Remarks on Faugère's F5 algorithm

John Perry

Remarks on Faugère's F5 algorithm

John Perry
(based on joint work with Christian Eder)

Department of Mathematics, The University of Southern Mississippi
Sage Days 12, 21 January 2008

Remarks on Faugère's F5 algorithm

John Perry

F5?

F5: algorithm to compute Gröbner bases of polynomial ideals (J-C Faugère, 2002)

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! termination

(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example. .. terminates!
Variants that guarantee termination

Outline

Remarks on Faugère's F5 algorithm

Gröbner bases?

John Perry
Gröbner basis: "nice form" for generators of polynomial ideal - "nice": difficult questions
(B Buchberger, 1965)

Generalizes linear algebra

- Vector space: Gaussian elimination \longrightarrow echelon form

- Polynomial ring: Buchberger's algorithm \longrightarrow Gröbner basis

Gröbner bases?

Gröbner basis: "nice form" for generators of polynomial ideal

- "nice": difficult questions
(B Buchberger, 1965)

Generalizes linear algebra

- Vector space: Gaussian elimination \longrightarrow echelon form

$$
\left\{\begin{array} { l l l l }
{ * } & { * } & { * } & { * } \\
{ * } & { * } & { * } & { * } \\
{ * } & { = * } \\
{ * } & { * } & { * } & { * } \\
{ * } & { * } & { * } & { * } \\
{ * } & { = * }
\end{array} \longrightarrow \left\{\begin{array}{lllll}
* & * & * & * & =* \\
& * & * & * & =* \\
& & * & * & =* \\
& & & * & =*
\end{array}\right.\right.
$$

- Polynomial ring: Buchberger's algorithm \longrightarrow Gröbner basis

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! Variants that guarantee termination

Buchberger's algorithm

Given $F \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{m}$:

(1) $G:=F$
(2) Consider all $p, q \in G$
(1) Compute $S:=u p-v q$
(u, p cancel $\operatorname{lcm}(\operatorname{lt} p, \operatorname{lt} q)$)
(2) Top-reduce S over G (divisibility of lts: $S-u_{1} g_{1}-u_{2} g_{2}-\cdots$)
(3) $S=0$? \Longrightarrow Append S to G
(3) Termination: no nere polynomial's created (Ascending Chain Condition)

- All GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)

Remarks on Faugère's F5 algorithm

John Perry

Buchberger's algorithm

Given $F \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{m}$:
(1) $G:=F$
(2) Consider all $p, q \in G$
(1) Compute $S:=u p-v q$ (u, p cancel $\operatorname{lcm}(\mathrm{lt} p, \mathrm{lt} q)$)
(2) Top-reduce S over G (divisibility of lts: $S-u_{1} g_{1}-u_{2} g_{2}-\cdots$)
(3) $S=0$? \Longrightarrow Append S to G
(3) Termination: no new polynomials created (Ascending Chain Condition)

- 111 GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)

Remarks on Faugère's F5 algorithm

Buchberger's algorithm

Given $F \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{m}$:
(1) $G:=F$
(2) Consider all $p, q \in G$
(1) Compute $S:=u p-v q$ (u, p cancel $\operatorname{lcm}(\mathrm{lt} p, \mathrm{lt} q)$)
(2) Top-reduce S over G (divisibility of lts: $S-u_{1} g_{1}-u_{2} g_{2}-\cdots$)
(3) $S=0$? \Longrightarrow Append S to G
(3) Termination: no new polynomials created (Ascending Chain Condition)

- All GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)

Buchberger's algorithm

Given $F \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{m}$:
(1) $G:=F$
(2) Consider all $p, q \in G$
(1) Compute $S:=u p-v q$ (u, p cancel $\operatorname{lcm}(\mathrm{lt} p, \mathrm{lt} q)$)
(2) Top-reduce S over G (divisibility of lts: $S-u_{1} g_{1}-u_{2} g_{2}-\cdots$)
(3) $S=0$? \Longrightarrow Append S to G
(3) Termination: no new polynomials created (Ascending Chain Condition)

- All GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)

Remarks on Faugère's F5 algorithm

John Perry
Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$.
(1) $G=\left(x y+1, y^{2}+1\right)$
(1) $S=y(x y+1)-x\left(y^{2}+1\right)=y-x$ No top-reduction
(2) $G=\left(x y+1, y^{2}+1, x-y\right)$
(1) $S=(x y+1)-y(x-y)=1+y^{2}$

Top-reduces to zero

Remarks on Faugère's F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions

The algorithm

Implementation

Why?

Where?
Two variants
Termination (?)

The difficulty

Faugère's original

 argument
Quick example

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$.
(1) $G=\left(x y+1, y^{2}+1\right)$
(1) $S=y(x y+1)-x\left(y^{2}+1\right)=y-x$

No top-reduction
(2) $G=\left(x y+1, y^{2}+1, x-y\right)$

Remarks on Faugère's F5 algorithm

John Perry
Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$.

Quick example

(2) $G=\left(x y+1, y^{2}+1, x-y\right)$
(1) $S=(x y+1)-y(x-y)=1+y^{2}$

Top-reduces to zero
(2) $S=x\left(y^{2}+1\right)-y^{2}(x-y)=x+y^{3}$

Top-reduces to zero

Remarks on Faugère's F5 algorithm

John Perry
Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$.

Quick example

(1) $S=y(x y+1)-x\left(y^{2}+\right.$
No top-reduction
$G=\left(x y+1, y^{2}+1, x-y\right)$
(1) $S=(x y+1)-y(x-y)=1+y^{2}$

Top-reduces to zero
(2) $S=x\left(y^{2}+1\right)-y^{2}(x-y)=x+y^{3}$

Top-reduces to zero

$$
\therefore \mathrm{GB}\left(\left\langle x y+1, y^{2}+1\right\rangle\right)=\left(x y+1, y^{2}+1, x-y\right)
$$

Remarks on Faugère's F5 algorithm

Bottleneck

- Bottleneck
- New polynomials \rightarrow new information
- Top-reduction to zero \nrightarrow no new polynomial
\nrightarrow new information
- $(100-\epsilon) \%$ of time: verifying GB, not computing
- Top-reduction very, very expensive

Past work

- Predict zero reductions

> (B Buchberger 1985, R Gebauer-H Möller 1988, CKR 2002, H Hong-J Perry 2007)

- Selection strategy: Pick pairs in clever ways

> (B Buchberger 1985, A Giovini et al 1991, H Möller et al 1992)

- Forbid some top-reductions: Involutive bases
(V Gerdt-Y Blinkov 1998)
- Homogenization: d-Gröbner bases

Remarks on

 Faugère's F5 algorithmJohn Perry

F5
Gröbner bases: review

Rough idea

Signatures
Predicting zero reductions

The algorithm

Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! termination
(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example. .. terminates!
Variants that guarantee termination

Outline

F5: overview

F5: combined approach

- Homogenize
- d-Gröbner bases
- New point of view:
- New way to predict zero reductions
- New selection strategy
- Some systems: no zero reductions!
"A new efficient algorithm for computing Gröbner bases without reduction to zero $\left(F_{5}\right)$ "

Remarks on Faugère's F5 algorithm

John Perry

- Compute $\mathrm{GB} \Longleftrightarrow$ Triangularize Sylvester matrix of G (D Lazard, 1983)
- Triangularize sparse matrix (F4)
(Faugère, 1999)
- Avoid using different rows to re-compute reductions
(Faugère, 2002)

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions

The algorithm

Implementation
Why?
Where?
Two variants
Termination (?)

The difficulty

Faugère's original

 argumentNon-terminating example...terminates! Variants that guarantee termination

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$

Remarks on Faugère's F5 algorithm

John Perry

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

Implementation Why?
Where?
Two variants Termination (?)

The difficulty

 Faugère's original argument termination
Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=2$:

No cancellations of degree 2...

Remarks on Faugère's F5 algorithm

John Perry

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions

The a Igorithm

Where?
Two variants
Termination (?)

The difficulty

Faugère's original argument
Non-terminating example....terminates! termination

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=3$:

Rows 2, 3 cancel...

Remarks on Faugère's F5 algorithm

John Perry

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions The algorithm

Where?

Two variants

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=3$:

New! $g_{3}=x b^{2}-y h^{2}$

Remarks on Faugère's F5 algorithm

John Perry

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=3$:

linear dependence: $x_{82}{ }^{g_{3}}$

$$
\left(x g_{2}=g_{3}+y g_{1}\right)
$$

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions The algorition

Implementation Why?
Where?
Two variants
Termination (?)
The difficulty Faugère's original argument
Non-terminating example...terminates!

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=4$:

linear dependence: $x^{2} / I_{2}, x y x_{8}^{x y_{3}}{ }^{1 y_{3}}$

Remarks on Faugère's F5 algorithm

John Perry

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm

Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty Faugère's original argument

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=4$:

Rows 4, 7 cancel...

Remarks on Faugère's F5 algorithm

John Perry

Gröbner bases: review Rough idea Signatures Predicting zero reductions The algorithm
Where?
Two variants

The difficulty

Quick example, revisited

Problem: Find Gröbner basis of $\left\langle x y+1, y^{2}+1\right\rangle$. Homogenize: $G=\left(x y+b^{2}, y^{2}+b^{2}\right)$ $d=4$:

Rows 4, 7 cancel... . but we will not consider them! Why not?

Later.

Remarks on

 Faugère's F5 algorithmJohn Perry

F5
Gröbner bases: review Rough idea

Signatures

Predicting zero reductions

The algorithm

Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugère's original argument
Non-terminating example...terminates! Variants that guarantee termination
(1) F5

Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Gröbner bases: review

```
Why?
Where?
Two variants
    Iwo variants
```


Outline

Remarks on

Faugère's F5 algorithm

John Perry

and generators g_{1}, g_{2} ?

- $h^{2} g_{1}$: obvious
- $y g_{3}: g_{3}=x g_{2}-y g_{1}$

Signatures

- Relation b/w rows

The difficulty
Faugère's original argument
Non-terminating example...terminates!

Remarks on Faugère's F5 algorithm

Signatures

- Relation b/w rows

and generators g_{1}, g_{2} ?
- $h^{2} g_{1}$: obvious
- $y g_{3}: g_{3}=x g_{2}-y g_{1}$

Signature of $g_{3}: \operatorname{Sig}\left(g_{3}\right)=x g_{2}$.
$\therefore \operatorname{Sig}\left(y g_{3}\right)=x y g_{2}$.

Remarks on Faugère's F5 algorithm

Signatures: Observations

- $\operatorname{Sig}(p)=\operatorname{tg}_{i}$?
- $1 \leq i \leq m$
(inputs: $\left.\left(g_{1}, \ldots, g_{m}\right)\right)$
- $g=h_{1} g_{1}+\cdots+h_{i-1} g_{i-1}+(t+\cdots) g_{i} \quad\left(\exists h_{1}, \ldots, h_{i}, \operatorname{lt}\left(h_{i}\right)=t\right)$
- this definition $=$ algorithmic behavior \neq Faugère's definition
- "easy" record-keeping: list of rules
- "easily" reject certain useless pairs:
- Use $y g_{3} \mathrm{w} / \operatorname{sig} x y g_{2}$, not $x y g_{2}$ - Use $x g_{3} \mathrm{w} / \operatorname{sig} x^{2} g_{2}$, not $x^{2} g_{2}$
- Criterion "Rewritten"

Signatures: Observations

- $\operatorname{Sig}(p)=\operatorname{tg}_{i}$?
- $1 \leq i \leq m$
(inputs: $\left.\left(g_{1}, \ldots, g_{m}\right)\right)$
- $g=h_{1} g_{1}+\cdots+h_{i-1} g_{i-1}+(t+\cdots) g_{i}\left(\exists h_{1}, \ldots, h_{i}, \operatorname{lt}\left(h_{i}\right)=t\right)$
- this definition $=$ algorithmic behavior \neq Faugère's definition
- "easy" record-keeping: list of rules
- "easily" reject certain useless pairs:
- Use $y g_{3} \mathrm{w} / \operatorname{sig} x y g_{2}$, not $x y g_{2}$
- Use $x g_{3} \mathrm{w} / \operatorname{sig} x^{2} g_{2}, \operatorname{not} x^{2} g_{2}$
- Criterion "Rewritten"
(J-C Faugère 2007?, J Gash 2008,
C Eder-J Perry submitted)

Remarks on Faugère's F5 algorithm

John Perry

Faugère's characterization

Theorem (Faugère, 2002)

$(A) \Longleftrightarrow(B)$ where
(A) Ga Gröbner basis (B) $\forall p, q \in G$ where

- $u \operatorname{Sig}(p), v \operatorname{Sig}(q)$ not rewritable, and
- $u \operatorname{Sig}(p), v \operatorname{Sig}(q)$ minimal

S-polynomial up - vq top-reduces to zero w/out changing signature
(highly paraphrased, slightly generalized)

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! Variants that guarantee termination

Outline

(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

John Perry

How to predict zero reductions?

- Recall

We did not cancel. Why not?

- S-poly top-reduces to zero
- can predict this

Remarks on Faugère's F5 algorithm

John Perry

How to predict zero reductions?

- Recall

We did not cancel. Why not?

- S-poly top-reduces to zero
- can predict this

Remarks on Faugère's F5 algorithm

Faugère's criterion

Theorem
If

- $u \operatorname{Sig}(p)=u g_{i} ;$ and
- $\operatorname{lt}(q) \mid u, \exists q \in \operatorname{GB}_{\text {prev }}\left(g_{1}, \ldots, g_{i-1}\right)$;
then $u \operatorname{Sig}(p)$ is not minimal.
Definition
$\mathrm{FC}(u \operatorname{Sig}(p)): \quad \operatorname{lt}(q) \mid u \exists q \in \mathrm{G}_{\text {prev }}$
Corollary
In S-polynomial up-vq,

Remarks on Faugère's F5 algorithm

Faugère's criterion

Theorem
If

- $u \operatorname{Sig}(p)=u g_{i} ;$ and
- $\operatorname{lt}(q) \mid u, \exists q \in \mathrm{~GB}_{\text {prev }}\left(g_{1}, \ldots, g_{i-1}\right)$;
then $u \operatorname{Sig}(p)$ is not minimal.
Definition
$\mathrm{FC}(u \operatorname{Sig}(p)): \quad \operatorname{lt}(q) \mid u \exists q \in \mathrm{G}_{\mathrm{prev}}$
Corollary
In S-polynomial up - vq,
if $F C(u \operatorname{Sig}(p))$ or $F C(v \operatorname{Sig}(q))$
then we need not compute S.

Remarks on Faugère's F5 algorithm

John Perry

- Recall

In the example...

- $\mathrm{G}_{\mathrm{prev}}=\left(\mathrm{g}_{1}\right)$
- $\operatorname{Sig}\left(g_{3}\right)=x g_{2}$
- $y \operatorname{Sig}\left(g_{3}\right)=x y g_{2}$, and $\operatorname{lt}\left(g_{1}\right) \mid x y \ldots$

FC \Longrightarrow no need to compute S-polynomial

Remarks on Faugère's F5 algorithm

John Perry

In the example...

- Recall

- $\mathrm{G}_{\mathrm{prev}}=\left(\mathrm{g}_{1}\right)$
- $\operatorname{Sig}\left(g_{3}\right)=x g_{2}$
- $y \operatorname{Sig}\left(g_{3}\right)=x y g_{2}$, and $\operatorname{lt}\left(g_{1}\right) \mid x y \ldots$

FC \Longrightarrow no need to compute S-polynomial Why?

Remarks on Faugère's F5 algorithm

John Perry reductions

The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)

The difficulty

Faugère's original

 argumentNon-terminating example...terminates! Variants that guarantee termination

Why? Trivial syzygies

$$
\text { Recall } y g_{3}=y\left[x g_{2}-y g_{1}\right] \ldots
$$

Remarks on Faugère's F5 algorithm

John Perry

Where?

Two variants
Termination (?)

The difficulty

Faugère's original

 argumentNon-terminating example...terminates! Variants that guarantee termination

Why? Trivial syzygies

$$
\begin{aligned}
\text { Recall } y g_{3} & =y\left[x g_{2}-y g_{1}\right] \ldots \\
\therefore y g_{3} & =y\left[x g_{2}-y g_{1}\right] \\
& =x y g_{2}-y^{2} g_{1}
\end{aligned}
$$

Remarks on Faugère's F5 algorithm

Why? Trivial syzygies

$$
\begin{aligned}
& \text { Recall } y g_{3}=y\left[x g_{2}-y g_{1}\right] \ldots \\
& \therefore y g_{3}
\end{aligned}=y\left[x g_{2}-y g_{1}\right] \quad \text { } \quad=x y g_{2}-y^{2} g_{1} . l .
$$

Trivially $g_{1} g_{2}-g_{2} g_{1}=0$.

Remarks on
Faugère's F5
algorithm

Why? Trivial syzygies

$$
\begin{aligned}
& \text { Recall } y g_{3}=y\left[x g_{2}-y g_{1}\right] \ldots \\
& \therefore y g_{3}
\end{aligned}=y\left[x g_{2}-y g_{1}\right] \quad \text { } \quad=x y g_{2}-y^{2} g_{1} . l .
$$

Trivially $g_{1} g_{2}-g_{2} g_{1}=0$.
$\therefore y g_{3}=x y g_{2}-y^{2} g_{1}$
$-\left[\left(x y+b^{2}\right) g_{2}-\left(y^{2}+b^{2}\right) g_{1}\right]$
$=-b^{2} g_{2}+b^{2} g_{1}$

Remarks on
Faugère's F5
algorithm
John Perry

Why? Trivial syzygies

$$
\begin{aligned}
\text { Recall } y g_{3} & =y\left[x g_{2}-y g_{1}\right] \ldots \\
\therefore y g_{3} & =y\left[x g_{2}-y g_{1}\right] \\
& =x y g_{2}-y^{2} g_{1}
\end{aligned}
$$

Trivially $g_{1} g_{2}-g_{2} g_{1}=0$.

$$
\begin{aligned}
\therefore y g_{3}= & x y g_{2}-y^{2} g_{1} \\
& -\left[\left(x y+b^{2}\right) g_{2}-\left(y^{2}+b^{2}\right) g_{1}\right] \\
= & -b^{2} g_{2}+b^{2} g_{1}
\end{aligned}
$$

$\operatorname{Sig}\left(y g_{3}\right)$ not minimal!

Remarks on

 Faugère's F5 algorithmJohn Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugère's original argument
Non-terminating example...terminates! Variants that guarantee termination
(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugère's original argument
Non-terminating example...terminates! Variants that guarantee termination

The F5 Algorithm

(1) Each stage: Incremental strategy
(1) Compute GB $\left(g_{1}\right)$
(2) Compute $\mathrm{GB}\left(g_{1}, g_{2}\right)$ (3)...
(2) d-GB's $\rightsquigarrow \mathrm{GB}\left(g_{1}, \ldots, g_{i}\right)$
(3) only S-polys with

- signatures that do not satisfy (FC); and
- non-rewritable components.
(4) Top-reduce, but not if reduction. . .
(1) satisfies (FC); or
(2) rewritable.
(3) Track new polys with signature

The F5 Algorithm

(1) Each stage: Incremental strategy
(1) Compute GB $\left(g_{1}\right)$
(2) Compute $\mathrm{GB}\left(g_{1}, g_{2}\right)$
(3) \ldots
(2) d-GB's $\rightsquigarrow \mathrm{GB}\left(g_{1}, \ldots, g_{i}\right)$
(3) only S-polys with

- signatures that do not satisfy (FC); and
- non-rewritable components.
(4) Top-reduce, but not if reduction...
(1) satisfies (FC); or
(2) rewritable.
(5) Track new polys with signature

The F5 Algorithm

(1) Each stage: Incremental strategy
(1) Compute GB $\left(g_{1}\right)$
(2) Compute $\mathrm{GB}\left(g_{1}, g_{2}\right)$
(3) \ldots
(2) d-GB's $\leadsto \mathrm{GB}\left(g_{1}, \ldots, g_{i}\right)$
(3) only S-polys with

- signatures that do not satisfy (FC); and
- non-rewritable components.
(4) Top-reduce, but not if reduction...
(1) satisfies (FC); or
(2) rewritable.
(5) Track new polys with signature

Certain details omitted...

Remarks on Faugère's F5 algorithm

John Perry

Where?

Zero reductions?

> Definition
> If $G=\left(g_{1}, \ldots, g_{m}\right)$ has trivial syzygies only, then G is a regular sequence.

Many systems are regular sequences; many non-regular systems can be rewritten as regular.

CorollaryIf input to $F 5$ is a regular sequence, then no zero reductions occur.

Remarks on Faugère's F5 algorithm

Zero reductions?

Definition
If $G=\left(g_{1}, \ldots, g_{m}\right)$ has trivial syzygies only, then G is a regular sequence.

Many systems are regular sequences; many non-regular systems can be rewritten as regular.

Corollary

If input to $F 5$ is a regular sequence, then no zero reductions occur.

Remarks on Faugère's F5 algorithm

John Perry
None.

- F5 needs to compute signatures
- Buchberger's criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)

Remarks on Faugère's F5 algorithm

John Perry

None.

- F5 needs to compute signatures
- Buchberger's criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)

Remarks on

 Faugère's F5 algorithmJohn Perry

F5
Grobbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! Variants that guarantee termination

Outline

(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

Motivation

- little public code...
- Stegers: Magma
- I don't have Magma
- I like Sage, can use Maple
- FGb source code not public
- compare with other algorithms
- selection strategy
- predicting zero reduction
- time/space tradeoff?

Remarks on

 Faugère's F5 algorithmJohn Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation Why?
Where?
Two variants
Termination (?)
The difficulty
Faugère's original argument
Non-terminating example...terminates! termination

Outline

(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Implementations (1)

- Faugère (2002)
- C, interfaces w/Maple
- Very fast
- Several variants: F5, F5', F5", ...?
- Souce code not publicly available, binary download
- Stegers (2005)
- Interpreted Magma code
- Respectable timings
- Variant "F5R"
- http://wwwcsif.cs.ucdavis.edu/~stegers/
- Others
- Unstable implementations
- Magma implementation?

Remarks on Faugère's F5 algorithm

Implementations (2)

- Perry (2007)
- Interpreted Maple code
- Embarassingly slow
- Source code publicly available ${ }^{\text {unmaintained }}$
- Eder, Perry (2008)
- Interpreted Singular code
- Respectable timings
- New variant "F5C"
- http://www.math.usm.edu/perry/research.html

Implementations (3)

- Albrecht (2008)
- Interpreted Sage/Python code
- Faster than Eder, Perry (2008)
- Variants F5, F5R, F5C
- http://bitbucket.org/malb/algebraic_attacks/
- King (2008)
- Compiled Sage/Cython code
- Faster than Eder, Perry (2008) and Albrecht (2008)?
- Variant F5R; variants F5 and F5C by Perry
- http://www.math.usm.edu/perry/research.html
- Eder (in progress)
- FS in Singular kernel
- Access to many Singular optimizations
- Sage uses Singular, so direct benefit to Sage
- Source code will be publicly available

So you want to implement F5...

- Faugère's pseudocode:

> www-spaces.lip6.fr/@papers/F02a.pdf
(2004 edition, corrected!)

- Stegers' pseudocode:
wwwcsif.cs.ucdavis.edu/~stegers/
- Perry's pseudocode:
www.math.usm.edu/perry/research.html
(used for Singular, Sage implementations)

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugere's original argument
Non-terminating example...terminates! termination

Outline

(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

(2) Implementation

Why?
Where?

Two variants

(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

Reduced Gröbner basis

John Perry

- Some inefficiency in F5
- Not all top-reductions allowed
- Redundant lt's added
- Necessary this stage, but...
- ... not next stages, not for GB
- Reduced Gröbner basis?
- Pruning of redundant lt's
- Well-known optimization
- "Naïve" F5 does not use RGB

Remarks on

Reduced Gröbner basis

- Some inefficiency in F5
- Not all top-reductions allowed
- Redundant lt's added
- Necessary this stage, but...
- ... not next stages, not for GB
- Reduced Gröbner basis?
- Pruning of redundant lt's
- Well-known optimization
- "Naïve" F5 does not use RGB

Remarks on Faugère's F5 algorithm

F5R (Stegers, 2006)

- Compute GB G of $\left\langle f_{1}, \ldots f_{i}\right\rangle$
- Compute RGB B of $\langle G\rangle$
(easy: interreduce G)
- Compute GB of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$
- Use G for critical pairs, B for top-reduction
- Many fewer reductions than F5, but...
- Same \# polys considered, generated

Remarks on Faugère's F5 algorithm

John Perry

- Compute GB G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$
- Compute RGB B of $\langle G\rangle$

F5C (Eder and Perry, 2008-2009)

- Compute GB of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$
- Use B for top-reduction and for critical pairs
- Modify rewrite rules
- Significantly fewer reductions than F5R, and...
- Fewer polys considered, generated

Remarks on Faugère's F5 algorithm

John Perry

\#Critical pairs, \#Polynomials in

 variants| F5, F5R | | | F5C | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | $\# G_{\text {curr }}$ | $\max \left\{\# P_{d}\right\}$ | i | $\# G_{\text {curr }}$ | $\max \left\{\# P_{d}\right\}$ |
| 2 | 2 | N/A | 2 | 2 | N/A |
| 3 | 4 | 1 | 3 | 4 | 1 |
| 4 | 8 | 2 | 4 | 8 | 2 |
| 5 | 16 | 4 | 5 | 15 | 4 |
| 6 | 32 | 8 | 6 | 29 | 6 |
| 7 | 60 | 17 | 7 | 51 | 12 |
| 8 | 132 | 29 | 8 | 109 | 29 |
| 9 | 524 | 89 | 9 | 472 | 71 |
| 10 | 1165 | 276 | 10 | 778 | 89 |

Remarks on Faugère's F5 algorithm

John Perry

\#Reductions

variant:	F5	F5R	F5C
Katsura-5	346	289	222
Katsura-6	8,357	2,107	1,383
Katsura-7	$1,025,408$	24,719	10,000
Cyclic-5	441	457	415
Cyclic-6	36,139	17,512	10,970

(Top-reduction, normal forms)
(Many more in Gebauer-Möller: > 1,500,000 in Cyclic-6)

Remarks on Faugère's F5 algorithm
(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

John Perry
Termination?

- Buchberger: $\mathrm{ACC} \Longrightarrow S$-polys reduce to zero eventually
- Faugère: S-polys w/minimal signatures computed, but...

Termination: the difficulty

Where?
Two variants
Termination (?)
The difficulty
argument

Remarks on Faugère's F5 algorithm

Termination: the difficulty

Termination?

- Buchberger: $\mathrm{ACC} \Longrightarrow S$-polys reduce to zero eventually
- Faugère: S-polys w/minimal signatures computed, but...
- Some top-reductions forbidden
- Regular system: no zero reductions
- How recognize GB property?

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)

The difficulty

Faugère's original argument
Non-terminating example...terminates! Variants that guarantee termination
o F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

John Perry

Faugère's original argument

Theorem

If reduction stage concludes without zero reductions, then ideal of lt's has increased.

Example
S-polynomial of $f_{1}=x y+1, f_{2}=y^{2}+1$ did not reduce to zero; new polynomial $x-y$; new lt x !

Faugère's original argument

Theorem
If reduction stage concludes without zero reductions, then ideal of lt's has increased.

This theorem is wrong.

Example (Gash, 2008)

- Uses Faugère's example (2002 paper)
- Consider S-polynomials in different order
- m no reduction to zero and ideal of lt's does not increase.
- "redundant polynomials"

Redundant polynomials:

 necessary?Why does F5 compute redundant polynomials?

- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example

- p_{1} top-reducible by p_{2}, but forbidden
- p_{1} added to $\mathrm{GB} \rightsquigarrow$ new rewrite rule
- p_{3} top-reducible by p_{1} ? now allowed
- equivalent to top-reduction by p_{2}

Redundant polynomials:

necessary?

Why does F5 compute redundant polynomials?

- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example

- p_{1} top-reducible by p_{2}, but forbidden
- p_{1} added to $\mathrm{GB} \leadsto$ new rewrite rule
- p_{3} top-reducible by p_{1} ? now allowed
- equivalent to top-reduction by p_{2}

Possible resolution...?

John Perry

An idea:

- Suppose reduction stage returns redundant polynomials
- d-Gröbner basis!
- keep polys, but...
- not their S-polys
- multiples of reducers' S-polynomials
- Guaranteed termination! but...
- No longer guaranteed correct!
- Non-trivial concern: Cyclic-7 oops!
- Rewrite rules \Longrightarrow non-computed S-polys!

Possible resolution...?

An idea:

- Suppose reduction stage returns redundant polynomials
- d-Gröbner basis!
- keep polys, but...
- not their S-polys
- multiples of reducers' S-polynomials
- Guaranteed termination! but...
- No longer guaranteed correct!
- Non-trivial concern: Cyclic-7 oops!
- Rewrite rules \Longrightarrow non-computed S-polys!

Remarks on Faugère's F5 algorithm

Regular case

- General agreement: termination
- Proof in Faugère's HDR? (2007)
- Another idea (J Gash, 2009)
- Non-termination? chain of divisible lt's
- Subchain of divisible signatures (ACC)
- Cannot occur in regular case
- Still working on this...

Remarks on Faugère's F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
Implementation
Why?
Where?
Two variants
Termination (?)

The difficulty

Faugère's original argument
Non-terminating example...terminates! Variants that guarantee termination
(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(a) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

Non-terminating examples

- Widespread belief: F5 does not always terminate
- Proposals for non-terminating systems
- Stegers' nonTerminatingExample.mag
- Brickenstein's example (private communication, exploit iterative computation)
- However...
- Singular and Sage: both systems terminate

nonTerminatingExample.mag

Termination in Singular and Sage, not in Magma?!?

- Error in implementation
- Rewrite rules sometimes not assigned
- Some top-reductions not completed
- Correction \rightsquigarrow termination!
(R Dellaca-J Gash-J Perry, 2009)

Remarks on Faugère's F5 algorithm
(1) F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm
(2) Implementation

Why?
Where?
Two variants
(3) Termination (?)

The difficulty
Faugère's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Remarks on Faugère's F5 algorithm

Private communications

John Perry

- Faugère, 2007 HDR: proof fixed
- Regular sequences only?
- Find me a copy?
- Zobnin, 2008: Restructured algorithm
- Proceeds by increasing signature, other changes
- Implementation?

Remarks on Faugère's F5

Gash (2008 PhD Dissertation)

- Redundant polynomials \rightsquigarrow special bin D
- Test for GB: force carefully-chosen zero reductions
- If failure, add D to GB and proceed
- Loss of efficiency via zero reductions vs. guaranteed termination and correctness

Another solution?

Another idea: modified F5C

- Suppose reduction stage returns redundant polynomials
- d-Gröbner basis!
- Immediately interreduce, discard all redundant polynomials
- Re-examine all pairs
- S-polynomials of degree $\leq d$: good! new rewrite rule
- S-polynomials of degree $>d$: bad! compute S-poly
- WARNING:

The above has not (yet) been proved or implemented.

```
Remarks on
Faugère's F5
    algorithm
```

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions

The algorithm

Implementation
Why?
Where?
Two variants
Termination (?)
The difficulty
Faugerre's original argument
Non-terminating example...terminates!
Variants that guarantee termination

Finis

Thank you!

