) "

F5: overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

John Perry

F5

Gröbner bases: review

Rough idea

- Signatures
- Predicting zero
- The electricher

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's original argument
- Non-terminating example...terminates
- Variants that guarantee termination

View from linear algebra

- Compute GB \iff Triangularize Sylvester matrix of G (D Lazard, 1983)
- Triangularize sparse matrix (F4)

(Faugère, 1999)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Avoid using different rows to re-compute reductions (Faugère, 2002)

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Quick example, revisited

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + b^2, y^2 + b^2)$

▲□▶▲□▶▲□▶▲□▶ = つへぐ

John Perry

F5

Gröbner bases: review

d = 2:

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + b^2, y^2 + b^2)$

No cancellations of degree 2...

Quick example, revisited

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + h^2, y^2 + h^2)$ d = 3: $\begin{pmatrix} x^2y & xy^2 & y^3 & xh^2 & yh^2 \\ 1 & 1 & xg_1 \\ 1 & 1 & yg_1 \\ 1 & 1 & xg_2 \end{pmatrix}$

Rows 2, 3 cancel...

Quick example, revisited

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

John Perry

d = 3:

Rough idea

Quick example, revisited **Problem:** Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + h^2, y^2 + h^2)$

New!
$$g_3 = xh^2 - yh^2$$

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

John Perry

d = 3:

Rough idea

Quick example, revisited **Problem:** Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$.

linear dependence: xex⁸³ $(xg_2 = g_3 + \gamma g_1)$

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why?

Where?

Two variants

Termination (?)

The difficulty Faugère's original

Non-terminating example...terminate

Variants that guarantee termination

Quick example, revisited

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + h^2, y^2 + h^2)$ d = 4: $\begin{pmatrix} x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\ 1 & 1 & 1 \end{pmatrix}$

> 1 1 yg3 linear dependence: x^2 < ロ > < 同 > < 回 > < 回 >

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why?

Where?

Two variants

Termination (?

The difficulty Faugère's origina argument

Non-terminating example...terminate

Variants that guarantee termination

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + h^2, y^2 + h^2)$ d = 4:

Quick example, revisited

イロト イ理ト イヨト イヨト

-

Rows 4, 7 cancel...

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why?

Where?

Two variants

Termination (?)

1 he difficulty Faugère's original argument

Non-terminating example...terminate

Variants that guarantee termination

Quick example, revisited

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$. Homogenize: $G = (xy + h^2, y^2 + h^2)$ d = 4:

Rows 4, 7 cancel... but we will not consider them! Why not?

Later.

イロト イ理ト イヨト イヨト

-

John Perry

F5

Gröbner bases: review

Rougn idea

Signatures

Predicting zero reductions

Implementation

Why

Where?

Two variants

Termination (?)

The difficulty Faugère's origin: argument

Non-terminating example...terminates Variants that guarante

termination

1 F5

Gröbner bases: review Rough idea

Signatures

Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variants

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

Outline

John Perry

F5

Gröbner bases: review Rough idea

Signatures

Predicting zero reductions

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origin: argument

Non-terminating example...terminate

Variants that guarantee termination

• Relation b/w rows

Signatures

イロト 不得 トイヨト イヨト

э

and generators g_1, g_2 ?

• b^2g_1 : obvious

• yg_3 : $g_3 = xg_2 - yg_1$

John Perry

F5

Gröbner bases: review Rough idea

Signatures

Predicting zero reductions

0

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origin: argument

Non-terminating example...terminate

Variants that guarantee termination

• Relation b/w rows

Signatures

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

and generators g_1, g_2 ?

• b^2g_1 : obvious

• $yg_3: g_3 = xg_2 - yg_1$

Signature of g_3 : Sig $(g_3) = xg_2$. \therefore Sig $(yg_3) = xyg_2$.

John Perry

F5

Gröbner bases: review Rough idea

Signatures

- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origin:
- argument Non-terminating
- Variants that guarantee

Signatures: Observations

- $\operatorname{Sig}(p) = tg_i$?
 - $1 \le i \le m$
 - $g = h_1 g_1 + \dots + h_{i-1} g_{i-1} + (t + \dots) g_i$ $(\exists h_1, \dots, h_i, \exists t (h_i) = t)$
- this definition = algorithmic behavior ≠ Faugère's definition
- "easy" record-keeping: list of rules
- "easily" reject certain useless pairs:
 - Use $yg_3 w/sig xyg_2$, not xyg_2
 - Use xg_3 w/sig x^2g_2 , not x^2g_2
 - ...
- Criterion "Rewritten"

(J-C Faugère 2007?, J Gash 2008, C Eder-J Perry submitted)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

(inputs: (g_1, \ldots, g_m))

John Perrv

Signatures

Signatures: Observations

- $\operatorname{Sig}(p) = tg_i$?
 - $1 \le i \le m$
 - (inputs: $(g_1, ..., g_m)$) • $g = b_1 g_1 + \dots + b_{i-1} g_{i-1} + (t + \dots) g_i$ $(\exists h_1, \dots, h_i, \exists h_i, \dots, h_i)$
- this definition = algorithmic behavior \neq Faugère's definition
- "easy" record-keeping: list of rules
- "easily" reject certain useless pairs:
 - Use yg_3 w/sig xyg_2 , not xyg_2
 - Use xg_3 w/sig x^2g_2 , not x^2g_2
 - . . .
- Criterion "Rewritten"

(J-C Faugère 2007?, J Gash 2008, C Eder-J Perry submitted)

▲□▶▲□▶▲□▶▲□▶ □ のQで

John Perry

F5

Gröbner bases: review Rough idea

Signatures

Predicting zero reductions

Implementation

Why?

w nere?

Termination (

The difficulty Faugère's origina argument

Non-terminating example...terminates!

Variants that guarantee termination

Faugère's characterization

Theorem (Faugère, 2002)

 $(A) \iff (B)$ where

(A) G a Gröbner basis (B) $\forall p, q \in G$ where

- uSig(p), vSig(q) not rewritable, and
- uSig(p), vSig(q) minimal

S-polynomial up – vq top-reduces to zero w/out changing signature

(highly paraphrased, slightly generalized)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Outline

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review
- Kougn idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origin: argument
- Non-terminating example...terminates Variants that guarante
- termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variant

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's original
- Non-terminating example...terminate
- Variants that guarantee termination

How to predict zero reductions?

• Recall

 $x^{3}y \quad x^{2}y^{2} \quad xy^{3} \quad y^{4} \quad x^{2}h^{2} \quad xyh^{2} \quad y^{2}h^{2} \quad h^{4}$ $1 \qquad -1$

We did not cancel. Why not?

- S-poly top-reduces to zero
- can predict this

How?

イロト イヨト イヨト

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's original
- Non-terminating example...terminate
- Variants that guarantee termination

How to predict zero reductions?

• Recall

 $x^{3}y \quad x^{2}y^{2} \quad xy^{3} \quad y^{4} \quad x^{2}b^{2} \quad xyb^{2} \quad y^{2}b^{2} \quad b^{4}$ $1 \qquad -1$

We did not cancel. Why not?

- *S*-poly top-reduces to zero
- can predict this

How?

イロト 不得 トイヨト イヨト

э

John Perry

F5

- Gröbner bases: revi Rough idea
- Signatures

Predicting zero reductions

The algorithm

Implementation

Why?

Two variant

Termination (?)

Faugère's origina argument

Non-terminating example...terminates! Variants that guarantee

Variants that guarante termination

Theorem

If

- $u\operatorname{Sig}(p) = ug_i$; and
- $\operatorname{lt}(q) \mid u, \exists q \in \operatorname{GB}_{\operatorname{prev}}(g_1, \ldots, g_{i-1});$

then uSig(p) is not minimal.

Definitio

 $C(u\operatorname{Sig}(p)): \quad \operatorname{lt}(q) \mid u \exists q \in \operatorname{G}_{\operatorname{pre}}$

Corollary

n S-polynomial up – vq, if FC(uSig(p)) or FC(vSig(q)) then we need not compute S.

Faugère's criterion

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

John Perry

- Predicting zero reductions

Theorem

If

- $uSig(p) = ug_i$; and
- $\operatorname{lt}(q) \mid u, \exists q \in \operatorname{GB}_{\operatorname{prev}}(g_1, \dots, g_{i-1});$

then uSig(p) is not minimal.

Definition FC

$$C(u\operatorname{Sig}(p)): \quad \operatorname{lt}(q) \mid u \exists q \in \operatorname{G}_{\operatorname{prev}}$$

Corollary

In S-polynomial up - vq, if FC(uSig(p)) or FC(vSig(q))then we need not compute S.

Faugère's criterion

John Perry

- Predicting zero reductions

In the example...

 $x^{3}y \quad x^{2}y^{2} \quad xy^{3} \quad y^{4} \quad x^{2}b^{2} \quad xyb^{2} \quad y^{2}b^{2} \quad b^{4}$ 1

• $G_{prev} = (g_1)$ • $Sig(g_3) = xg_2$

• Recall

• ySig $(g_3) = xyg_2$, and $lt(g_1) | xy...$

イロト イポト イヨト イヨト 二日

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

- Faugère's origina argument
- Non-terminating example...terminates!
- Variants that guarantee termination

all $x^{3}y \quad x^{2}y^{2} \quad xy^{3} \quad y^{4} \quad x^{2}b^{2} \quad xyb^{2} \quad y^{2}b^{2} \quad b^{4}$

1

In the example...

• $G_{\text{prev}} = (g_1)$

• Recall

- $\operatorname{Sig}(g_3) = xg_2$
- ySig $(g_3) = xyg_2$, and $lt(g_1) | xy...$

 $FC \Longrightarrow$ no need to compute S-polynomial

Why?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへ⊙

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Why? Trivial syzygies

Recall
$$yg_3 = y [xg_2 - yg_1] \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Why? Trivial syzygies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Recall
$$yg_3 = y [xg_2 - yg_1] \dots$$

$$\therefore yg_3 = y [xg_2 - yg_1]$$
$$= xyg_2 - y^2g_1$$

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Why? Trivial syzygies

Recall
$$yg_3 = y [xg_2 - yg_1] \dots$$

$$\therefore yg_3 = y [xg_2 - yg_1]$$

$$yg_3 = y [xg_2 - yg_1]$$
$$= xyg_2 - y^2g_1$$

$$Trivially g_1 g_2 - g_2 g_1 = 0.$$

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

.

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Why? Trivial syzygies

Recall
$$yg_3 = y [xg_2 - yg_1]...$$

$$\therefore yg_3 = y [xg_2 - yg_1]$$

$$= xyg_2 - y^2g_1$$

$$Trivially g_1 g_2 - g_2 g_1 = 0.$$

$$\therefore yg_3 = xyg_2 - y^2g_1 - [(xy + h^2)g_2 - (y^2 + h^2)g_1] = -h^2g_2 + h^2g_1$$

John Perry

F5

Gröbner bases: review

Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation

Why

Where

Two variants

Termination (?)

•

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Why? Trivial syzygies

Recall
$$yg_3 = y [xg_2 - yg_1]...$$

 $\therefore yg_3 = y [xg_2 - yg_1]$
 $= xyg_2 - y^2g_1$

$$Trivially g_1 g_2 - g_2 g_1 = 0.$$

$$\therefore yg_3 = xyg_2 - y^2g_1 - [(xy + h^2)g_2 - (y^2 + h^2)g_1] = -h^2g_2 + h^2g_1$$

 $Sig(yg_3)$ not minimal!

John Perry

F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions

The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty Faugère's origina argument

Non-terminating example...terminates

termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variant

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

Outline

John Perry

F5

- Gröbner bases: reviev
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm
- Implementation
- Why
- Where
- Two variants

Termination (?

- The difficulty Faugère's origin
- Non-terminating example...terminates
- Variants that guarantee termination

1 Each stage: Incremental strategy

- 1 Compute $GB(g_1)$
- **2** Compute $GB(g_1, g_2)$
- **3** . . .

2 d-GB's \rightsquigarrow GB (g_1, \ldots, g_i)

- only S-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.
- Top-reduce, but not if reduction...
 - 1 satisfies (FC); or
 - 2 rewritable.
- **5** Track new polys with signature

The F5 Algorithm

John Perry

F5

- Gröbner bases: reviev
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?

- The difficulty Faugère's origin:
- Non-terminating
- Variants that guarantee termination

1 Each stage: Incremental strategy

- 1 Compute $GB(g_1)$
- **2** Compute $GB(g_1, g_2)$
- **3** . . .
- **2** d-GB's \rightsquigarrow GB (g_1, \ldots, g_i)
- 3 only S-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.
- 4 Top-reduce, but not if reduction...
 - 1 satisfies (FC); or
 - **2** rewritable.
- **5** Track new polys with signature

The F5 Algorithm

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?

- The difficulty Faugère's origina
- argument Non-terminating
- example...terminates! Variants that guarantee
- Variants that guarant termination

Each stage: Incremental strategy

- $\bigcirc Compute GB(g_1)$
- **2** Compute $GB(g_1, g_2)$
- **3** . . .
- **2** d-GB's \rightsquigarrow GB (g_1, \ldots, g_i)
- 3 only S-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.
- 4 Top-reduce, but not if reduction...
 - 1 satisfies (FC); or
 - **2** rewritable.
- **5** Track new polys with signature

Certain details omitted...

The F5 Algorithm

John Perry

F5

Gröbner bases: review Rough idea Signatures Predicting zero

The algorithm

- Implementation
- Why
- Where
- Two variants

Termination (?)

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Definition If $G = (g_1, ..., g_m)$ has trivial syzygies *only*, then G is a **regular sequence**.

Many systems are regular sequences; many non-regular systems can be rewritten as regular.

Zero reductions?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Corollary

If input to F5 is a regular sequence, then no zero reductions occur.

John Perry

F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions

The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?)

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

Definition If $G = (g_1, ..., g_m)$ has trivial syzygies *only*, then G is a **regular sequence**.

Many systems are regular sequences; many non-regular systems can be rewritten as regular.

Zero reductions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Corollary

If input to F5 is a regular sequence, then no zero reductions occur.

John Perry

F5

- Gröbner bases: review
- Kough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's original argument
- Non-terminating example...terminates
- Variants that guarantee termination

Relation to Buchberger's criteria?

イロト イ理ト イヨト イヨト

3

None.

- F5 needs to compute signatures
- Buchberger's criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's original argument
- Non-terminating example...terminates!
- Variants that guarantee termination

Relation to Buchberger's criteria?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

None.

- F5 needs to compute signatures
- Buchberger's criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)

John Perry

F5

- Gröbner bases: review Rough idea Signatures
- Predicting zero reductions
- The algorithm

Implementation

Why?

- Where?
- Two variants

Termination (?)

The difficulty Faugère's origina argument

Non-terminating example...terminates Variants that guarants

termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation Why? Where?

Two variants

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

Outline

Motivation

イロト イ理ト イヨト イヨト

3

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero

Implementation

Why?

- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

• little public code...

- Stegers: Magma
- I don't have Magma
- I like Sage, can use Maple
- FGb source code not public
- compare with other algorithms
 - selection strategy
 - predicting zero reduction
 - time/space tradeoff?

John Perry

F5

- Gröbner bases: review Rough idea Signatures
- Predicting zer
- reductions
- Implementation
- Why?
- Where?
- Two variants

Termination (?)

- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where?

Two variants

3 Termination (?) The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

Outline

くロン (雪) (ヨ) (ヨ) (ヨ)

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- Teluctions

Implementation

Why

Where?

Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

Implementations (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Faugère (2002)
 - C, interfaces w/Maple
 - Very fast
 - Several variants: F5, F5', F5", ...?
 - Souce code not publicly available, binary download
- Stegers (2005)
 - Interpreted Magma code
 - Respectable timings
 - Variant "F5R"
 - http://wwwcsif.cs.ucdavis.edu/~stegers/
- Others
 - Unstable implementations
 - Magma implementation?

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- . .

Implementatio

Why

Where?

Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates!
- Variants that guarantee termination

• Perry (2007)

- Interpreted Maple code
- Embarassingly slow
- Source code publicly available
- Eder, Perry (2008)
 - Interpreted Singular code
 - Respectable timings
 - New variant "F5C"
 - http://www.math.usm.edu/perry/research.html

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Implementations (2)

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions

Implementation

Why

Where?

Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates

Variants that guarantee termination

• Albrecht (2008)

- Interpreted Sage/Python code
- Faster than Eder, Perry (2008)
- Variants F5, F5R, F5C
- http://bitbucket.org/malb/algebraic_attacks/

Implementations (3)

- King (2008)
 - Compiled Sage/Cython code
 - Faster than Eder, Perry (2008) and Albrecht (2008)?
 - Variant F5R; variants F5 and F5C by Perry
 - http://www.math.usm.edu/perry/research.html
- Eder (in progress)
 - F5 in Singular kernel
 - Access to many Singular optimizations
 - Sage uses Singular, so direct benefit to Sage
 - Source code will be publicly available

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Implementation
- Why

Where?

Two variants

Termination (?)

- Faugère's original argument
- Non-terminating example...terminates
- Variants that guarantee termination

So you want to implement F5...

• Faugère's pseudocode:

www-spaces.lip6.fr/@papers/F02a.pdf
(2004 edition, corrected!)

• Stegers' pseudocode:

```
wwwcsif.cs.ucdavis.edu/~stegers/
```

(contains errors)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Perry's pseudocode:

www.math.usm.edu/perry/research.html (used for Singular, Sage implementations)

John Perry

F5

- Gröbner bases: review Rough idea Signatures Predicting zero reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty Faugère's origin: argument
- Non-terminating example. . . terminates
- Variants that guarantee termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where?

Two variants

Termination (?)
 The difficulty
 Faugère's original argument
 Non-terminating example...terminates!
 Variants that guarantee termination

Outline

くロン (雪) (ヨ) (ヨ) (ヨ)

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- .

Implementation

- Why
- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's original argument
- Non-terminating example...terminates
- Variants that guarantee termination

Reduced Gröbner basis

イロト イ理ト イヨト イヨト

-

- Some inefficiency in F5
 - Not all top-reductions allowed
 - Redundant lt's added
 - Necessary this stage, but...
 - ... not next stages, not for GB
- Reduced Gröbner basis?
 - Pruning of redundant lt's
 - Well-known optimization
- "Naïve" F5 does not use RGB

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- 0

Implementation

- Why?
- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's original argument
- Non-terminating example...terminates
- Variants that guarantee termination

Reduced Gröbner basis

イロト イ理ト イヨト イヨト

-

- Some inefficiency in F5
 - Not all top-reductions allowed
 - Redundant lt's added
 - Necessary this stage, but...
 - ... not next stages, not for GB
- Reduced Gröbner basis?
 - Pruning of redundant lt's
 - Well-known optimization
- "Naïve" F5 does not use RGB

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?]

- The difficulty Faugère's origina
- Non-terminating example___terminates
- Variants that guarantee termination

F5R (Stegers, 2006)

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

(usual F5)

- Compute GB G of $\langle f_1, \dots f_i \rangle$
- Compute RGB B of $\langle G \rangle$ (easy: interreduce G)
- Compute GB of $\langle f_1, \dots, f_{i+1} \rangle$
 - Use G for critical pairs, B for top-reduction
- Many fewer reductions than F5, but...
- Same # polys considered, generated

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- The description

Implementation

- Why
- Where?
- Two variants

Termination (?)

- l'he difficulty ?augère's origin:
- Non-terminating example...terminates
- Variants that guarantee termination

F5C (Eder and Perry, 2008–2009)

- Compute GB G of $\langle f_1, \ldots, f_i \rangle$
- Compute RGB *B* of $\langle G \rangle$ (usual F5R)

(usual F5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Compute GB of $\langle f_1, \dots, f_{i+1} \rangle$
 - Use *B* for top-reduction *and* for critical pairs
 - Modify rewrite rules
- Significantly fewer reductions than F5R, and...
- Fewer polys considered, generated

John Perry

F

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?

- The difficulty Faugère's origina
- argument
- example...terminates
- Variants that guarantee termination

#Critical pairs, #Polynomials in variants

F5, F5R			F5C		
i	#G _{curr}	$\max\left\{ \#P_d \right\}$	i	#G _{curr}	$\max{\{\#P_d\}}$
2	2	N/A	2	2	N/A
3	4	1	3	4	1
4	8	2	4	8	2
5	16	4	5	15	4
6	32	8	6	29	6
7	60	17	7	51	12
8	132	29	8	109	29
9	524	89	9	472	71
10	1165	276	10	778	89

#Reductions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Faugère's F5 algorithm John Perry

Remarks on

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Implementatio
- Why
- Where?
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminate
- Variants that guarantee termination

variant:	F5	F5R	F5C
Katsura-5	346	289	222
Katsura-6	8,357	2,107	1,383
Katsura-7	1,025,408	24,719	10,000
Cyclic-5	441	457	415
Cyclic-6	36,139	17,512	10,970

(Top-reduction, normal forms) (*Many* more in Gebauer-Möller: > 1,500,000 in Cyclic-6)

Outline

くロン (雪) (ヨ) (ヨ) (ヨ)

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review Rough idea Signatures
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty

- Faugère's origin: argument
- Non-terminating example...terminates! Variants that guarante

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variants

3 Termination (?) The difficulty

Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- Teductions

Implementation

- Why
- Where
- Two variants

Termination (?)

The difficulty

- Faugère's origin: argument
- Non-terminating example...terminates
- Variants that guarantee termination

Termination: the difficulty

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Termination?

- Buchberger: ACC \implies *S*-polys reduce to zero eventually
 - Faugère: S-polys w/minimal signatures computed, but...

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

The difficulty

- Faugère's origin: argument
- Non-terminating example...terminates!
- Variants that guarantee termination

Termination: the difficulty

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Termination?

- Buchberger: ACC \implies *S*-polys reduce to zero eventually
- Faugère: S-polys w/minimal signatures computed, but...
 - Some top-reductions forbidden
 - Regular system: no zero reductions
 - How recognize GB property?

Outline

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review Rough idea Signatures Predicting zero
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

Faugère's original argument

Non-terminating example...terminates! Variants that guarantee termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variant

3 Termination (?)

The difficulty

Faugère's original argument

Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

- Gröbner bases: revie Rough idea Signatures Predicting zero
- reductions
- The algorithm

Implementation

- Why?
- w nere?
- Two variants

Termination (?

Faugère's original argument

Non-terminating example...terminates!

Variants that guarantee termination

Faugère's original argument

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem

If reduction stage concludes without zero reductions, then ideal of lt's has increased.

Example

S-polynomial of $f_1 = xy + 1$, $f_2 = y^2 + 1$ did not reduce to zero; new polynomial x - y; new lt x!

John Perry

F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions

Implementation

Why

Where

Two variants

Termination (?)

Faugère's original argument

Non-terminating example...terminates! Variants that guarantee termination

Faugère's original argument

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem

If reduction stage concludes without zero reductions, then ideal of lt's has increased.

This theorem is wrong.

Example (Gash, 2008)

- Uses Faugère's example (2002 paper)
- Consider S-polynomials in different order
- *w* no reduction to zero
 and ideal of It's does not increase.
- "redundant polynomials"

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's original argument

Non-terminating example...terminates! Variants that guarantee termination

Redundant polynomials: necessary?

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

Why does F5 compute redundant polynomials?

- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example

- p_1 top-reducible by p_2 , but forbidden
- p_1 added to GB \rightarrow new rewrite rule
- p_3 top-reducible by p_1 ? now allowed
- equivalent to top-reduction by p_2

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- The description

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's original argument

Non-terminating example...terminates! Variants that guarantee termination

Redundant polynomials: necessary?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Why does F5 compute redundant polynomials?

- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example

- p_1 top-reducible by p_2 , but forbidden
- p_1 added to GB \rightsquigarrow new rewrite rule
- p_3 top-reducible by p_1 ? now allowed
- equivalent to top-reduction by p_2

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Implementatio
- Why
- Where
- Two variants

Termination (?

The difficulty

Faugère's original argument

- Non-terminating example...terminates!
- Variants that guarantee termination

An idea:

- Suppose reduction stage returns redundant polynomials
 - d-Gröbner basis!
- keep polys, but...
- not their S-polys
 - multiples of reducers' S-polynomials
- Guaranteed termination! but...
- No longer guaranteed correct!
 - Non-trivial concern: Cyclic-7 oops!
 - Rewrite rules \implies non-computed S-polys!

Possible resolution...?

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Why
- Where
- Two variants

Termination (?

- The difficulty Faugère's original
- argument
- example...terminates! Variants that guarantee

An idea:

- Suppose reduction stage returns redundant polynomials
 - d-Gröbner basis!
- keep polys, but...
- not their S-polys
 - multiples of reducers' S-polynomials
- Guaranteed termination! but...
- No longer guaranteed correct!
 - Non-trivial concern: Cyclic-7 oops!
 - Rewrite rules \implies non-computed *S*-polys!

Possible resolution...?

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- reductions

Implementation

- Why
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's original argument

- Non-terminating example...terminates!
- Variants that guarantee termination

• General agreement: termination

- Proof in Faugère's HDR? (2007)
- Another idea (J Gash, 2009)
 - Non-termination? chain of divisible lt's

Regular case

- Subchain of divisible signatures (ACC)
- Cannot occur in regular case
- Still working on this...

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review Rough idea Signatures Predicting zero
- The algorithm
- Implementation
- Why?
- Where?
- Two variants

Termination (?)

- Faugère's origina argument
- Non-terminating example...terminates!
- Variants that guarantee termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variants

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- The algorithm

Implementation

- Why
- Where?
- Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates!

Variants that guarantee termination

Non-terminating examples

- Widespread belief: F5 does not always terminate
- Proposals for non-terminating systems
 - Stegers' nonTerminatingExample.mag
 - Brickenstein's example (private communication, exploit iterative computation)
- However...
 - Singular and Sage: both systems terminate

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zer
- The elements

Implementation

- Why
- Where
- Two variants

Termination (?)

The difficulty

Faugère's origina argument

Non-terminating example...terminates!

Variants that guarantee termination

nonTerminatingExample.mag

Termination in Singular and Sage, not in Magma?!?

- Error in implementation
 - Rewrite rules sometimes not assigned
 - Some top-reductions not completed
- Correction ---> termination!

(R Dellaca-J Gash-J Perry, 2009)

Outline

Remarks on Faugère's F5 algorithm

John Perry

F5

- Gröbner bases: review Rough idea Signatures Predicting zero
- reductions
- The algorithm

Implementation

- Why?
- Where?
- Two variants

Termination (?)

The difficulty Faugère's origin: argument

Non-terminating example...terminates

Variants that guarantee termination

1 F5

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

2 Implementation

Why? Where? Two variants

3 Termination (?)

The difficulty Faugère's original argument Non-terminating example...terminates! Variants that guarantee termination

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Implementation
- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

Private communications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Faugère, 2007 HDR: proof fixed
 - Regular sequences only?
 - Find me a copy?
- Zobnin, 2008: Restructured algorithm
 - Proceeds by increasing signature, other changes
 - Implementation?

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates!
- Variants that guarantee termination

Gash (2008 PhD Dissertation)

- Redundant polynomials \rightsquigarrow special bin D
- Test for GB: force carefully-chosen zero reductions
- If failure, add *D* to GB and proceed
- Loss of efficiency via zero reductions vs. guaranteed termination and correctness

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions

Implementation

- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates!

Variants that guarantee termination

Another solution?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Another idea: modified F5C

- Suppose reduction stage returns redundant polynomials
 - *d*-Gröbner basis!
- Immediately interreduce, discard *all* redundant polynomials
- Re-examine all pairs
 - *S*-polynomials of degree $\leq d$: good! new rewrite rule
 - *S*-polynomials of degree > *d*: bad! compute *S*-poly
- WARNING:

The above has not (yet) been proved or implemented.

John Perry

F5

- Gröbner bases: review
- Rough idea
- Signatures
- Predicting zero
- reductions
- Implementation
- Why
- Where
- Two variants

Termination (?)

- The difficulty
- Faugère's origina argument
- Non-terminating example...terminates
- Variants that guarantee termination

Finis

Thank you!