
Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

The Cohomology of finite p–Groups

Simon King (joint work with David J. Green)

DFG project GR 1585/4–1
Friedrich–Schiller–Universität Jena

January 22, 2009

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Outline

1 Mission statement

2 Approaches for computing Cohomology
Spectral Sequences vs. Projective Resolutions

3 Degree-wise approximation of H∗(G ; Fp)
Constructing minimal projective resolutions
Finding relations
Chosing generators

4 Benson’s Completeness Criterion

5 Implementation in Sage
Digression: Why C-MeatAxe?

6 Summary of computational results
Minimal generating sets and relations
How good is Benson’s criterion?

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

What is a Cohomology ring?

Let G be a finite p-group (i.e., p prime, |G | = pn). We study the
modular cohomology ring H∗(G ; Fp).

H∗(G ; Fp) is a graded commutative finitely presented
Fp–algebra (x · y = (−1)deg(x)·deg(y)y · x).

H∗(G ; Fp) is determined by G up to isomorphism.

Any group homomomorphism ϕ : G1 → G2 gives rise to an
algebra homomorphism ϕ∗ : H∗(G2; Fp) → H∗(G1; Fp)

Any subgroup U ≤ G gives rise to a restriction map
H∗(G ; Fp) → H∗(U; Fp)

J. F. Carlson, 1997-2001(?)

Groups of order 64, long computation time, using Magma

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

DFG Project “Computational Group Cohomology”

Aim

Compute the cohomology for many groups, including all 2328
groups of order 128 (provide minimal generating sets and
relations)

Test the Strong Benson Conjecture.

Collect results in a data base.

Present the results on Web pages

Web: http://users.minet.uni-jena.de/~king/cohomology/

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Performance of our software

2-groups:

For all 267 groups of order 64:
∼ 27 CPU-min, ∼ 38 clock-min (Intel Pentium M, 1.73 GHz)

Very roughly 10 months for the 2328 groups of order 128:

21 days for all but four groups of order 128 (parallel on two
Dual Core AMD Opteron Processor 270 with 2 GHz, 16 Gb)
2 months for the four exceptional cases (parallely)

We also have all but 8 cohomology rings for 3-, 5-, and 7-groups of
order at most 625,
(known) Sylow–2 of the Higman-Sims group (order 512),
(new) Sylow–2 of the third Conway group (order 1024)

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Spectral Sequences vs. Projective Resolutions

Approaches for computing Cohomology

Spectral Sequences

Lyndon–Hochschild–Serre
 extraspecial 2–groups [D. Quillen, 1971]

Eilenberg–Moore groups of order 32 [D. J. Rusin, 1989]

Projective resolutions

Yields approximation in increasing degree
Main problem: When is the computation finished?

Carlson’s Completeness Criterion (depends on a conjecture)

Use spectral sequences (Hap, G. Ellis, P. Smith 2008)

Benson’s Completeness Criterion (see below)

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Constructing minimal projective resolutions
Finding relations
Chosing generators

Constructing minimal projective resolutions

D. Green 2001

Use n. c. Gröbner basis techniques for modules over FpG

Negative monomial orders (for minimality)

Two-speed replacement rules: Type I precedes Type II

F3C3
∼= F3[t]/〈t3〉, M = (F3C3 · a⊗ F3C3 · b)/〈t · a− t2 · a + t · b〉

Type I rule: t3 0. Type II rule: t · a t2 · a− t · b.
Reduce t · a + t · b: t2 · a− t · b + t · b = t2 · a
 t3 · a− t2 · b −t2 · b (Type I precedes Type II!).

Existence and uniqueness of reductions, Gröbner bases, computing
kernels of homomorphisms...

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Constructing minimal projective resolutions
Finding relations
Chosing generators

Finding relations

Assume we know the cohomology out to degree n; hence:

Rn: Free graded–commutative algebra over Fp, given by
minimal generators of H∗(G ; Fp) of degree ≤ n.

In ⊂ Rn, generated by degree–≤ n–part of ker(Rn → H∗(G)).

Compute the next degree as follows:

Standard monomials of In of degree n + 1
 decomposable (n + 1)–classes in cohomology.

Find new relations in degree n + 1 In+1.

Indecomposable classes new generators Rn+1

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Constructing minimal projective resolutions
Finding relations
Chosing generators

Special choice of generators

1 Nilpotent generators ⇐⇒ Restrictions to all maximal elem.
ab. subgroups of G are nilpotent (easy to test!)

2 “Boring” generators: Not nilpotent, but restriction to the
greatest central elem. ab. subgroup is nilpotent.

3 Remaining: Duflot regular generators

Reason for that choice of generators

David Green’s monomial order on Rn relies on the generator types.
It simplifies the computations by magic!
Also, it is used in the completeness criterion below.

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Benson’s Completeness Criterion

G abelian ⇒ degree 2 suffices. Otherwise:

Let r be the p-Rank of G and let Rn/In approximate H∗(G)

Let P1, . . . ,Pr ∈ Rn/In be a filter-regular HSOP, deg(Pi) ≥ 2
I.e., the multiplication by Pi on Rn/ (In + 〈P1, ...,Pi−1〉)
has finite kernel, for i = 1, ..., r .

Maximal degrees of the kernels and of Rn/ (In + 〈P1, ...,Pr 〉)
 “filter degree type” (d1, ..., dr+1) (after easy computation)

Theorem [D. J. Benson, 2004]

n > max (0, di + i − 1)i=1,...,r +
∑

i deg(Pi)− r ⇒ Rn/In ∼= H∗(G)

Remark “n ≥ ...” suffices if rk(Z (G)) ≥ 2
Conj. If Rn/In ∼= H∗(G) then (d1, ..., dr+1) = (−1,−2, ...,−r ,−r)

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Constructing a filter-regular HSOP

Let r = p-rk(G) and z = rk(Z (G)).
Find Duflot regular generators g1, ..., gz ∈ H∗(G).

Let U1, ...,Um ⊂ G be the maximal elementary abelian
subgroups.
Using Dickson invariants: Compute classes Di ,j in the
polynomial part of H∗(Uj), for i = 1, ..., r − z and j = 1, ...,m.

There are classes ∆i ∈ H∗(G) for i = 1, ..., r − z ,
simultaneously restricting to the pki -th power of Di ,j for
j = 1, ...,m.
Very often, ki = 0.

g1, ..., gz ,∆1, ...,∆r−z is a filter-regular HSOP of H∗(G)
[D. J. Benson]. Computable in Rn/In !!

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Improvement by existence proof

Problem: Dickson invariants may be of large degree

We take minimal factors of the ∆i , for decreasing the degrees.

We use the Dickson classes only for computing the filter
degree type (which is the same for any f. r. HSOP)!

We prove the presence of a small–degree filter–regular HSOP

non-constructively

In Rn/In, mod out g1, ..., gz , possibly some ∆1, ...,∆i0 , and all
monomials of some degree d . If the quotient is finite, then there
exist parameters in degree d that extend g1, ..., gz ,∆1, ...,∆i0 to a
filter-regular HSOP [D. Green, S. K. 2008].

Conway(3) and others would be unfeasible without that trick!

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Digression: Why C-MeatAxe?

Important Sage features

Gap, SmallGroups library

Gap functions and C-executables of David Green yield data on the
group and its elementary abelian subgroups.

Cython

Wrapper MTX for C-MeatAxe matrices (see below)

Compute resolutions (wrapping C-programs of David Green)

Provide new extension classes for Cochains, Chain Maps,
Cohomology Rings
and methods for cup product, restriction, degree–wise
approximation, Benson’s test, creating Web pages, etc.

Cython yields very good speed!

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Digression: Why C-MeatAxe?

Important Sage features

Singular

Used for all graded commutative stuff. It rocks!

Gröbner basis of the relation ideal of group 836 of order 128:

> 1 month with self-made implementation (D. Green), but
only few hours with Singular.

Lift Dickson classes: Either by linear algebra (MTX), or by
elimination (Singular).

Detection of filter regular HSOPs.

You

Your comments led to huge speed-ups by making better use of
Singular interface and Cython — Thank you!

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Digression: Why C-MeatAxe?

Why C-MeatAxe?

MTX matrices

Purpose: Linear Algebra over fields of order < 256
Wraps a modified version of C-MeatAxe 2.2.3.

Reasons:

David Green’s programs for computing resolutions rely on
C-MeatAxe 2.2.3. Re-implementation or conversion sucks.

We need the following operations to be fast:

Copying, pickling, hash, equality test, element access,
conversion into lists
Sum, difference, skalar multiplication
Nullspace

Almost no need for matrix inversion or multiplication.

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Digression: Why C-MeatAxe?

MTX vs. usual Sage-3.2.3 matrices

On AMD Athlon 64 Processor 3700+ with 2.2 GHz, 1 GB RAM,
and 2 GB Swap

F7, random 500× 500

Hash, sum and difference was slow in Sage, is now ok.

Sage MTX
copy(M) 1.29ms 0.27ms

loads(dumps(M)) 199ms 30.3ms
== 571ns 795ns (different matrices)

1.16ms 0.27ms (equal matrices)
M[i,j] 5.69µs 2.24µs

M.list() 529ms 15.4ms
skalar mult. 9.1ms 1.6ms

nullspace 23.5s 4.2s (1000× 500)

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Digression: Why C-MeatAxe?

MTX vs. usual Sage-3.2.3 matrices

F2, random 5000× 5000

Sage MTX
copy(M) 4ms 4.67ms

loads(dumps(M)) 10.6s 623ms
== 608ns 869ns (different matrices)

2.01ms 3.13ms (equal matrices)
M[i,j] 1.95µs 2.28µs

M.list() 1.3s 1.4s
nullspace fails! 55.2s (10000× 5000)

M.kernel().basis() was running out of memory.

Conclusion

Conversion would not pay off (at least for now).

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Minimal generating sets and relations
How good is Benson’s criterion?

Typical generating sets

Minimal number of generators

#Gen #gps
34 3
36 1
39 1
65 1

2322 groups have less than 34 minimal
generators

The winner is:
Group 836

Maximal degree of minimal generators

Deg #gps
13 1
14 3
16 22
17 1

2301 groups have generator degree less
than 12

The winner is:
Group 562

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Minimal generating sets and relations
How good is Benson’s criterion?

Typical relation ideals

Minimal number of relations

#Rel #gps
461 1
486 1
526 1
626 1

1859 1

2323 groups have less than 440 minimal
relations

The winner is:
Group 836

Maximal degree of minimal relations

Deg #gps
28 4
30 3
32 1
34 1

2319 groups have relation degree less
than 27

The winner is:
Group 562
But 2298 and 2300 are hardest to obtain.

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Minimal generating sets and relations
How good is Benson’s criterion?

How good is Benson’s criterion?

Failure of Improved Benson’s Completeness Criterion

Excess #gps
0 1779
1 341
2 168
3 39
4 1

The loser is: Group 2320,
which is the direct product of D8

with an elementary abelian group.

Failure of Duflot’s Depth Bound (2313 non-abelian groups)

depth - rk(Z (G)) #gps
0 1767
1 508
2 37
3 1

The rank of the center is a
lower bound for the depth of
H∗(G).
The winner is: Group 2326,
extraspecial of type +

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

Mission statement
Approaches for computing Cohomology

Degree-wise approximation of H∗(G ; Fp)
Benson’s Completeness Criterion

Implementation in Sage
Summary of computational results

Minimal generating sets and relations
How good is Benson’s criterion?

To Do

Search counterexamples for Strong Benson Conjecture.
Currently: Group 299 of order 256, which is of defect 4.
It shows unexpected behaviour: 77 generators up to degree
11, ∼ 3000 relations up to degree 22, but still incomplete
— and blocks 158 Gb hard disk...

Add more features: Interesting invariants, Steenrod actions,
Fp cohomology of general finite groups

Build a data base and create a package

Status

Various Cython modules, almost full doctest coverage

A lot of C-code, various executables

— please help! Thank you!

Simon King, Schiller-Universität Jena The Cohomology of finite p–Groups

	Mission statement
	Approaches for computing Cohomology
	Spectral Sequences vs. Projective Resolutions

	Degree-wise approximation of H*(G;Fp)
	Constructing minimal projective resolutions
	Finding relations
	Chosing generators

	Benson's Completeness Criterion
	Implementation in Sage
	Digression: Why C-MeatAxe?

	Summary of computational results
	Minimal generating sets and relations
	How good is Benson's criterion?

