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Justin M. Gash

ON EFFICIENT COMPUTATION OF GROBNER BASES

On October 2, 2000 the National Institute of Standards and Technology chose to

adopt a new cryptographic algorithm as the standard for the United States

government. This new system was called Rijndael, named after its creators

Vincent Rijmen and Joan Daemon. Though it remains unbroken, cryptanalysts

are using so-called Grobner-basis attacks in an attempt to break it. Thus, the

onus is now on finding Grobner bases quickly.

In 2002 J.C. Faugere published an algorithm called F5 that found Grobner bases

dramatically quicker in most cases; however, in some cases, his program failed to

terminate. The problem posed is two-fold:

1. Can F5 be improved so that it terminates?

2. Can the hypotheses for termination be tightened?

My research has produced a modified F5 algorithm (called F5t) that guarantees

termination in all cases. In addition I demonstrate a current accepted major

theorem in Grobner basis theory is false. I replace the erroneous theorem by a

new theorem, proving that a slightly modified F5 can be made to terminate

(correctly) over finite fields.

———————————

———————————

———————————

———————————
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1. Introduction

On October 2, 2000 the National Institute of Standards and Technology chose

to adopt a new cryptographic algorithm as the standard for the United States

government. This new system was called Rijndael, named after its creators Vincent

Rijmen and Joan Daemon. It remains unbroken, and has since become a favored

method of encryption the world around; it is now referred to as the Advanced

Encryption Standard (AES) [4].

Among the most interesting properties of Rijndael is it’s method of encryption -

a basic algebraic algorithm that is completely public! Moreover, every step in the

algorithm is completely invertible. This means that:

(1) Everyone knows the steps the Rijndael algorithm uses to encrypt a message.

(2) All the steps Rijndael uses are completely invertible.

Thus it would seem that Rijndael would provide no security at all. At first glance

it seems that one would be able to simply take a ciphertext – the encoded message

– and invert it back to the plaintext – the original message – from which it came.

And that technique does work, but it is computationally infeasible. Let us consider

the following overview of Rijndael.

Rijndael’s security comes from a secret key. Different key sizes can be used, but

we will view Rijndael’s algorithm with a 128-bit key. Rijndael is a symmetric key

cryptosystem, meaning the two people communicating are assumed to already have

shared the key. During this first portion of our overview, the key is extended to

create ten children keys (for a total of 11 keys).

To start, the 128-bit key is split into 16 bytes, and the bytes are placed in a 4× 4

matrix K. These bytes can actually be viewed as polynomials in F256, the field of

256 elements. This ensures that matrix operations can be done and the elements

remain in F256. Call the columns of this matrix W (0), W (1), W (2) and W (3).
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Then the matrix is extended into 40 more columns of bytes using very basic bitwise

operations; this extension is based upon the elements in K. (For brevity and

simplicity, we will omit the details of the extension. Full details can be found in

[16].) Thus a 4 × 44 matrix has been constructed, which can be viewed as a set

of eleven 4 × 4 matrices, {M0, . . . ,M10}, each with columns W (4k), W (4k + 1),

W (4k + 2) and W (4k + 3). Now a block of data - call it m for message - is also

stored into a 4 × 4 matrix of bytes. The following operations are applied to the

matrix m over ten different rounds:

(1) Round Key Addition: XOR m with Mk, where k is the round number.

(2) Shift Row: Permute the elements of m in a public way.

(3) Mix Column: Multiply m by a public 4× 4 invertible matrix of bytes.

(4) Byte Sub: Map each byte from m to another byte dictated by a one-to-one

public mapping.

This yields the output of the algorithm (see [16] for full details).

We can see everything is known except the key K and every operation is public

and one-to-one, thus invertible. And all these invertible, public operations are

done within the framework of matrices (with entries in a field). Thus solving

for the original message m is equivalent to solving a system of equations. With

knowledge of the special key (and thus K), the sender and receiver can easily solve

this system. However, without knowledge of K solving this system requires solving

8000 quadratic equations with 1600 binary unknowns [4]. This is very difficult

computationally.

As shown in [5], Grobner bases of polynomial ideals offer a quick solution to solving

a system of equations. Grobner bases of polynomial ideals are special and powerful

generating sets for those ideals. We will discuss, at length, some of the properties

of Grobner bases in this paper; but it is easy to observe how the Grobner basis of
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an ideal assists in the solving of a system of equations. The Grobner basis of an

ideal triangulates the indeterminates so that a naive substitution method will solve

for each indeterminate. Using an example from [5], we see that the Grobner basis

of the ideal I = 〈x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1〉 is:

g1 : x+ y + z2 − 1

g2 : y2 − y − z2 + z

g3 : 2yz2 + z4 − z2

g4 : z6 − 4z4 + 4z3 − z2

It is clear how one could naively solve this system of equations. So the new idea for

breaking AES is to take the equations resulting from the AES algorithm, look at

the Grobner basis of the ideal generated by those equations, and solve. Since the

solution of the system is trivial, this method of solving a system of equations reduces

to efficiently finding the Grobner basis of an ideal. In short, we trade the difficulties

of directly solving an extremely large and complicated system of equations for the

difficulty of finding a Grobner basis for a set of polynomials.

In 2002, J.C. Faugere published an algorithm called F5 in [7]. This algorithm

has been shown in empirical tests to be the fastest Grobner-basis-generating algo-

rithm devised. (It is worth noting that the complexity class of the Grobner basis

generating problem is still approximately double exponential in the number of in-

determinates; this was recently discussed in [2], an example was produced in [11]

and the topic was originally discussed in [14].) Though his algorithm works well, it

doesn’t always terminate.

This thesis spends a great deal of time in further development of the mathematics

supporting the F5 algorithm. In addition, this thesis focuses on improving the F5

algorithm so that it terminates in all cases, and without a significant sacrifice to

the speed of the F5 algorithm in many cases. The pitfall of the F5 algorithm is

that it can continue indefinitely for some inputs. By using carefully placed and
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sparingly used high-priced computations, a stopping condition for the algorithm

can be achieved.

For those who are already familiar with Grobner-basis-algorithm theory, we offer

the following outline of this thesis. In chapter 2, entitled Background Information,

we will introduce the background necessary for our discussions within the paper.

This preliminary discussion can be supplemented by material in [3, 5, 6].

In chapter 3, entitled Faugere’s F5, we discuss the algorithm introduced in [7]

in 2002. This chapter contains the following clarifications of previous publication

items:

(1) In subsection 3.3, we clear up some notational and minor content errors in

previous proofs of the F5 criterion.

(2) In sub-subsection 3.4.2, we reproduce the example used by Faugere in [7].

The exposition here is lengthier and a few minor computational errors have

been corrected.

Chapter 3 also contains the following new material:

(1) In subsection 3.1, Theorem 3.1.1 proves Proposition 1 introduced in [7].

(2) In subsection 3.2, Lemma 3.2.1 proves that normalizing a non-normalized

polynomial can yield a different signed representation; this lemma plays a

very important role in the thesis. In addition, Theorem 3.2.1 proves that,

under certain specialized conditions, signed (and admissible) polynomials

have minimal signature.

(3) In sub-subsection 3.4.1, we produce the first proof (of this author’s knowl-

edge) of the validity of the Rewritten subroutine in F5.
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(4) In subsection 3.5, we introduce an error in the proof of F5’s termination

from [7]. We also introduce a method to fix the proof via a minor change

in the F5 algorithm.

In chapter 4, entitled Improving F5 and Introducing F5t, we discuss various im-

provements to F5. In section 4.1 we prove a minor improvement to the F5 algorithm

first introduced in [15]. In sections 4.2 and 4.3 we verify applications of Buchberger’s

first and second criteria within F5. Buchberger’s second criterion is slightly modi-

fied to accommodate the use of signatures within F5. In addition, with respect to

Buchberger’s first criterion, we have Corollary 4.2.2 that speaks to the usefulness of

applying the criterion within F5. In section 4.4 we introduce a new F5-Buchberger

algorithm hybrid called F5t. This new algorithm is guaranteed to terminate for

any input. Included within the section is the proof of a new criterion, pseudocode

for F5t, proof of correctness, proof of termination and timing data comparing F5

and F5t.

In chapter 5 – the conclusion section – we sum-up the contents of the paper and

will give some final commentary.

There are also two appendices. The first appendix, Appendix A, is an exposition

on the error in the proof of F5’s termination made in [7]. Though much of the

content of the error is explored in subsection 3.5, Appendix A discusses precisely

where the error in logic occurs. Appendix A uses the example from sub-subsection

3.4.2 for illustration. The second appendix, Appendix B, contains the code used

to implement the F5t algorithm. The code is written in the MAGMA computer

algebra language (see [13]).
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2. Background Information

In this chapter we provide some background for the subsequent chapters. This

chapter is by no means self-sufficient (see [3, 5, 6] for additional background). For

readers who are familiar with these topics, this chapter should provide the necessary

background to comfortably continue through the remainder of the paper.

2.1. Term Orders.

Definition 2.1.1. Let M be a set. Then a binary relation on the set M ×M is

a subset R ⊂ M ×M . A relation is a total order on M if R has the following

properties:

(1) ∀x ∈M , (x, x) ∈ R (reflexivity)

(2) ∀x, y ∈M , either (x, y) or (y, x) ∈ R (connexicity)

(3) if x, y, z ∈ M such that (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R (transi-

tivity)

(4) if x, y ∈M and (x, y), (y, x) ∈ R, then x = y (antisymmetry)

Definition 2.1.2. Let M1 ⊂ M and let < be a relation on M . We say M1 has

an < −minimal element m if m < m′ ∀m′ ∈ M1, m′ 6= m. (A similar definition

defines the notion of an < −maximal element.) If an < −minimal element exists

for any subset M1 ⊂M , then we say < is a well-ordering on M .

A similar but more complete set of definitions for binary relations and various order

types can be found in [15].

Let K be a field and let P = K[x1, x2, . . . , xn]. From now on, for ease of reading,

we will often denote K[x1, x2, . . . , xn] as K[x]. We will let T denote the set of terms

in K[x], T = {xα1
1 xα2

2 · · ·xαn
n |α1, α2, . . . , αn ∈ Z≥0}
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Definition 2.1.3. An order ≤ on T is called a term order if ≤ is a total well-

ordering on T such that 1 ≤ t ∀t ∈ T and for t1, t2 ∈ T such that t1 ≤ t2, t1t ≤ t2t

∀t ∈ T .

This above definition is paraphrased from [15].

Term orders are generally viewed as binary relations on Zn≥0 where a term xα =

xα1
1 xα2

2 · · ·xαn
n is mapped to (α1, α2, . . . , αn) ∈ Zn≥0. Note that we use the shorthand

notation of xα for xα1
1 xα2

2 · · ·xαn
n . The above map is clearly an isomorphism, so any

order properties of the term order ≤ in T are maintained by the corresponding total

order in Zn≤0. Thus term orders are often defined in a way similar to that in [5]:

Definition 2.1.4. A term ordering on K[x1, x2, . . . , xn] is a relation ≤ on Zn≥0

such that:

(1) ≤ is a total order on Zn≤0

(2) ≤ is a well-ordering on Zn≤0

(3) if α ≤ β and γ ∈ Zn≤0, then α+ γ ≤ β + γ

We also define the total degree of a term:

Definition 2.1.5. The total degree of a term xα = xα1
1 xα2

2 · · ·xαn
n is

∑n
i=1 αi. We

will denote the total order of xα as |α|.

Remark 2.1.1. Here we give a few examples of term orders.

(1) Lexicographical Order. Lexicographical order, or lex order for short, is

similar to the dictionary’s method for ordering words (hence the name).

We begin with an order on the indeterminates, say x1 > x2 > · · · > xn.

Then, for α, β ∈ Zn≤0, we say α >lex β if and only if ∃j, 1 ≤ j ≤ n, such

that αj > βj and αi = βi ∀i, 1 ≤ i ≤ j − 1.
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(2) Graded Lexicographical Order. This often shorthanded as grlex, and simply

adds one layer to lex ordering. We begin with an order on the indetermi-

nates, say x1 > x2 > · · · > xn. Then, for α, β ∈ Zn≤0, we say α >grlex β

if and only if either |α| > |β| or |α| = |β| but ∃j, 1 ≤ j ≤ n, such that

αj > βj and αi = βi ∀i, 1 ≤ i ≤ j − 1.

(3) Graded Reverse Lexicographical Order. This is a widely used ordering, and

is shorthanded as grevlex. We begin with an order on the indeterminates,

say x1 > x2 > · · · > xn. Then, for α, β ∈ Zn≤0, we say α >grevlex β if and

only if either |α| > |β| or |α| = |β| but ∃j, 1 ≤ j ≤ n, such that αj < βj

and αi = βi ∀i, j + 1 ≤ i ≤ n.

It is important to note that grevlex is not simply a reverse of grlex. Let’s consider

a brief example, with n = 3. Let α = (3, 4, 5) and β = (2, 4, 6). Then α >grlex β

because |α| = |β| = 12 but 3 > 2. It is also true, however, that α >grevlex β

because |α| = |β| = 12 but 5 < 6. Notice that the tie-breaking occurs at different

spots in the two orderings; grlex starts at the left-most entry and grevlex starts at

the right-most entry.

For more examples of term orders, refer to [5].

2.2. Grobner Bases. With the idea of a term order firmly in hand, we can make

the following important consequential definition:

Definition 2.2.1. Let polynomial p ∈ K[x], T be the set of terms and ≤ be a term

order on T . Then the head term of p, denoted HT (p), is the term t of p such that,

for all other terms t′ of p, t′ ≤ t. We will define the head coefficient of p, denoted

HC(p), is the coefficient (from K) of HT (p). We will say that the head monomial

of p, denoted HM(p), is HM(p) = HC(p)HT (p). Finally, for a set I of multiple

polynomials, we define the notation HT (I) = {HT (p)|p ∈ I}.
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Remark 2.2.1. Some sources on term orders will interchange our definition of a

head term and a head monomial. This definition given here is consistent with [3, 15].

This interchange of definitions causes no ill (other than confusion) in Grobner basis

theory.

Now that we have defined the notions of a head term, head coefficient and head

monomial, we introduce an important analogue of single-variable polynomial divi-

sion: namely, reduction one of polynomial by another. These definitions are taken

from [3].

Definition 2.2.2. Let f, g, p ∈ K[x] with f, p 6= 0; let P ⊂ K[x]. We say that f

reduces to g modulo p by eliminating t, denoted by f −→
p
g[t], if t is a term of f ,

∃s ∈ T with sHT (p) = t and g = f − a
HC(p)sp, where a is the coefficient of t in f .

We say f reduces to g modulo p, denoted f −→
p
g, if f −→

p
g[t] for some t, a term of

f . We say f reduces to g modulo P , denoted f −→
P

g, if f −→
p
g for some p ∈ P .

We say f is reducible modulo p if ∃g ∈ K[x] such that f −→
p
g; similarly, we say f

is reducible modulo P if ∃g ∈ K[x] such that f −→
P
g. We will say f is top-reducible

by p to g if f −→
p
g[t] and t = HT (f). If f is not reducible modulo p (P ), then

we will say that f is in normal form with respect to p (P ); thus a normal form of

f modulo P is a polynomial g that is in normal form modulo P and satisfies the

condition that f ∗−→
P
g, where ∗−→ is the reflexive-transitive closure of −→

P
.

Now we can give a definition of a Grobner basis. The following definition is given

in [15], but is based upon the fuller definition given in [3]. For our purposes the

shorter definition will do. First we give a theorem.

Theorem 2.2.1. Let G be a finite subset K[x]\{0}. The following conditions are

all equivalent.

(1) Every f ∈ 〈G〉 has a unique normal form with respect to −→
G

.

(2) For every f ∈ 〈G〉, there is a reduction so that f ∗−→
G

0.
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(3) Every non-zero f ∈ 〈G〉 is reducible by G.

(4) Every non-zero f ∈ 〈G〉 is top-reducible by G.

(5) For every s ∈ HT (〈G〉) there is a t ∈ HT (G) such that t|s.

(6) HT (〈G〉) ⊂ 〈HT (G)〉.

(7) The polynomials h ∈ K[x] that are in normal form with respect to G form

a system of representatives for the partition {f + 〈G〉|f ∈ K[x]} of K[x].

Proof. See [3]. �

Definition 2.2.3. Let G be a finite subset K[x]\{0}. Then G is a Grobner basis

if it satisfies the equivalent conditions of Theorem 2.2.1.

It is important to note that Grobner bases are not unique. In particular, if G were

a Grobner basis for some ideal I ∈ K[x], then one could simply multiply every

element of G by a non-zero element of K to achieve another Grobner basis. It

would be nice if we could generate some semblance of uniqueness in the world of

Grobner bases. As described in [10], this can be done.

Definition 2.2.4. A Grobner basis G = {g1, g2, . . . , gL} of I ∈ K[x] is said to be

minimal if gi is monic ∀i, 1 ≤ i ≤ L, and if HT (gi) does not divide HT (gj) for

i 6= j, 1 ≤ i, j ≤ L. A Grobner basis G = {g1, g2, . . . , gL} of I ∈ K[x] is said to be

reduced if gi is monic ∀i, 1 ≤ i ≤ L, and if none of the terms of gi is divisible by

HT (gj) for i 6= j.

Theorem 2.2.2. Let I be an ideal, I ⊂ K[x]. Then ∃G ⊂ K[x] such that G is

the unique reduced Grobner basis of I. [Note that this theorem not only states that

Grobner bases exist for any polynomial ideal I in K[x], but it says that the reduced

Grobner basis for I is unique.]

Proof. For existence of a Grobner basis, see [3, 5]. For the uniqueness of the reduced

Grobner basis, see [10]; this source will also show how to create a reduced Grobner

basis from a non-reduced one. �
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2.3. Buchberger’s Algorithm. In section 2.2 we defined the notion of a Grobner

basis and gave citations that verify that Grobner bases exist for any polynomial

ideal I ⊂ K[x]. Moreover we gave a citation that shows that the reduced Grobner

basis is unique and can be formed from a non-reduced Grobner basis. But what we

have not described is how to create a Grobner basis algorithmically.

The first Grobner basis algorithm was constructed by Buchberger in the 1960’s;

thus it bears his name to this day – Buchberger’s algorithm. We will spend this

subsection of this chapter outlining Buchberger’s algorithm. This is of critical

importance to our examination of efficient Grobner basis algorithms that are in use

today because they rely on the same foundations as Buchberger’s algorithm. We

will begin our examination with a definition:

Definition 2.3.1. Let f, g ∈ K[x]\{0}. The S-polynomial of f and g, denoted by

S(f, g), is

S(f, g) =
lcm(HM(f), HM(g))

HT (f)
f − lcm(HM(f), HM(g))

HT (g)
g

Why do we care about S-polynomials? Let us consider a simple example to illustrate

why S-polynomials are of primary concern. (This example can also be found in

[5].) Consider the polynomial ideal I = 〈f1, f2〉 where f1 = x3 − 2xy and f2 =

x2y − 2y2 + x. We will assume we are working in the polynomial ring K[x, y] and

that we are using grlex order on the terms.

Recall that in Theorem 2.2.1 and in Definition 2.2.3 we stated that a Grobner basis

G for I will have the property that HT (I) ⊂ 〈HT (G)〉. The immediate question to

ask is: Is (f1, f2) and Grobner basis for I? Unfortunately, the answer is no. Why

not? Consider the following calculation:

xf2 − yf1 = x(x2y − 2y2 + x)− y(x3 − 2xy) = x3y − 2xy2 + x2 − x3y + 2xy2 = x2
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This calculation shows that x2 ∈ I (and, thus, x2 ∈ HT (I)), yet (clearly) x2 /∈

〈x3, x2y〉. This occurs specifically because we multiplied f1 and f2 by the factors

needed to cause cancelations in the head terms. So even though f1 and f2 have

head terms x3 and x2y respectively, it is possible to make a linear combination of

f1 and f2 that has head term x2. In fact, this linear combination above is precisely

S(f2, f1).

In short, if we want to assure that HT (I) ⊂ 〈HT (G)〉, we need to make sure

all such occurrences of the above – that is, a linear combination of basis elements

resulting in a cancelation of head terms and a new element of HT (I) – are captured

within G. That is the primary thrust of Buchberger’s algorithm – an exhaustive

amalgamation of all such occurrences (see Theorem 2.5.2 and [5] for more details).

And it’s effectiveness is proven in the following theorem.

Theorem 2.3.1. Let I ⊂ K[x] be a non-zero ideal and let G = {g1, g2, . . . , gL}

be a basis for I (i.e., I = 〈G〉). Then G is a Grobner basis of I if and only if

S(gi, gj)
∗−→
G

0 for every gi, gj ∈ G.

Proof. This proof can be found in [3, 5, 10]. �

With Theorem 2.3.1 in hand, we introduce the pseudocode for Buchberger’s algo-

rithm. (This pseudocode is taken from [3].)

Buchberger’s Algorithm

Input: F a finite subset of K[x].

Output: G a Grobner basis of F.

G := F ;

B := {(g1, g2)|g1, g2 ∈ G, g1 6= g2};

while B 6= ∅ do

select (g1, g2) from B;

B := B\(g1, g2);
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h := S(g1, g2);

h0 := normal form of h modulo G;

if h0 6= 0 then

B := B ∪ {(g, h0)|g ∈ G};

G := G ∪ {h0};

Theorem 2.3.2. Given appropriate input F , as indicated above, Buchberger’s al-

gorithm will always terminate and output G will always be a Grobner basis of F .

Proof. This proof can be found in [3]. �

Definition 2.3.2. The ordered pairs of elements that get placed in B in the pseu-

docode above are referred to as critical pairs.

Though Buchberger’s algorithm looks relatively simple, it can take a very large

amount of time. The step that creates h0 via a normal form calculation is com-

putationally very difficult. This is particularly frustrating (and wasteful) if the

normal form calculation results in h0 = 0 because all that computation ends up

adding nothing to the Grobner basis (h0 is only added if it is non-zero). It would

be nice if there were some way to ”see ahead” and eliminate critical pairs whose

S-polynomials top-reduce to 0 rather than actually computing the normal form of

those S-polynomials and getting 0.

Buchberger helped to ameliorate the situation by creating two criteria by which

critical pairs can be eliminated. These criteria allow us to look at a proposed

critical pair and skip the normal form calculation altogether if the critical pair

meets the proper hypotheses. We will now introduce the first of the criteria (taken

from [5]).
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Theorem 2.3.3. Buchberger’s First Criterion. Let G ⊂ K[x] be finite. Sup-

pose that f, g ∈ G such that lcm(HT (f), HT (g)) = HT (f)HT (g) (i.e., the head

terms of the two polynomials are disjoint). Then S(f, g) ∗−→
G

0.

Proof. (This proof is of specific importance later in this thesis. Thus I include the

entire proof here. One can also find it in [5].)

Without loss of generality, assume HC(f) = HC(g) = 1 (since K is a field, this

is no problem). We denote f = HT (f) + p and g = HT (g) + q. Since we know

lcm(HT (f), HT (g)) = HT (f)HT (g), we have

S(f, g) = HT (g)f −HT (f)g

= (g − q)f − (f − p)g(2.1)

= gf − qf − fg + pg

= pg − qf

We will show that equation 2.1 implies S(f, g) is top-reducible by either f or g.

Assume, for contradiction, that HT (p)HT (g) = HT (q)HT (f). Since we assumed

HT (f) and HT (g) were disjoint, HT (f)|HT (p). But this is ridiculous because, by

construction, HT (f) > HT (p) in the term order. Thus we conclude our assumption

that HT (p)HT (g) = HT (q)HT (f) is false. So, without loss of generality, we

assume HT (S(f, g)) = HT (p)HT (g).

Then S(f, g) is top-reducible by g via p; if this reduction takes place, we are left

with qf , which trivially top-reduces by f via q to 0. Thus S(f, g) ∗−→
G

0.

This completes the proof. �

This leads immediately to the following:
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Corollary 2.3.1. If (f, g) is a critical pair in Buchberger’s algorithm satisfying

the hypotheses of Buchberger’s First Criterion, (f, g) can simply be stricken from

B and no normal form calculation is required.

Proof. By Theorem 2.3.3, S(f, g) ∗−→
G

0. This means that if we did perform the

normal form calculation, h0 = 0; thus, nothing would be added to G in Buchberger’s

algorithm. This is the same result as if we had simply stricken (f, g) from B and

moved immediately to the next critical pair. �

Before introducing Buchberger’s other criterion for eliminating critical pairs, we

need a new definition.

Definition 2.3.3. Let f ∈ K[x], f 6= 0. In addition, let p ⊂ K[x]. Then we say

that

f =
∑
p∈P

qpp

with qp ∈ K[x], qp 6= 0 and HT (qpp) ≤ HT (f) ∀p ∈ P is a standard representa-

tion of f . If we replace HT (f) in the previous definition with some term t (i.e.,

HT (qpp) ≤ t ∀p ∈ P ), then we have what is known as a t-representation of f .

The definition provided here is a slight variant of the one provided in [3], but the

reader can disregard the discrepancy.

This yields another categorization of Grobner bases, as presented in [3]. We include

it here because it is an important lens from which to view the properties of a Grobner

basis; we will look at similar behavior later in section 3.

Theorem 2.3.4. Let G be a finite subset of K[x] with 0 6∈ G, and assume that

∀g1, g2 ∈ G, S(g1, g2) equals 0 or has a t-representation with respect to G, t <

lcm(HT (g1), HT (g2)). Then G is a Grobner basis.

Proof. See [3]. �
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Now that we are armed with the notion of the representation of a polynomial, we

can introduce the second of Buchberger’s criteria (taken from [3]).

Theorem 2.3.5. Buchberger’s Second Criterion. Let g1, g2, p ∈ G ⊂ K[x]

and assume the following additional properties hold:

(1) HT (p)|lcm(HT (g1), HT (g2))

(2) for i = 1, 2, S(gi, p) has a ti-representation with respect to G,

ti < lcm(HT (gi), HT (p))

Then S(g1, g2) need not be added to G in order for G to become a Grobner basis.

Rather than prove this version of Buchberger’s Second Criterion, I will state and

prove a slightly different (but equivalent in content) version.

Theorem 2.3.6. Let g1, g2, p ∈ G ⊂ K[x] and assume the following additional

properties hold:

(1) HT (p)|lcm(HT (g1), HT (g2))

(2) S(g1, p) and S(g2, p) have been added to G

Then S(g1, g2) need not be added to G in order for G to become a Grobner basis.

Clearly, if S(g1, p) and S(g2, p) have been added to the G already, then we have the

condition that, for i = 1, 2, S(gi, p) has a ti-representation with respect to G such

that ti < lcm(HT (gi), HT (p)).

Once again, since Buchberger’s Second Criterion (revised) will appear later in the

thesis, we provide a full proof of the criterion here.

Proof. We begin by noting the following representation of S(g1, g2):

S(g1, g2) =
lcm(HM(g1), HM(g2))
lcm(HM(g1), HM(p))

S(g1, p)−
lcm(HM(g1), HM(g2))
lcm(HM(g2), HM(p))

S(g2, p)
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(The above argument is a simple algebraic trace; if one wants verification of the

statement, simply look at the beginning of the proof of Theorem 4.3.1.)

The important thing to note about this representation of S(g1, g2) is that it is a

t-representation of S(g1, g2) with respect to G where t < lcm(HT (g1), HT (g2)).

Thus, by Theorem 2.3.4, S(g1, g2) need not be added to G for G to become a

Grobner basis.

�

Thus we now have valid criteria that we can use to eliminate critical pairs from

consideration before normal form calculations are done. This can help to save great

amounts of time.

However, when implementing the code to check for Buchberger’s Second Criterion,

one needs to be careful not to fall into the trap of the so-called two-out-of-three

problem – consider the following definition.

Definition 2.3.4. If g1, g2, p ∈ G ⊂ K[x] such that:

(1) HT (p)|lcm(HT (g1), HT (g2))

(2) lcm(HT (g1), HT (p))|lcm(HT (g1), HT (g2))

(3) lcm(HT (g2), HT (p))|lcm(HT (g1), HT (g2))

then we refer to (g1, p, g2) as a Buchberger triple. (Note that the conditions listed

above are all equivalent; we list them as separate items for clarity.)

We would say that, based upon Theorem 2.3.6, if (g1, p, g2) is a Buchberger triple

and S(g1, p) and S(g2, p) have been or will be ”dealt with,” then the critical pair

(g1, g2) could be dismissed.

The two-out-of-three problem arises when you have, in addition to the conditions

given in Definition 2.3.4, two of the three lcm’s of head terms equal. Let’s say

that lcm(HT (g2), HT (p)) = lcm(HT (g1), HT (g2)). Then we would have both
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(g1, p, g2) and (g1, g2, p) as Buchberger triples. Then we might encounter the Buch-

berger triple (g1, p, g2) first, promise to deal with the critical pairs (g1, p) and (g2, p)

later in the algorithm run, and dismiss (g1, g2) from consideration. That much is

perfectly fine. However we cannot subsequently encounter the Buchberger triple

(g1, g2, p) and promise to deal with the critical pairs (g1, g2) and (g2, p) in order to

dismiss (g1, p); we have ALREADY dismissed (g1, g2) from being considered when

we encountered the Buchberger triple (g1, p, g2) (not to mention that our dismissal

of (g1, g2) was contingent on our dealing with (g1, p)). This is the two-out-of-three

problem. This means that any implementation of Buchberger’s second criterion

must take care to ensure that critical pairs that must be dealt with via one Buch-

berger triple are not dismissed by another.

A full exposition on the two-out-of-three problem can be found in [3]. This ex-

position also includes the pseudocode for a subalgorithm UPDATE. UPDATE is

an implementation of Buchberger’s two criteria, taking into account the two-out-

of-three problem. Readers may give this pseudocode a perusal – it is still heavily

referenced today.

2.4. Applications of Grobner Bases. Before moving into the main section of

this paper, we will spend some time describing some applications of Grobner bases.

We will illustrate two such applications here. First we will describe the Ideal Mem-

bership problem. Second we will spend some time on using Grobner bases to solve

systems of polynomial equations; it is this application that is of interest in cryp-

tography.

2.4.1. Ideal membership. The Ideal Membership problem is a very natural problem

for the commutative algebraist. We let I = 〈f1, f2, . . . , fm〉 ⊂ K[x] and we have a

polynomial f ∈ K[x]. We ask the question: is f ∈ I?

As illustrated earlier by the example in section 2.3, this question is not always

easily answered. In that example the polynomial x2 was in fact a member of

I = 〈x3 − 2xy, x2y − 2y2 + x〉; if we hadn’t looked at the S-polynomial of these
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two generating polynomials, we would not have been able to see that x2 ∈ I.

The generating set really didn’t offer enough information on face for us to answer

the question; rather, an investigation (however brief) had to be conducted. (This

investigation can become orders of magnitude more exasperating when the ideals

and polynomials in question become more complex.)

But a Grobner basis offers us more information than a typical basis. Consider the

following theorem based on Definitions 2.2.1 and 2.2.3.

Theorem 2.4.1. Let G be a Grobner basis for an ideal I ⊂ K[x]. Let f ∈ K[x].

Then f ∈ I if and only if f ∗−→
G

0.

Proof. This proof can be found in [5]. �

This suggests the following algorithm, presented in pseudocode, for solving the Ideal

Membership problem; this algorithm requires that the basis G for the ideal I is a

Grobner basis.

Ideal Membership Algorithm

Input: Grobner basis G for polynomial ideal I ⊂ K[x]; polynomial f ∈ K[x].

Output: True if f ∈ I and false otherwise.

if f = 0 then

return true;

f0 := normal form of f with respect to G;

if f0 = 0 then

return true;

else

return false;
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Now there is no guess work involved. The uniqueness of the normal form of poly-

nomials with respect to the Grobner basis (see Definition 2.2.1) has yielded an

algorithm to solve Ideal Membership that is straightforward and deterministic.

2.4.2. Solving Systems of Polynomial Equations. This application is of primary in-

terest to cryptographers and code breakers. Many cryptographic primitives, specif-

ically AES, are based upon solving a system of equations with coefficients in a field

(see [4]). Before discussing this application, we need a little more background. We

begin with a definition taken from [5].

Definition 2.4.1. Let K be field and (f1, f2, . . . , fm) be a sequence of polyno-

mials in K[x1, x2, . . . , xn]. Then we define the variety of (f1, f2, . . . , fm), de-

noted V (f1, f2, . . . , fm), to be {(a1, a2, . . . , an) ∈ Kn|fi(a1, a2, . . . , an) = 0 ∀i,

1 ≤ i ≤ m}. Similarly, if an ideal I ⊂ K[x1, x2, . . . , xn], I = 〈f1, f2, . . . , fm〉,

then we define the variety of the ideal I, denoted V (I), to be {(a1, a2, . . . , an) ∈

Kn|p(a1, a2, . . . , an) = 0, p ∈ I}. An ideal is called zero-dimensional if V (I) is

finite.

This leads us to an important theory of algebraic geometry and Grobner bases:

Theorem 2.4.2. Let I ⊂ K[x1, x2, . . . , xn] such that I = 〈f1, f2, . . . , fm〉. Then

V (I) = V (f1, f2, . . . , fm).

Proof. This proof can be found in [5]. �

Theorem 2.4.2 is important because it tells us that we can choose whatever basis

for ideal I we would like when trying to find the variety of I; in particular, we could

use the Grobner basis for I.

On this note, let’s look at two examples. Both are taken from [5]. We will consider

the equations:

x2 + y2 + z2 = 1

x2 + z2 = y

x = z



21

These equations determine the polynomial ideal I = 〈x2+y2+z2−1, x2+z2−y, x−

z〉. Given this basis for I, we generate a Grobner basis under lex order, x > y > z

(we know we can do this because we have Buchberger’s algorithm). The Grobner

basis turns out to be the following:

g1 = x− z

g2 = −y + 2z2

g3 = z4 + 1
2z

2 − 1
4

This system of equations is relatively easy to solve because the indeterminates have

been diagonalized. That is to say, g3 can be solved in terms of it’s only variable z;

these roots can be placed into g2 to solve for the only remaining variable y; these

ordered pairs of roots for g3 and g2 can be placed into g1 to solve for the only

remaining variable x.

We consider a second example where I = 〈x2 +y+z−1, x+y2 +z−1, x+y+z2−1〉.

Once again we generate a Grobner basis for I under lex order, x > y > z. The

Grobner basis turns out to be:

g1 = x+ y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z2 + 4z3 − z2

Once again we see the same phenomenon – diagonalization of the variables in the

Grobner basis.

It turns out that this is a property of Grobner bases. Thus Grobner bases algorithms

can be used to find the variety of a sequence of multi-variate polynomials. (Note

that the field K must be a finite field or a field extension of Q [15]; this additional

constraint is toothless for cryptographic applications.)

It is worth noting, as an addendum to this subsection, that solving a system of

multivariate quadratic equations is known to be NP-complete. (For a discussion
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of NP-completeness, see [9].) This is known as the MQ-problem. Given our above

examples, this might seem hard to believe. It appears as though Grobner bases

make the process of finding the variety for a sequence of polynomials rather trivial.

However, one must remember that Buchberger’s algorithm (and for that matter

all subsequently introduced Grobner-basis-producing algorithms) still must make

normal form computations during its run; this step can be quite time-consuming

and complex, and it is this step that bears witness to the NP behavior of the

MQ-problem.

2.5. Additional Definitions. There are few straggling definitions and concepts

that are useful for discussing Grobner bases algorithms. In this section we include

those definitions.

We begin by including the following definition:

Definition 2.5.1. Let f ∈ K[x]. We define the total degree of f to be the greatest

total degree of all of f ’s terms. We say f is a homogeneous polynomial (of degree

d) if all the terms in f are of the same degree (and that degree is d). (Thus if

f is homogeneous of degree d, f also has total degree d.) The total degree of a

homogeneous polynomial f is denoted deg(f).

Oftentimes we are given non-homogeneous polynomials when we want them to be

homogeneous. There is a method of transforming a non-homogeneous polynomial

into a homogeneous one.

Definition 2.5.2. Let f ∈ K[x] be non-homogeneous with total degree d. Then we

can do the following steps:

(1) Create a new indeterminate not in K[x]. For our purposes here, we will call

that indeterminate z. Thus we will consider ourselves working in K[x, z].

(2) Multiply each term in f by the appropriate power of z such that each term

now has total degree d.
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(3) Call this resulting polynomial fh.

This procedure is called homogenization. In this particular case, we homogenized f

(hence the name of the result fh). The added indeterminate z is called the homog-

enizing variable. One can homogenize a sequence of polynomials by performing the

above procedure on all polynomials in the sequence.

Although fh is a different object (polynomial) than f , it is clear that f is easily

retrievable from fh. All that one must do is set the homogenizing variable equal to

1. This is a natural projection map from the homogenized polynomial back to the

original.

We also have a special case of Grobner bases to discuss. Consider the following:

Theorem 2.5.1. Let G be a finite, homogeneous subset K[x]\{0}. Let I = 〈G〉

and let Id be the restriction of I to degree d; that is, Id = {p ∈ I|deg(p) < d}. Let
∗d−→
G

be the restriction of ∗−→
G

to K[x]d = {p ∈ K[x]|deg(HT (p)) < d}. The following

statements are equivalent:

(1) Every f ∈ Id has a unique normal form with respect to ∗d−→
G

.

(2) For every f ∈ Id, there is a reduction so that f ∗d−→
G

0.

(3) Every non-zero f ∈ Id is reducible by G.

(4) Every non-zero f ∈ Id is top-reducible by G.

(5) For every s ∈ HT (Id) there is a t ∈ HT (G) such that t|s.

(6) HT (Id) ⊂ 〈HT (G)〉.

(7) The polynomials h ∈ K[x]d that are in normal form with respect to G form

a system of representatives for the partition {(f + I)∩K[x]d|f ∈ K[x]d} of

K[x]d.

Proof. See [3]. �
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Definition 2.5.3. If G is a finite, homogeneous subset K[x]\{0} that satisfies one

of the equivalent conditions of Theorem 2.5.1 for some degree d, then G is a degree-d

Grobner basis for 〈G〉.

Finally we need to define a syzygy. This term comes from the Greek word meaning

”yoke” [5]. We have already seen syzygies before in this paper, we just didn’t use

that terminology; in the term ”S-polynomial”, the ”S” is short for syzygy.

Definition 2.5.4. Let G = (f1, f2, . . . , fm) ∈ K[x]m\{0}. A syzygy on the leading

terms of the fi’s is an m-tuple (p1, p2, . . . , pm) ∈ K[x]m such that

m∑
j=1

pjHT (fj) = 0

A syzygy on G is an m-tuple (p1, p2, . . . , pm) ∈ K[x]m such that

m∑
j=1

pjfj = 0

The symbol Syz represents the module of syzygies (where G is understood). We will

say a principal syzygy is of the form fifj−fjfi; we will denote the module generated

by the principal syzygies PSyz (where G is understood). Finally, G is called a

regular sequence if Syz = PSyz or, equivalently (and perhaps more usefully), if

gfi ∈ 〈fi+1, fi+2, . . . , fm〉 ⇔ g ∈ 〈fi+1, fi+2, . . . , fm〉

∀i.

The notion of a syzygy plays a big part in our upcoming discussion of Faugere’s

F5 algorithm from [7]. Moreover, it is the relationship between syzygies and S-

polynomials that lies at the heart of the proof of correctness of Buchberger’s algo-

rithm. We end with the following theorem.

Theorem 2.5.2. Given G = (f1, f2, . . . , fm) ∈ K[x]m\{0}, every syzygy on leading

terms of G can be written as
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∑
i<j

uijS(fi, fj)

where uij ∈ K[x] ∀i, j.

In short, the S-polynomials on G actually do form a basis for all the cancelation of

terms possible amongst the elements in 〈G〉.

Proof. See [5]. �
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3. Faugere’s F5

While Buchberger’s algorithm is the foundation for Grobner-basis-algorithm theory,

it is by no means the fastest method for finding Grobner bases for ideals. In fact

it is terribly slow in general. Buchberger’s algorithm’s dependence on normal form

computations is primarily responsible for the slow run times. Thus people have

been looking for ways to remove as many normal form computations as possible.

This leads us to the F5 algorithm, first published in 2002 in [7]. This algorithm has

become the standard for Grobner basis computation, as it runs orders of magnitude

faster than other algorithms for many input sequences of polynomials. In this

section we will introduce, develop and repair various aspects of the F5 algorithm.

3.1. Signatures and Signed Polynomials. Before we introduce the F5 algo-

rithm and delve into a full examination of the criteria used within it, we must

introduce some terminology that will be used extensively in the algorithm itself.

The terminology was introduced (in its current form) in [7] by Faugere; it was later

explored with more exposition by Stegers in [15]. Throughout this thesis, unless

otherwise noted, we will strive to use the original notation(s) used by Faugere in

[7] while maintaining the expository clarity of Stegers. This is the case here.

We begin by introducing some standard notation that will be used throughout this

paper. Let K be a field and let P = K[x1, x2, . . . , xn]. From now on, for ease

of reading, we will denote K[x1, x2, . . . , xn] as K[x]. We will let T denote the

set of terms in K[x], and we will say < is some admissible term ordering on T .

(Though not required, the reader should probably view < as the degree-reverse-

lexicographical ordering on T .)

Consider (f1, . . . , fm) ∈ Pm, where Pm is viewed as a K[x]-module, and let the

ideal generated the polynomials f1 through fm be 〈f1, . . . , fm〉 = I. We also assume

that (f1, . . . , fm) are homogeneous (all the fi’s are homogeneous, not necessarily

all of the same degree). We will let Fi represent the ith canonical unit vector in
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Pm; in other words, Fi = (0, 0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith position

in the vector. (As a side note to the reader, the definitions of m and n here in this

paper are standard within current Grobner-basis literature.) We will also let T (I)

be the set of head terms in the ideal I. Now we consider the map

v : Pm −→ P

by

g = (g1, . . . , gm) 7→
m∑
i=1

gifi

So, for example, v(Fi) = v((0, 0, . . . , 0, 1, 0, . . . , 0)) = fi. We may also view an

element g ∈ Pm as
∑m
i=1 giFi. This introduces another way to discuss syzygies (see

section 2.5). We can observe that g ∈ Pm is a syzygy if v(g) = 0.

Now we extend ≤, which is strictly a term ordering, into an admissible ordering ≺

on Pm.

Definition 3.1.1. Let g, h ∈ Pm, with

g =
m∑
k=i

gkFk, h =
m∑
k=j

hkFk

Then we will say g ≺ h if:

(1) i > j or

(2) i = j and HT (gi) < HT (gj)

(Note: Under this ordering, g = h if i = j and HT (gi) = HT (gj).)

Then under this new ordering we have F1 � F2 � · · · � Fm. Now we will define

the notions of an index and a head term for an element g ∈ Pm.

Definition 3.1.2. Let g ∈ Pm. Then ∃ i such that
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g =
m∑
k=i

gkFk

and gi 6= 0. This natural number i will be defined as the index of (this representation

of) g, and will be denoted index(g). (Note that if g is represented differently as a

sum of F − k’s, this index might change.)

Definition 3.1.3. If g ∈ Pm with index(g) = i, then HT (g) = HT (gi). Moreover,

the degree of g, denoted deg(g), will be max{deg(gi) + deg(fi)|i ∈ {1, 2, . . . ,m}}.

This definition equates, except in cases of term cancelation, deg(g) with deg(v(g)).

Now we need to introduce two more pieces of notation. Let Ti = {tFi|t ∈ T} and

let T= ∪mi=1Ti. Now we are ready.

Definition 3.1.4. Let t ∈ T (I) and consider the following map W :

W : T (I) −→ A ⊂ Pm

by

t 7→ {g ∈ Pm|HT (v(g)) = t}

In other words, W is the map that takes an element t of the monomial ideal of head

terms of I and maps it to a subset of Pm that contains all elements whose image

under v has head term t. This set, of course, may have cardinality greater than 1;

thus we define a variant of W , w, where:

w : T (I) −→ Pm

by

t 7→ min≺W (t)

Finally we will define the map v1:
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v1 : I −→ T

by

p 7→ HT (w(HT (p)))

Now that we have all this additional machinery with which to work, we will model

the polynomials in F5 in such a way to make use of (i.e., keep record of) the addi-

tional data. It is this additional data that will permit the algorithm to ignore full

normal-form reductions of polynomials, thus avoiding the most costly subroutines

of Buchberger’s algorithm (and other Grobner-basis-producing algorithms like F4 –

see [8]). In this final definition from this section, we formalize this new polynomial

construct.

Definition 3.1.5. We will represent polynomials as elements in R = T × P, and

we call the elements of R signed polynomials. If r = (tFi, f) ∈ R, we define:

poly(r) = f

S(r) = tFi ∈ T

index(r) = i

We will say that S(r) is the signature of r. (If it is understood, for some r′ ∈ R,

that S(r′) = t′Fj and poly(r′) = f ′, then we will also say that the signature of f ′

is t′Fj.)

We say r ∈ R is admissible if ∃ g ∈ v−1(poly(r)) such that HT (g) = S(r); it

is admissibility that connects the signature of an element of R with that element’s

polynomial.

For nonzero λ ∈ K, v ∈ T , t = wFk ∈ T, q ∈ K[x] and r = (uFi, p) ∈ R we define

the following arithmetic rules:

(1) λr = (uFi, λp)
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(2) vt = vwFk

(3) vr = (uvFi, vp)

(4) qr = (HT (q)uFi, qp)

We also will define the following natural extensions (perhaps a more appropriate

word would be ”abuses”) of notation on elements of R:

for r ∈ R, HT (r) = HT (poly(r))

for r ∈ R, HC(r) = HC(poly(r))

for r ∈ R and G ⊂ P, NF (r,G) = (S(r), NF (poly(r), G))

There are several remarks that should be made in order to maintain clarity and

to link the above definitions (especially Definition 3.1.4 and Definition 3.1.5) to-

gether. Though these remarks are not required for correctness, they will motivate

the definitions presented above.

For the following remarks, we will assume that m = 2, n = 2, K = Q and I = 〈x2y+

y2, 2xy − z〉 with degree-reverse-lexicographical order on the terms (x > y > z),

f1 = x2y + y2 and f2 = 2xy − z.

Remark 3.1.1. F5 will only use signed polynomials that are admissible because

the signature is only useful if the signed polynomial is admissible. Using the above

example, the signed polynomial (yF1, x
2y2 + y3 + 2xyz4− z5) is admissible because

x2y2+y3+2xyz4−z5 = yf1+z4f2. (Note that the head term of x2y2+y3+2xyz4−z5

is 2xyz4, not x2y2.)

The signature of a signed polynomial need not have anything meaningful to say.

For example, r = (y3000z2F2, x
2y2 + y3 + 2xyz4 − z5) is still an element of R; but

it is clear that the S(r) has nothing to do with poly(r).

Remark 3.1.2. Once we decide to focus on the cases where the signature of a

signed polynomial is admissible (i.e., useful), the arithmetic rules introduced in
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Definition 3.1.5 are easy to understand. We will go through each rule one-by-one,

illustrating with our example.

(1) λr = (uFi, λp): We will use (yF1, x
2y2 + y3 + 2xyz4 − z5), the admissible

signed polynomial from remark 3.1.1, and let λ = 3. Then we can see

that 3(x2y2 + y3 + 2xyz4 − z5) = 3yf1 + 3z4f2; from here it is clear that

(yF1, 3(x2y2 + y3 + 2xyz4 − z5)) is also an admissible pair thus giving

credence to this arithmetic rule.

(2) vt = vwFk: This is an arithmetic fact that is motivated by the final fact.

See below.

(3) vr = (uvFi, vp): Once again we will look at (yF1, x
2y2+y3+2xyz4−z5). Let

v = y. Then it’s easy to see that y(x2y2 + y3 + 2xyz4− z5) = y2f1 + yz4f2,

which would be represented as a signed polynomial by (y2F1, y(x2y2 +y3 +

2xyz4 − z5)). This is exactly what the arithmetic rule prescribes.

Thus these arithmetic rules truly do emulate the relationship between S(r) and

poly(r) for an admissible element r ∈ R.

Remark 3.1.3. It may be unclear what the derived map v1 has to do with any of

this – the astute reader will notice that we never used v1 in the definition of anything

subsequent to its inception. But we note here that (v1(p)Findex(w(HT (p))), p) is an

admissible element of R. Moreover, if the sequence of polynomials (f1, . . . , fm) is

regular, then F5 will only use this signature for every polynomial appearing in the

output Grobner basis! (We will prove this in Corollary 3.2.1).

Before moving on to the next section, there is one more piece of business to be

addressed. In [7], Faugere states the following proposition:

Proposition 3.1.1. If (t1, t2) ∈ T (I)2 and t1 6= t2, then HT (w(t1)) 6= HT (w(t2)).
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Neither [7] nor [15] proves Proposition 3.1.1. Given the relationship between the

map w and the signature of an admissible polynomial, especially if the input se-

quence (f1, . . . , fm) is regular, it seems prudent to verify this proposition. A proof

is given now:

Proof. Without loss of generality, let t1 > t2. Assume, for contradiction, that

HT (w(t1)) = HT (w(t2)). Say that HT (w(t1)) = eFi.

Then ∃ g1 ∈ Pm such that g1
j = 0 ∀ j < i, HT (g1

i ) = e and v(g1) = p1 where

HT (p1) = t1.

Similarly, ∃ g2 ∈ Pm such that g2
j = 0 ∀ j < i, HT (g2

i ) = e and v(g2) = p2 where

HT (p2) = t2.

Now consider g1 − g2 ∈ Pm. Note that HT (g1 − g2) ≺ eFi (or, if not, since K is a

field, we could adjust HC(p1) and HC(p2) so that this is true). But

v(g1 − g2) =
m∑
k=1

(g1
k − g2

k)fk

=
m∑
k=i

(g1
k − g2

k)fk

=
m∑
k=i

g1
kfk −

m∑
k=i

g2
kfk

= p1 − p2

and HT (p1 − p2) = t1.

Thus ∃ g ∈ Pm (namely (g1 − g2)) such that HT (v(g)) = t1 and g ≺ w(t1). This

contradicts the minimality of the map w under ≺.

Thus we are forced to conclude that our assumption that HT (w(t1)) = HT (w(t2))

is incorrect.

This completes the proof.
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�

Faugere also introduced this corollary to Proposition 3.1.1, whose proof is immedi-

ate by definition of v1.

Corollary 3.1.1. Let p1, p2 ∈ I with HT (p1) 6= HT (p2). Then v1(p1) 6= v1(p2).

Proof. Immediate.

�

3.2. Signed Representations and Normalization. In this section we pay spe-

cial attention to definitions and properties that will play an especially important

role in our application and understanding of the F5 algorithm. We will begin by

extending the definition of a t-representation of a polynomial f introduced in Defi-

nition 2.3.3. Since we developed the notion of a signature in section 3.1, we would

like to attach this new idea to representations of polynomials as well. To this end,

and once again borrowing some notation from [7], consider the following definition:

Definition 3.2.1. Let P ⊂ R, r ∈ R and t ∈ T . Also assume that we have the

following standard representation of poly(r):

poly(r) =
∑
p∈P

qppoly(p)

where qp ∈ K[x] ∀p ∈ P .

Then the signature of the representation is defined to be

maxpoly(p)∈P {S(qpp)}

In addition we define the above standard representation as a signed representation of

r if the representation is a HT (r)-representation and S(r) � S(qpp) ∀p ∈ P . This

naturally yields itself to our definition of a signed t-representation (where HT (r)

in the above definition is replaced by a term t). If such a signed t-representation

exists, we will say poly(r) = OP (t).
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Finally, we say poly(r) = oP (t) for some t ∈ T if there is poly(r) = OP (t′) and

t′ < t in the term order.

For the rest of the paper, all of our representations for various r ∈ R will be signed

representations. We will make some effort to specifically note that both require-

ments for signed representations are met, but we ask the reader to be generous in

his/her interpretations.

To be clear with the definitions presented in Definition 3.2.1, we include the fol-

lowing remark. For the following remark, just as in the remarks 3.1.1, 3.1.2 and

3.1.3, assume that m = 2, n = 2, K = Q and I = 〈x2y + y2, 2xy − z〉 with

degree-reverse-lexicographical order on the terms (x > y > z), f1 = x2y + y2 and

f2 = 2xy − z.

Remark 3.2.1. Consider the admissible r ∈ R, r = (yF1, x
2y2 + y3 + 2xyz4− z5).

Then a standard representation for poly(r) would clearly be

poly(r) = yf1 + z4f2

This representation would have a signature of yF1 because

max{S(yf1),S(z4f2)} = max{yF1, z
4F2} = yF1

Since S(r) = yF1 as well and HT (yf1), HT (z4f2) < HT (r), this makes our rep-

resentation a signed representation (or a signed xyz4-representation); so we say

poly(r) = O{f1,f2}(xyz
4).

However, our above representation does not witness that poly(r) = o{f1,f2}(xyz
4).

(In theory, this property could be illustrated by another representation. In this

case it is true that poly(r) 6= of1,f2(xyz4). But it should be pointed out that just

because a specific representation for poly(r) for some r ∈ R does not illustrate

poly(r) = oP (t) for some collection of polynomials P and some term t does not
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mean poly(r) 6= oP (t); poly(r) = oP (t) is dependent upon r, P and t, not a specific

representation of poly(r).)

So what would be an example that illustrates this final definition from Definition

3.2.1? Instead, let us look at S(f1, f2) = 2f1−xf2 = 2x2−xz. This means that an

admissible signature for S(f1, f2) is F1. Let’s define a new collection of polynomials,

call it P ′, where P ′ = {f1, f2, 2x2 − xz}. Then, under this new P ′, we would have

S(f1, f2) = o′P (x2y). In particular the representation that is witness to this is the

most trivial, namely

S(f1, f2) = 1(2x2 − xz)

Note that, because of the cancelation of head terms created by the S-polynomial,

HT (2x2 − xz) < x2y.

This illustration is an accurate description of the strategy that F5 will use. In

order to gain what will come to be known as the ”little-o” condition (see the end

of section 3.3), F5 will simply add S-polynomials to an ever-increasing collection of

polynomials.

There is only one more critical definition to introduce before turning our attention

to F5. Just like Definition 3.2.1, we are using our new machinery – the signature of

a signed polynomial – to create new mathematical constructs. Unlike every other

definition we have had, however, the next definition (a normalized polynomial) has

no analog in previous Grobner basis algorithms. As we will see, the concept of

a normalized polynomial is a direct result of a polynomial’s signature and cannot

be emulated without the signature itself. Thus, not surprisingly, it is an idea that

plays a primary role in the functioning of the F5 algorithm.

After defining a normalized polynomial and several notational devices associated

with the definition, we will also prove some useful facts associated with normaliza-

tion. Once again, we base our definition upon the notation introduced by Faugere.
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Definition 3.2.2. Let r ∈ R. We will say that r is normalized if S(r) = eFk and e

is not top-reducible by 〈fk+1, . . . , fm〉. We say that (u, r) ∈ T ×R is normalized if

ur (defined by Definition 3.1.5) is normalized. We will also say that (r1, r2) ∈ R2

is normalized if S(r1) � S(r2) and (u1, r1), (u2, r2) ∈ T ×R are normalized where

ui =
lcm(HT (r1, r2))

HT (ri)

for i = 1, 2.

We will also define, as another convenient abuse of notation, that S(r) is normalized

if r is normalized (when S(r) is understood).

We now present Lemma 3.2.1, the Normalization Lemma. This is one of the

most important lemmas in this thesis. At the same time, it also highlights a spe-

cific property of non-normalized, admissible signed polynomials; namely that if the

admissible r ∈ R is non-normalized, there is a representation for poly(r) that has a

smaller signature.

Lemma 3.2.1. Normalization Lemma. Consider an admissible r ∈ R, r =

(uFi, p) where i = index(w(HT (p))). (In other words, there does not exist an

admissible (u′Fj , p) such that j > i.) Also assume that uFi is not normal. Then

there exists (a canonical) (u′Fi, p) that is normalized.

Proof. Since r = (uFi, p) is admissible,

p =
m∑
k=i

gkfk

where HT (gi) = u and gk ∈ K[x], i ≤ k ≤ m.

Let (b1, . . . , bs) ∈ Rs such that bL is admissible ∀L and (b1, . . . , bs) forms the

Grobner basis for 〈fi+1, . . . , fm〉. Then we can say

p = gifi +
s∑

k=1

g′kbk
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where g′k ∈ K[x], 1 ≤ k ≤ s.

We assumed that uFi is not normalized, so u is top-reducible by 〈fi+1, . . . , fm〉;

thus, since (b1, . . . , bs) forms the Grobner basis for 〈fi+1, . . . , fm〉, we know ∃bj

such that HT (bj)|u, say u = HT (bj)t for some term t.

Now we have:

p = (HT (bj)t+ q(x))fi +
s∑

k=1

g′kbk(3.1)

= (q(x))fi + (tfi)bj − (t(bj −HT (bj)))fi +
s∑

k=1

g′kbk

= (t(bj −HT (bj)) + q(x))fi + (tfi)bj +
s∑

k=1

g′kbk(3.2)

where q(x) ∈ K[x] and HT (q(x)) < u.

Note that this representation 3.2 of p has a smaller signature (either HT (t(bj −

HT (bj)))Fi or HT (q(x))Fi) than the original representation 3.1 of p.

If S(3.2) is normalized, then we are done; otherwise, simply repeat the above process

again. Since it is clear that this process of rewriting the representation of p leads

to a decrease in signature at each step, we know that this process must eventually

stop. We call the signature of this last representation of p u′Fi.

This completes the proof.

�

So what has been demonstrated is that if an admissible r ∈ R, r = (uFi, p), is

not normalized then there is another admissible r′ ∈ R, r′ = (u′Fi, p), such that

u′Fi ≺ uFi. So in some sense being non-normalized implies that there must be a

”better” representation. It is this interpretation of Lemma 3.2.1 that will be of use

to us.

Then one might also ask: If r, r′ ∈ R are admissible, r = (uFi, p) and r′ = (u′Fi, p),

with u′Fi ≺ uFi, does this mean that r is non-normalized. Unfortunately, this is
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not always true. In particular, if the sequence of polynomials (f1, . . . , fm) is non-

regular, it could very well be that both r and r′ are normalized. However, if it is

the case that (f1, . . . , fm) is a regular sequence, we would be able to conclude that

r is non-normalized. We prove this now.

Theorem 3.2.1. Let r, r′ ∈ R be admissible, r = (uFi, p) and r′ = (u′Fi, p), with

u′Fi ≺ uFi. In addition, assume that (f1, . . . , fm) is a regular sequence. Then r is

not normalized.

Proof. Since r and r′ are admissible, we know ∃g, g′ ∈ Pm such that:

(1) v(g) = v(g′) = p

(2) HT (g) = u

(3) HT (g′) = u′

(4) index(g) = index(g′) = i

This implies that v(g − g′) = 0, meaning that (g − g′) ∈ Syz. Since (f1, . . . , fm) is

a regular sequence, PSyz = Syz (making (g − g′) ∈ PSyz).

Now we make the following observation. (This portion of the proof is taken from

[7].) Let s ∈ PSyz with index(s) = i. Then

s =
m∑
k=i

m∑
j=k+1

λk,jsk,j

=
m∑
k=i

m∑
j=k+1

λk,jfjFk −
m∑
k=i

m∑
j=k+1

λk,jfkFj

=
m∑

j=i+1

λi,jfjFi +
m∑

k=i+1

qkFk

where λk,j , qk ∈ K[x]∀k, j.
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This allows us to conclude that if s ∈ PSyz, and HT (s) = u′′Fi, then HT (fj′)|u′′

for some j′ > i. We know that HT (g−g′) = uFi; since (g−g′) ∈ PSyz, we conclude

that ∃j′ > i such that HT (j′)|u. This is the definition of r being non-normalized.

This completes the proof.

�

This leads immediately into the following corollary:

Corollary 3.2.1. Assume (f1, . . . , fm) is a regular sequence. Let r = (uFi, p) be

admissible. Then if r is normalized, uFi = v1(p).

Proof. Assume, for contradiction, that uFi 6= v1(p). Then ∃g′ ∈ Pm such that

v(g′) = p and HT (g′) = v1(p); this yields an admissible r′ ∈ R, r′ = (v1(p), p). By

Definition 3.1.4, uFi � v1(p). By Theorem 3.2.1, r is not normalized. This is a

contradiction to the hypothesis that r is normalized.

Thus we are forced to conclude that our assumption that uFi 6= v1(p) was incorrect.

This completes the proof.

�

This presents itself as an interesting chain of facts. This means that if we have

a regular sequence of polynomials (f1, . . . , fm) and we wish to talk about signed

polynomials that are:

(1) admissible (i.e., useful) and

(2) normalized (i.e., coming from the minimal representation under ≺)

both of which would seem to be the ”preferred” (or perhaps even ”canonical” is a

fair word to use) properties to be using, then v1 is the map that produces a unique

signature.

At this point in our discussion the reader should take caution. While the signature

seems to have quite a few nice properties so far, we must recall that these properties
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have largely been generated by the assumption that our input sequence (f1, . . . , fm)

is regular. That is a very strong hypothesis. So from a mathematics point of view,

our work so far has a serious limitation. Counteracting this, we will see that from

an applications standpoint, there is still quite a lot of value in the notion of a

signature and a signed polynomial, especially when normalization is required.

3.3. F5 Criterion. In this section we re-introduce the F5 criterion for computing

Grobner bases. This criterion was introduced by Faugere in [7] and discussed

again in detail by Stegers in [15]. In [15], Stegers does a good job reproducing the

arguments from Faugere, paying special attention to the various orderings Faugere

uses in his presentation; however, Stegers uses different notation than Faugere.

We will revert back to the notation(s) used in [7], while trying to maintain the

expository clarity of [15].

First we need a definition.

Definition 3.3.1. Let F = (f1, . . . , fm) be a list of monic polynomials in K[x] and

let G = (r1, . . . , r|G|) ∈ R|G| such that:

(1) F ⊂ poly(G), gi = poly(ri)∀i and G1 = (g1, . . . , g|G|)

(2) all the ri are admissible and monic

We define the new order ≤1. For f ∈ 〈G1〉, let

V = {(s, σ) ∈ P |G| × S|G||
|G|∑
i=1

sigσ(i) = f,S(s1rσ(1)) � · · · � S(s|G|rσ(|G|))}

Our new ordering will define (s, σ) ≤1 (s′, σ′). Say

v = (S(s1, rσ(1)), · · · ,S(s|G|rσ(|G|)))

and

v′ = (S(s′1, rσ′(1)), · · · ,S(s′|G|rσ′(|G|)))



41

Then (s, σ) ≤1 (s′, σ′) if:

(1) v <lex v
′

(2) v =lex v
′ and maxiHT (sigσ(i)) < maxiHT (s′igσ′(i))

(3) v =lex v
′ and t = maxiHT (sigσ(i)) < maxiHT (s′igσ′(i)) and

|{i|HT (sigσ(i)) = t}| < |{i|HT (s′igσ′(i)) = t}|

The ordering ≤1 on the representations of f is a key idea throughout this paper,

specifically in the proof of the F5 and F5t criterions (F5t is introduced in section

4.4).

Note that it is possible for two elements of V that are not the same to be equal

under ≤1; this will not be a problem in any of the applications of ≤1, and the

reader need not worry about such occurrences.

We are now prepared to prove Faugere’s F5 criterion. We will begin with two

lemmas.

Lemma 3.3.1. Let F = (fL, . . . , fm) be a list of polynomials in K[x], K a field.

Let G = (r1, . . . , r|G|) ∈ R|G| such that: GL = poly(G); F ⊂ poly(G); and all the

ri are admissible. Let f ∈ 〈GL〉,

f =
∑
gi∈GL

sigi

si ∈ K[x], with the following conditions on the representation of f :

(1) HT (f) = t

(2) t′ = maxgi∈GL
HT (sigi)

(3) t′ > t (in the term order)

(4) The above representation of f is minimal (under ≤1) among all represen-

tations of f satisfying conditions (1) through (3).

Then (si, ri) is normalized ∀ri ∈ G.
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Proof. Assume ∃L such that (sL, rL) is not normalized. In other words, S(rL) =

uFk and HT (sL)u ∈ 〈fk+1, . . . , fm〉. Since all the ri are admissible,

gL =
m∑
j=k

wjfj

where HT (wk) = u. Then we can say the following about f :

f =
∑
j 6=k

sjgj + sLgL

=
∑
j 6=k

sjgj + sL

m∑
j=k

wjfj

=
∑
j 6=k

sjgj + sLwkfk + sL

m∑
j=k+1

wjfj

By Lemma 3.2.1, we know that:

sLwkfk =

a+
∑
r∈G

S(r)≺FL

λrpoly(r)

 fk

where a is a polynomial in K[x], HT (a) < HT (sLu) and λr ∈ K[x] ∀r ∈ G.

Note that conditions (1) through (3) still hold. Yet we created a new representation

of f that is smaller under ≤1. This contradicts condition (4) above.

Thus we must conclude that (si, ri) is normalized ∀ri ∈ G.

�

Lemma 3.3.2. Adopt all notation and assumptions from Lemma 3.3.1. Let I =

{i|HT (sigi) = t′}, w = max{S(siri)|i ∈ I} and let J = {i ∈ I|S(siri) = w}. Then

|J | = 1.

Proof. Assume for contradiction that |J | ≥ 2. Let k1 = min{i|i ∈ J} and k2 =

min{i|i ∈ J\{k1}}. Let w = uFL. So,
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f =
∑

i 6=k1,k2

sigi + sk1gk1 + sk2gk2

We will denote

gk1 =
m∑
j=L

h1
jfj , gk2 =

m∑
j=L

h2
jfj

This leaves us with the following chain of equalities, for some c, d ∈ K:

f =
∑

i 6=k1,k2

sigi + sk1(
m∑
j=L

h1
jfj) + sk2(

m∑
j=L

h2
jfj)

=
∑

i 6=k1,k2

sigi + sk1h
1
LfL + sk2h

2
LfL + sk1(

m∑
j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

=
∑

i 6=k1,k2

sigi + (cu+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ (du+ (sk2 −HT (sk2))h2
L +HT (sk2)(h2

l −HT (h2
L)))fL

+ sk1(
m∑

j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

=
∑

i 6=k1,k2

sigi + ((c+ d)u+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ ((sk2 −HT (sk2))h2
L +HT (sk2)(h2

l −HT (h2
L)))fL

+ sk1(
m∑

j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

=
∑

i 6=k1,k2

sigi + ((c+ d)u+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ (sk2 −HT (sk2))(
m∑
j=L

h2
jfj) + (HT (sk2))(h2

L −HT (h2
L))fL

+ sk1(
m∑

j=L+1

h1
jfj) + (HT (sk2))(

m∑
j=L+1

h2
jfj)

=
∑

i 6=k1,k2

sigi + s′k1gk1 + (sk2 −HT (sk2))gk2 − d(HT (sk1))(
m∑

j=L+1

h1
jfj)

+ (HT (sk2))(h2
L −HT (h2

L))fL
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where s′k1 = sk1 + dHT (sk1).

This representation of f is smaller (under ≤1) than
∑
i 6=k1,k2 sigi + sk1gk1 + sk2gk2 .

This fact can be divined by looking at four separate cases:

(1) fL = gx for some x 6= k1, k2 where S(sxrx) � S(sk1rk1). In this case,

(HT (sk2))(h2
L − HT (h2

L))fL can be ”absorbed” into
∑
i 6=k1,k2 sigi by al-

tering sx to sx + (HT (sk2))(h2
L − HT (h2

L)). This change to sx does not

change S(sxrx). Of the remaining summands in equation 4.4, S(s′k1gk1) =

S(sk1gk1), S((sk2−HT (sk2))gk2) ≺ S(sk2gk2) and dHT (sk1)(
∑m
j=L+1 h

1
jfj)

has the smallest signature of the three. Thus this new representation of f

is smaller (under ≤1) than
∑
i6=k1,k2 sigi + sk1gk1 + sk2gk2 .

(2) fL = gk1 . In this case the exact same argument as in (1) holds, except

”absorption” would occur into s′k1gk1 .

(3) fL = gk2 . In this case, f could have been written without sk1gk1 at all.

This would have immediately led to a contradiction as in case (1).

(4) fL = gx for some x 6= k1, k2 where S(sxrx) ≺ S(sk1rk2). Then the

exact same argument as in case (1) holds, except tracking the result-

ing signature of sxrx after ”absorption” is irrelevant (because S(sxnx) ≺

S(thenewrepresentationoff, under ≤1)).

This list covers all possible cases for fL. Thus we are forced to conclude that our

assumption that |J | ≥ 2 is false.

Thus, |J | = 1.

�

Theorem 3.3.1. Let F = (f1, . . . , fm) be a list of monic polynomials in K[x] and

let G = (r1, . . . , r|G|) ∈ R|G| such that:

(1) F ⊂ poly(G), gi = poly(ri)∀i and G1 = (g1, . . . , g|G|)

(2) all the ri are admissible and monic
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(3) ∀(i, j) ∈ {1, 2, . . . , |G|}2 such that (ri, rj) is normalized, S(gi, gj) = oG(uiri)

(or 0), where ui = lcm(HT (gi),HT (gj))
HT (gi)

Then G1 is a Grobner basis of 〈f1, . . . , fm〉.

Proof. Let f ∈ 〈G1〉. We will show that f is top-reducible by G1, thus proving that

G1 is a Grobner basis of 〈f1, . . . , fm〉.

Let (s, σ) ∈ P |G| × S|G| be a minimal representation of f under ≤1, as defined in

Definition 3.3.1. Without loss of generality, assume σ = id by renumbering G. Let

t = maxiHT (sigi), I = {i|HT (sigi) = t} and r = |I|.

Assume, for contradiction, that t > HT (f) (under the term order). Note that if

t = HT (f), then f is top-reducible by G1 and we are done immediately. Then we

know that r ≥ 2 because there must be at least one syzygy of head terms in the

representation of f .

By Lemma 3.3.1 we know that (si, ri) is normalized for all i ∈ G.

Let w = max{S(siri)|i ∈ I} and J = {i ∈ I|S(siri) = w}. By Lemma 3.3.2, we

know that |J | = 1.

Let k ∈ J and L ∈ I\{k}; recall that r ≥ 2, so such an L must exist. By con-

struction we have S(skrk) � S(sLrL). We rewrite f in the following representation

derived from (s, σ):

(3.3) f = skgk −
HC(sk)
HC(sL)

sLgL +
[
1 +

HC(sk)
HC(sL)

]
sLgL +

∑
i 6=k,L

sigi

Let

mk = HM(sk)

and
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mL =
HC(sk)
HC(sL)

HM(sL)

and, for all i,

s′i = si −HM(si)

Thus t = HT (mkgk) = HT (mLgL), so lcm(HT (gk), HT (gL)) divides t.

Now, for notational ease, define τk,L = lcm(HT (gk), HT (gL)). Then we have the

following series of equalities:

S(gk, gL) =
τk,L

HM(gk)
gk −

τk,L
HM(gL)

gL

⇔ tHC(sk)
τk,L

S(gk, gL) = tHC(sk)
(

gk
HM(gk)

− gL
HM(gL)

)

⇔ tHC(sk)
τk,L

S(gk, gL) = mkgk −mLgL

Since (sk, gk) and (sL, gL) are normalized, so is (gk, gL). Thus by hypothesis (3),

we have:

mkgk −mLgL =
t

τk,L
oG(ukrk)

where uk = τk,L
HT (rk) . This implies mkgk −mLgL = oG(skrk).

Returning to our rewrite of f in equation 3.3, we can now say:

f = HM(sk)gk + s′kgk −
HC(sk)
HC(sL)

HM(sLgL)− HC(sk)
HC(sL)

s′LgL

+
(

1 +
HC(sk)
HC(sL)

)
sLgL +

∑
i 6=L,k

sigi

= oG(skrk) + s′kgk −
HC(sk)
HC(sL)

sLgL +
(

1 +
HC(sk)
HC(sL)

)
sLgL +

∑
i6=L,k

sigi
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This is a representation of f that is derived from an element (s′, σ′) ∈ P |G| × S|G|

less than (s, σ) under ≤1. This is a contradiction.

Thus we are forced to conclude that our assumption that t > HT (f) (under the

term order) was incorrect. This means that t = HT (f), which in turn means that

f is top-reducible by G1.

Since f was arbitrary, we conclude G1 is a Grobner basis for 〈f1, . . . , fm〉.

�

We will occasionally refer to condition (3) of this theorem as the ”little-o” condition.

Note that, unlike previous criteria for generating Grobner bases, Faugere’s F5 cri-

terion does not require a mandatory normal form reduction of all prospective poly-

nomials to be added to the basis. Rather the signature of the polynomials is used

as a guide for keeping, removing and reducing critical pairs and polynomials.

3.4. The F5 Algorithm. At this point we are ready to look at the algorithm for

F5. We will begin by giving the pseudocode for F5. Then we will give an example

runthrough for a basic regular input sequence. (Note to the reader: the example

we give in 3.4.2 will be of great importance later.) The final three pieces of this

subsection (3.4.3, 3.4.4 and 3.4.5) are all meant to be looked at after examining the

pseudocode.

At the risk of being long-winded, and since this document has more space allot-

ted than Faugere’s original had, we will be fairly detailed in the pseudocode. In

particular, we will pay special attention to how lists and lists of lists are organized.

We will begin our discussion with a final definition of an F5-specific object.

Definition 3.4.1. In the language of the pseudocode of F5, the critical pair of

(r1, r2) ∈ R2 is a 5 − tuple (t, u1, r1, u2, r2) ∈ T 2 × R × T × R such that t =

u1HT (r1) = u2HT (r2) = lcm(HT (r1), HT (r2)) and S(u1r1) ≺ S(u2r2). We will

define the degree of a critical pair (t, u1, r1, u2, r2) to be deg(t).
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3.4.1. Pseudocode for F5. Here we will use (with minor corrections and notational

changes) the pseudocode introduced by Faugere in [7]. Some changes were suggested

by Stegers in [15].

The outside shell of the F5 algorithm is controlled by the routine Incremental F5.

Incremental F5

Input: A sequence F = (f1, . . . , fm) of homogeneous polynomials under an admis-

sible term ordering.

Output: A set of signed polynomials poly(G1) where poly(G1) is a Grobner basis

for F .

N := m;

Reset simplification rules(m);

rm := (Fm, fm);

Gm := [rm];

for i: (m− 1) · · · 1 do

Gi:=Algorithm F5(i, fi, Gi+1);

return(poly(G1));

(Please note that N is a global variable, and can be accessed/altered by any sub-

routine.)

Let’s first turn our attention to Algorithm F5.

Algorithm F5

Input: i an integer; fi a polynomial; Gi+1 a collection of signed polynomials such

that poly(Gi+1) is a Grobner basis for 〈fi+1, . . . , fm〉.

Output: A set of signed polynomials Gi where Poly(Gi) is a Grobner basis for

〈fi, . . . , fm〉.
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ri := (Fi, fi);

φi+1 := NF (·, poly(Gi+1));

Gi := Gi+1 ∪ {ri};

P :=Deg Sort([CritPair(ri, r, i, φi+1, φindex(r)+1)|r ∈ Gi+1]);

while P 6= ∅ do

d := deg(P [1]);

Pd := {p ∈ P |deg(p) = d};

P := P\Pd;

F :=SPol(Pd);

Rd :=Reduction(F,Gi, i, φi+1);

for r ∈ Rd do

P := P ∪ {CritPair(r, p, i, φi+1, φindex(p)+1|p ∈ Gi};

Gi := Gi ∪ {r};

Deg Sort(P );

return Gi;

This is the portion of the algorithm that is called (m− 1) times and at the end of

each call a new Grobner basis is produced. After the first call to this algorithm,

the Grobner basis for 〈fm, fm−1〉 is returned. In general, after the kth call to

Algorithm F5, the Grobner basis for 〈fm, . . . , fm−k〉. This is why F5 is called an

iterative algorithm.

The process used by Algorithm F5 is similar to many Grobner basis algorithms:

it moves degree-by-degree (see section on Deg Sort); it generates a new set of S-

polynomials F to consider (see sections on CritPair and SPol); it reduces this new

set F of S-polynomials by Gi and φi+1 (see section on Reduction).

Just for clarity, even though it is intuitively obvious what Deg Sort does, we include

it’s description below.
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Deg Sort

Input: A list of critical pairs of the form (t, u1, r1, u2, r2).

Output: A list of critical pairs of the form (t, u1, r1, u2, r2) given in ascending order

with respect to the degree of the critical pairs. Thus the first element in the list has

minimum degree.

Now we present the subroutine CritPair.

CritPair

Input: k an integer; r1, r2 ∈ R2;φindex(r1)+1, φindex(r2)+1 normal form mappings.

Output: A critical pair (t, u1, r1, u2, r2) or ∅.

t := lcm(HT (r1), HT (r2));

u1 := t
HT (r1) ;

u2 := t
HT (r2) ;

if S(u1r1) ≺ S(u2r2) then

tempterm := u1;

u1 := u2;

u2 := tempterm;

tempr := r1;

r1 := r2;

r2 := tempr;

if (index(r1) > k) then

return ∅;

if φindex(r1)+1(u1HT (r1)) 6= u1HT (r1) then

return ∅;

if φindex(r2)+1(u2HT (r2)) 6= u2HT (r2) then

return ∅;

return (t, u1, r1, u2, r2);
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It is the subroutine CritPair that is responsible for imposing the F5 Criterion from

Theorem 3.3.1. Note that in condition (3) of Theorem 3.3.1, it is required that all

pairs (ri, rj) be normalized. The reader will recall from Definition 3.2.2 that a pair

is normalized if:

(1) S(r1) = e1Fk1 is not top-reducible by 〈fk1+1, . . . , fm〉

(2) S(r2) = e2Fk2 is not top-reducible by 〈fk2+1, . . . , fm〉

(3) S(u1r1) � S(u2r2)

If these three conditions are not met in CritPair (note that the third condition will

always be met because CirtPair forces it to be met), the nominated critical pair

is dropped and ∅ is returned. In addition, there is one more line in CritPair that

could cause the nominated pair to be dropped:

if (index(r1) > k) then

return ∅;

This is for a very simple reason: if (index(r1) > k) then S(r1, r2) ∈ 〈fk+1, . . . , fm〉

and the critical pair created by (r1, r2) is thus not needed. In [15] this line was

removed from the pseudocode. That removal is fine, but was not proven; we will

prove it is okay to remove this line of code in subsection 4.1.

Once we have collected the nominated critical pairs that pass the F5 criterion test

of CritPair, we send them to SPol.

SPol

Input: A list [p1, p2, . . . , ph] of critical pairs of the form (t, u1, r1, u2, r2).

Output: A list F of new, signed polynomials that is sorted in ascending order by S.
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for L = 1 to h do

pL := (tL, uL, riL , vL, rjL);

F := ∅;

for L = 1 to h do

if (not Rewritten?(uL, riL) and not Rewritten?(vL, rjL)) then

N := N + 1;

rN := (uLS(riL), uLpoly(riL)− vLpoly(rjL));

Add Rule(rN );

F := F ∪ {rN};

F :=Sig Sort(F );

return F ;

Though at first glance this subroutine may look complicated, SPol essentially does

one thing: form the new S-polynomials output from CritPair as admissible signed

polynomials. We note that, because CritPair ensured that S(u1r1) � S(u2r2), we

know that the signature of all new polynomials will always be of the form uLS(riL)

in SPol.

At this point the number of subroutines called upon that have not been introduced

is beginning to mount. We have now seen Reset simplification rules, Rewritten?

and Add Rule in the pseudocode. The reader is encouraged to make note of these

but to ignore them for the time being. These three subroutines are all related, and

will be dealt with in due course.

Just as with Deg Sort, we give the description of Sig Sort.

Sig Sort

Input: A list F of admissible R-elements.

Output: A list F of admissible R-elements given in ascending order with regards to

signature (≺).
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Now we introduce F5’s variant on the well-known, time-intensive portion of the

Grobner-basis-producing process. In F5 the subroutine is called Reduction. Reduc-

tion has several sub-subroutines that it uses. We will present all of these at once,

and then give a full discussion afterwards.

Reduction

Input: ToDo and Gi finite lists of signed polynomials; k an integer;φi+1 a normal

form mapping.

Output: Done a finite list of reduced signed polynomials.

Done := ∅;

while ToDo 6= ∅ do

h :=Sig Sort(ToDo)[1];

ToDo := ToDo\{h};

(h1, T oDo1) :=TopReduction(φi+1(h), Gi ∪Done, k, φi+1);

Done := Done ∪ h1;

ToDo := ToDo ∪ ToDo1;

return Done;

TopReduction

Input: rk0 a signed polynomial; Gi a finite list of signed polynomials; k an integer;φi+1

a normal form mapping.

Output: An ordered pair, each either being a list of signed polynomials.

if poly(rk0) = 0 then

print(”Warning! Input sequence is not regular!”);

return (∅, ∅);

r′ :=IsReducible?(rk0 , Gi, k, φi+1);

if r′ = ∅ then

rk0 := ( 1
HC(rk0 ) )rk0 ;
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return (rk0 , ∅);

else

rk1 := r′;

u = HT (r(k0))

HT (rk1 ) ;

if (uS(rk1) ≺ S(rk0)) then

poly(rk0) = poly(rk0)− u poly(rk1);

return (∅, rk0);

else

N := N + 1;

rN := (uS(rk1), u poly(rk1)− poly(rk0));

Add Rule(rN );

return (∅, {rk0 , rN});

IsReducible?

Input: rk0 a signed polynomial; Gi = [r1, . . . , r|Gi|] a finite list of signed polynomi-

als; k an integer;φi+1 a normal form mapping.

Output: Either a signed polynomial or the ∅.

for j = 1 to |Gi| do

tjFkj
:= S(rj);

for j = 1 to |Gi| do

if ((u := HT (rk0 )

HT (rkj
) ∈ T ) and (φi+1(utj) = utj) and

(not Rewritten?(u, rkj
)) and (utjFkj

6= S(rk0))) then

return rkj ;

return ∅;

Let’s begin our discussion by focusing our attention to the outer layer of the re-

duction subroutine(s): Reduction. The signed polynomial with smallest signature,

denoted h, is grabbed and removed from the ToDo list of polynomial to be reduced.
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It’s normal form, with respect to the previous Grobner basis, and other informa-

tion is sent to the sub-subroutine TopReduction. If TopReduction determines that

the signed polynomial can be reduced, then nothing will be added to Done and

the reduced (still signed) version of h will be placed back into ToDo. If no top

reduction is possible, h is made monic by K-multiplication and the resulting signed

polynomial is placed in Done.

This description of Reduction seems very similar to other reduction routines from

other algorithms. The difference lies in the phrase, ”If TopReduction determines

that the signed polynomial can be reduced . . . ” So we must examine how TopRe-

duction makes this decision.

We will go through TopReduction step-by-step. If the signed polynomial being

examined has polynomial part 0, then there is no data left in that particular signed

polynomial – an empty ordered pair is returned. Otherwise TopReduction calls

upon another sub-subroutine IsReducible?. Essentially, if IsReducible? comes back

negative, the current signed polynomial is made monic and returned to Reduction

to be placed in Done. If a top-reduction is deemed possible, then there are two

possible cases: either the reduction will increase the signature of polynomial or it

won’t. In the latter case, the signature of rk0 is maintained, the polynomial portion

is top-reduced and the signed polynomial is returned to Reduction to be added

back into ToDo; this case corresponds to top-reduction in previous algorithms. In

the former case, however, the signature will change. This is marked by adding a

new polynomial rN (our notation here describes N after N was incremented) with

appropriate signature based upon the reductor, not S(rk0). A new rule is added

(as I mentioned previously, this will be explained later) and then both rk0 and rN

are sent back to Reduction to be added back into ToDo. This is done because rN

has a different signature that rk0 and rk0 might still be reducible by another signed

polynomial.
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All this discussion still hasn’t gotten us a good answer to our question: ”What

are the criteria for F5 top-reducing a polynomial?” We just analyzed TopReduction

looking for an answer, but TopReduction pawned it off on the third and final sub-

subroutine: IsReducible?. Now we look at IsReducible? in detail.

For a previously added signed polynomial in Gi to become a reductor of rk0 , it

must meet four requirements:

(1) u := HT (rk0 )

HT (rkj
) ∈ T

(2) φi+1(utj) = utj

(3) not Rewritten?(u, rkj
)

(4) utjFkj
6= S(rk0)

We will go through each requirement one-by-one.

Requirement (1) is simply the normal top-reduction requirement. The only thing

of note here is that, in testing for the top-reducibility, u is assigned a particular

value to be used in subsequent tests.

Requirement (2) is making sure that the signature of the reductor is normalized.

Recall that we only want signatures of our polynomials to be normalized – we are

discarding non-normalized S-polynomials. If we ignored this condition and our re-

ductor wound up having larger signature than S(rk0), then TopReduction would

create a new signed polynomial with our reductor’s non-normalized signature. (We

might add that, if the reductor had smaller signature than S(rk0), it would be

fine to reduce by it; however, F5 doesn’t miss anything by forgoing this opportu-

nity because, by Lemma 3.2.1 (The Normalization Lemma), there will be another

normalized reductor with the same head term and smaller signature.)

Requirement (3) will be discussed when we discuss Rewritten?. That discussion is

approaching rapidly.
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Requirement (4) is a check that makes sure we don’t reduce by something that

has the same signature as rk0 . Recall that we want all signed polynomials used

during the run of F5 to be admissible. If we reduced by a polynomial that has

the same signature, we would be left with a new polynomial for which we would

have no idea what the signature is. The act of reduction would have certainly

lowered the signature, thus causing admissibility to be lost. (We will comment

on this requirement later in subsection 3.5. With a little care, we can loosen this

requirement.)

This leaves us with these final subroutines to discuss: Reset simplification rules,

Add Rule, Rewritten and Rewritten?. All of these ideas are related to one subroutine

– Rewritten.

Rewritten gives us information to be used as an additional criterion for eliminating

critical pairs. Proof of this fact is given in section 3.4.3. In short, we could remove

all discussion of rules and Rewritten and F5 would work fine. (But it would work

much more slowly.) So we will treat these final four subroutines as a separate

module that works in conjunction with F5, but is not an official part of the F5

criteria per se.

We begin by making the following definition:

Definition 3.4.2. A rule in F5 is an element (t, k) ∈ T × N, where ∃ a signed

polynomial rk that F5 has added to the Grobner basis (or has reduced to 0) such

that S(rk) = tFj for some natural number j.

During each run of F5, the algorithm keeps a global list of lists called Rule. There

is one sublist for each index running from 1 to m. Now that we have established

that F5 is doing this, we can introduce the following:

Reset simplification rules

Input: m, the number of polynomials in the input sequence
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Output: A list Rule of m empty sublists.

for i = 1 to m do

Rule[i] := [];

It is not an accident that there are exactly m sublists. Every time a new signed

polynomial of index j is added, a new rule is added to Rule[j] – the jth sublist in

Rule. As we look back at the pseudocode we have seen, we will note that every

time a new signed polynomial is added to Gi, we call Add Rule.

Add Rule

Input: A signed polynomial rk = (tFi, p).

Output: Rule has been updated in sublist Rule[i].

Rule[i] := concat(Rule[i], [(t, k)]);

It is important to note that this concatenation is done on the end of the sublist

Rule[i], not at the front. This will play a very important role now that we have

gotten to Rewritten. A proof of Rewritten and it’s nature (i.e., why it works) is

discussed at some length in section 3.4.3. Here we will just introduce the pseudocode

for the remaining subroutines.

Rewritten

Input: A term u; a signed polynomial rk = (tFi, p).

Output: An ordered pair from T ×R.

for j = 1 to |Rule[i]| do

(tj , kj) := Rule[i][j];

for j = |Rule[i]| to 1 do

if tj |ut then
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return (uttj , rkj
);

return (u, rk);

Rewritten?

Input: A term u; a signed polynomial rk = (tFi, p).

Output: True or False.

(v, rL) :=Rewritten(u, rk);

if (L 6= k) then

return true;

else

return false;

3.4.2. Example Run of F5. In this subsection we will trace an example run of F5

with a small (m = 3, n = 4) input sequence. This is the same example given in [7]

but we will trace it in more detail, fixing a few typographical errors along the way.

This example is also of particular importance because it will be used as a reference

later in the paper.

We will begin with the following input:

f3 = x2y − z2t

f2 = xz2 − y2t

f1 = yz3 − x2t2

while using degree-reverse-lexicographical ordering on the terms, x > y > z > t

(in this framework, it would be fair to say that t appears to have the role of a

homogenizing variable). We now begin the trace.

N := 3

Rule := [[], [], []]
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r3 := (F3, f3)

G3 := [r3]

Now we will begin the first iteration of the loop from Incremental F5. Note that

we already have the Grobner basis of 〈f3〉 (trivially) stored in G3.

Algorithm F5(2, f2, G3)

r2 := (F2, f2)

φ3 := NF (·, G3)

G2 := [r3, r2]

CritPair for r2 and G3 generates the following pair:

p1 := (x2yz2, xy, r2, z
2, r3)

Now we have d := 5, P5 := [p1] and P := ∅

SPol(P5)

p1 → r4 := (xyF2,−xy3t+ z4t)

Add a rule so that Rule := [[], [(xy, 4)], []]

Reduction on this new set:

There are no top-reducers eligible for r4; just make it monic.

r4 := (xyF2, xy
3t− z4t)

R5 := [r4]

CritPair for R5 and G2 generates the following pairs:

p2 := (x2y3t, x, r4, y
2t, r3), p3 := (xy3z2t, z2, r4, y

3t, r2)

Note that p2 is eliminated because φ3(xS(r4)) 6= xS(r4).

G2 := [r3, r2, r4]

Now we have d := 7, P7 := [p3] and P := ∅

SPol(P7)

p3 → r5 := (xyz2F2,−z6t+ y5t2)

Add a rule so that Rule := [[], [(xy, 4), (xyz2, 5)], []]

Reduction on this new set:

There are no top-reducers eligible for r5; just make it monic.
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r5 := (xyz2F2, z
6t− y5t2)

R7 := [r5]

CritPair for R7 and G2 generates the following pairs:

p4 := (x2yz6t, x2y, r5, z
6t, r3), p5 := (xz6t, x, r5, z

4t, r2),

p6 := (xy3z6t, xy3, r5, z
6, r4)

Note that p4 is eliminated because φ3(x2yS(r5)) 6= x2yS(r5).

Note that p5 is eliminated because φ3(xS(r5)) 6= xS(r5).

Note that p6 is eliminated because φ3(xy3S(r5)) 6= xy3S(r5).

G2 := [r3, r2, r4, r5]

return G2 (P = ∅, so we are done)

At this stage we have the Grobner basis G2 for 〈f2, f3〉. We have one more iteration

of Algorithm F5 left – index 1.

Algorithm F5(1, f1, G2)

r1 := (F1, f1)

φ2 := NF (·, G2)

G1 := [r3, r2, r4, r5, r1]

CritPair for r1 and G2 generates the following pairs:

p7 := (x2yz3, x2, r1, z
3, r3), p8 := (xyz3, x, r1, yz, r2),

p9 := (xy3z3t, xy2t, r1, z
3, r4), p10 := (yz6t, z3t, r1, y, r5)

Now we have d := 5, P5 := [p8] and P := [p7, p9, p10]

SPol(P5)

p8 → r6 := (xF1, y
3zt− x3t2)

Add a rule so that Rule := [[(x, 6)], [(xy, 4), (xyz2, 5)], []]

Reduction on this new set:

There are no top-reducers eligible for r6; it’s already monic.

R5 := [r6]

CritPair for R5 and G1 generates the following pairs:

p11 := (x2y3zt, x2, r6, y
2zt, r3), p12 := (xy3z2t, xz, r6, y

3t, r2),
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p13 := (xy3zt, x, r6, z, r4), p14 := (y3z6t, z5, r6, y
3, r5),

p15 := (y3z3t, z2, r6, y
2t, r1)

Note that p14 is eliminated because φ2(z5S(r6)) 6= z5S(r6)

Note that p15 is eliminated because φ2(z2S(r6)) 6= z2S(r6)

G1 := [r3, r2, r4, r5, r1, r6]

Now we have d := 6, P6 := [p7, p13] and P := [p9, p10, p11, p12]

SPol(P6)

p7 is Rewritten on xr1 by rule (x, 6)

p13 → r7 := (x2F1, z
5t− x4t2)

Add a rule so that Rule := [[(x, 6), (x2, 7)], [(xy, 4), (xyz2, 5)], []]

Reduction on this new set:

There are no top-reducers eligible for r7; it’s already monic.

R6 := [r7]

CritPair for R6 and G1 generates the following pairs:

p16 := (x2yz5t, x2y, r7, z
5t, r3), p17 := (xz5t, x, r7, z

3t, r2)

p18 := (xy3z5t, xy3, r7, z
5, r4), p19 := (z6t, z, r7, 1, r5)

p20 := (yz5t, y, r7, z
2t, r1), p21 := (y3z5t, y3, r7, z

4, r6)

Note that p16 is eliminated because φ2(x2yS(r7)) 6= x2yS(r7)

Note that p18 is eliminated because φ2(xy3S(r7)) 6= xy3S(r7)

Note that p20 is eliminated because φ2(yS(r7)) 6= yS(r7)

Note that p21 is eliminated because φ2(y3S(r7)) 6= y3S(r7)

G1 := [r3, r2, r4, r5, r1, r6, r7]

Now we have d := 7, P7 := [p11, p12, p17, p19] and P := [p9, p10]

SPol(P7)

p11 is Rewritten on x2r6 by rule (x2, 7)

p12 is Rewritten on xzr6 by rule (x2, 7)

p17 → r8 := (x3F1,−x5t2 + y2z3t2)

Add a rule so that Rule := [[(x, 6), (x2, 7), (x3, 8)], [(xy, 4), (xyz2, 5)], []]

p19 → r9 := (x2zF1, y
5t2 − x4zt2)
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Add a rule so that Rule := [[(x, 6), (x2, 7), (x3, 8), (x2z, 9)],

[(xy, 4), (xyz2, 5)], []]

Reduction on this new set:

We reorder the new set by signature; thus we start with r9.

There are no top-reducers eligible for r9; it’s already monic.

There are no top-reducers eligible for r8; just make it monic.

r8 := (x3F1, x
5t2 − y2z3t2)

R7 := [r9, r8]

CritPair for R7 and G1 generates the following pairs:

Starting with r9:

p22 := (x2y5t2, x2, r9, y
4t2, r3), p23 := (xy5z2t2, xz2, r9, y

5t2, r2)

p24 := (xy5t2, x, r9, y
2t, r4), p25 := (y5z6t2, z6, r9, y

5t, r5)

p26 := (y5z3t2, z3, r9, y
4t2, r1), p27 := (y5zt2, z, r9, y

2t, r6)

p28 := (y5z5t2, z5, r9, y
5t, r7)

Note that p23 is eliminated because φ2(xz2S(r9)) 6= xz2S(r9)

Note that p25 is eliminated because φ2(z6S(r9)) 6= z6S(r9)

Note that p26 is eliminated because φ2(z3S(r9)) 6= z3S(r9)

Note that p27 is eliminated because φ2(zS(r9)) 6= zS(r9)

Note that p28 is eliminated because φ2(z5S(r9)) 6= z5S(r9)

G1 := [r3, r2, r4, r5, r1, r6, r7, r9]

Now for r8:

p29 := (x5yt2, y, r8, x
3t2, r3), p30 := (x5z2t2, z2, r8, x

4t2, r2)

p31 := (x5y3t2, y3, r8, x
4t, r4), p32 := (x5z6t, z6, r8, x

5, r5)

p33 := (yz5t2, y, r8, z
2t, r1), p34 := (x5y3zt2, y3z, r8, x

5t, r6)

p35 := (x5z5t2, z5, r8, x
5t, r7), p36 := (x5y5t2, y5, r8, x

5, r9)

Note that p29 is eliminated because φ2(yS(r8)) 6= yS(r8)

Note that p30 is eliminated because φ2(z2S(r8)) 6= z2S(r8)

Note that p31 is eliminated because φ2(y3S(r8)) 6= y3S(r8)

Note that p32 is eliminated because φ2(z6S(r8)) 6= z6S(r8)
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Note that p33 is eliminated because φ2(yS(r8)) 6= yS(r8)

Note that p34 is eliminated because φ2(y3zS(r8)) 6= y3zS(r8)

Note that p35 is eliminated because φ2(z5S(r8)) 6= z5S(r8)

Note that p36 is eliminated because φ2(y5S(r8)) 6= y5S(r8)

G1 := [r3, r2, r4, r5, r1, r6, r7, r9, r8]

Now we have d := 8, P8 := [p9, p10, p24] and P := [p22]

SPol(P8)

p9 is Rewritten on xy2tr1 by rule (x, 6)

p10 → r10 := (z3tF1, y
6t2 − x2z3t3)

Add a rule so that Rule := [[(x, 6), (x2, 7), (x3, 8), (x2z, 9), (z3t, 10)],

[(xy, 4), (xyz2, 5)], []]

p24 → r11 := (x3zF1,−x5zt2 + y2z4t2)

Add a rule so that Rule := [[(x, 6), (x2, 7), (x3, 8), (x2z, 9), (z3t, 10),

(x3z, 11)], [(xy, 4), (xyz2, 5)], []]

Reduction on this new set:

r10 := (z3tF1, φ2(poly(r10)) = y6t2 − xy2zt4)

From here there are no top-reducers eligible for r10; it’s already monic.

There are no top-reducers eligible for r11 (r8 is disallowed by IsReducible? ).

Just make it monic. r11 := (x3zF1, x
5zt2 − y2z4t2)

R8 := [r10, r11]

CritPair for R8 and G1 generates the following pairs:

Starting with r10:

p37 := (x2y6t2, x2, r10, y
5t2, r3), p38 := (xy6z2t2, xz2, r10, y

6t2, r2)

p39 := (xy6t2, x, r10, y
3t, r4),p40 := (y6z6t2, z6, r10, y

6t, r5)

p41 := (y6z3t2, z3, r10, y
5t2, r1), p42 := (y6zt2, y3t, r6, z, r10)

p43 := (y6z5t2, y6t, r7, z
5, r10),p44 := (y6t2, y, r9, 1, r10)

p45 := (x5y6t2, y6, r8, x
5, r10)

Note that p37 is eliminated because φ2(x2S(r10)) 6= x2S(r10)

Note that p38 is eliminated because φ2(xz2S(r10)) 6= xz2S(r10)
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Note that p39 is eliminated because φ2(xS(r10)) 6= xS(r10)

Note that p40 is eliminated because φ2(z6S(r10)) 6= z6S(r10)

Note that p41 is eliminated because φ2(z3S(r10)) 6= z3S(r10)

Note that p42 is eliminated because φ2(y3tS(r6)) 6= y3tS(r6)

Note that p43 is eliminated because φ2(z5S(r7)) 6= z5S(r7)

Note that p44 is eliminated because φ2(yS(r9)) 6= yS(r9)

Note that p45 is eliminated because φ2(y6S(r8)) 6= y6S(r8)

G1 := [r3, r2, r4, r5, r1, r6, r7, r9, r8, r10]

Now for r11:

p46 := (x5yzt2, y2, r11, x
3zt2, r3), p47 := (x5z2t2, z, r11, x

4t2, r2)

p48 := (x5y3zt2, y3, r11, x
4zt, r4), p49 := (x5z6t2, z5, r11, x

5t, r5)

p50 := (x5yz3t2, yz2, r11, x
5t2, r1), p51 := (x5y3zt2, y3, r11, x

5t, r6)

p52 := (x5z5t, x5, r7, z
4, r11), p53 := (x5y5zt2, y5, r11, x

5z, r9)

p54 := (x5zt2, z, r8, 1, r11), p55 := (x5y6zt2, y6, r11, x
5z, r10)

Note that p46 is eliminated because φ2(y2S(r11)) 6= x2S(r10)

Note that p47 is eliminated because φ2(zS(r11)) 6= x2S(r10)

Note that p48 is eliminated because φ2(y3S(r11)) 6= x2S(r10)

Note that p49 is eliminated because φ2(z5S(r11)) 6= x2S(r10)

Note that p50 is eliminated because φ2(yz2S(r11)) 6= x2S(r10)

Note that p51 is eliminated because φ2(y3S(r11)) 6= x2S(r10)

Note that p52 is eliminated because φ2(z4S(r11)) 6= x2S(r10)

Note that p53 is eliminated because φ2(y5S(r11)) 6= x2S(r10)

Note that p55 is eliminated because φ2(y6S(r11)) 6= x2S(r10)

G1 := [r3, r2, r4, r5, r1, r6, r7, r9, r8, r10, r11]

Now we have d := 8, P8 := [p54] and P := [p22]

SPol(P8)

p54 is Rewritten on zr8 by rule (x3z, 11)

Now we have d := 9, P9 := [p22] and P := ∅

SPol(P9)
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p22 is Rewritten on x2r9 by rule (x3z, 11)

return G1 (P = ∅, so we are done)

It is worth noting that our trace has yielded a significant difference from Faugere’s

trace in [7]. The signed polynomial r11 is not added to the Grobner basis in his

trace. This is because the F5 algorithm does not force an order, within the degrees,

of Deg Sort. In Faugere’s trace he decides to switch the order of the critical pairs

in P7 so that SPol adds r9 (and, hence, the rule (x2z, 9)) before r8 (and its rule

(x3, 8)). (Obviously, switching the order would change the numbering of these two

signed polynomials. To keep things from being confusing, we will keep r8 and r9 as

given in the trace.) There is nothing overtly incorrect in doing this, as there is no

standard required method for ordering other than to order by degree.

A standardized ordering system was used in our trace – namely, all lists were read

in ascending order of subscripts. This standardization is also correct. However,

under this uniform standard, the algorithm fails to notice that r11 is not needed

because the rules (x2z, 9) and (x3, 8) fall in the ”wrong” order.

The reader should be assured of two facts, both of which are critically important

to this paper:

(1) Both methods are correct.

(2) Both methods can be used as a counterexample to a currently (as of Spring

2008) accepted Grobner-basis-algorithm theorem.

3.4.3. Rewritten. Though the procedure Rewritten was introduced in its present

form in 2002 in [7], there is no proof for its validity therein. Moreover, Stegers

laments his difficulty in proving Rewritten’s validity in [15]. In this section we

prove that Rewritten is indeed a valid procedure for eliminating critical pairs in

F5. Moreover, the proof itself serves as another example of the overall theme of

F5: rewrite current critical pairs in terms of ones for which are already accounted.
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There is another point of importance in the following proof of Rewritten. Though

it is reasonable to assume that Rewritten is a valid procedure (after all, it has been

used since 2002 as part of the F5 algorithm and its variants), it was previously

unclear if special hypotheses were required to make Rewritten legitimate criterion

for eliminating critical pairs. It was unclear, for example, whether Rewritten was

only valid if the input sequence was regular – a very strong requirement. On

face this makes Rewritten a suspect of interest when inquiring into F5’s lack of

termination for some non-regular inputs (a suspicion that is put to rest here).

It is for these reasons that this author highlights this proof as one of the key

contributions offered by this thesis.

Theorem 3.4.1. Assume that F5 has computed the Grobner basis for 〈fi+1, . . . , fm〉

and is computing the Grobner basis for 〈fi, . . . , fm〉. Let (t, u1, r1, u2, r2) be an out-

put of CritPair that activates Rewritten in SPol. Then S(r1, r2) need not be added

to the Grobner basis of 〈fi, . . . , fm〉.

Proof. There are 3 distinct cases.

(1) Rewritten is activated by only (u1, r1). Then there exists a rule (L1, k1)

such that L1|(u1S(r1)). Let c = (u1S(r1))
L1

. Let S(r1) = dFi. Then we have

the following:

S(r1, r2) = u1r1 − u2r2

= u1

m∑
j=i

qjfj − u2r2

= u1((d+ · · · )fi +
m∑

j=i+1

qjfj)− u2r2

= u1dfi + u1((· · · )fi +
m∑

j=i+1

qjfj)− u2r2

= crk1 +
m∑
j=i

q′jfj − u2r2(3.4)

where qj , q′j ∈ K[x]∀j and HT (q′i)Fi ≺ S(crk1).
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Note that this new representation 3.4 of S(r1, r2) has the same signature as

the original, namely S(u1r1). Using Lemma 3.2.1, we can assume without

loss of generality that all the components of 3.4 are normalized. We will

also assume, without loss of generality, that no q′jfj can be rewritten as per

Rewritten. (If it could simply rewrite as we rewrote u1r1 above.) We will

use this new representation of S(r1, r2) to show that S(r1, r2) = oG(u1r1),

where G is the set of signed polynomials from the previous iteration’s Grob-

ner basis (index i+ 1) and other signed polynomials that will be added to

the Grobner basis of the input sequence during iteration i. Thus it will

immediately follow, as per Theorem 3.3.1, that S(r1, r2) is not needed.

There must be a syzygy of head terms on the right-hand-side of equation

3.4 because HT (S(r1, r2)) 6= HT (u2r2). We will show S(r1, r2) = oG(u1r1)

by induction on the number of syzygies of pairs (exactly two, no more) of

head terms on the right-hand-side; in other words, in the spirit of Theorem

2.5.2, we are going to induct on the number of S-polynomial rewrites that

are required on the right-hand-side of equation 3.4 in order that no addend

on the right-hand-side have a head term greater than the head term of

S(r1, r2).

Base Case(the number of syzygies of head terms is exactly one): u2r2 has

to be involved, so there are two cases:

(a) The syzygy of head terms is between rk1 and r2.

(b) The syzygy of head terms is between fj and r2 for some j.

In the first case, we note the following facts regarding S(rk1 , r2): S(rk1 , r2)

is normalized; S(rk1 , r2) cannot trigger IsRewritable? (if rk1 triggered it,

(u1, r1) would have activated IsRewritable? differently); r2 cannot acti-

vate IsRewritable? because that was the assumption of case 1. So either

S(rk1 , r2) has already been added to G, will be added to G later in the
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iteration (during this degree) or reduced to 0 in Reduction; in either case,

S(rk1 , r2) = oG(u1r1), thus implying S(r1, r2) = oG(u1r1).

(The assumption that u2r2 is not rewritable is technical in nature and is

meant to assure the reader that all the conditions set forth in the pseu-

docode are met. In truth, if some new polynomial were to come along,

later in the same degree – call it d, that would rewrite u2r2, we could sim-

ply make a new representation of S(r1, r2) using that new polynomial and

push through the same argument as above. Since no degree d has infin-

itely many polynomials added, this process of rewriting is not infinite (and

will stop). And since this rewriting doesn’t affect signatures at all, our

dependence on the ”little-o” condition is unaffected as well.)

(To simplify notation, we simply assume u2r2 has already been represented

in such a way that rewrites are impossible. If the reader finds this unac-

ceptable, case 3 below demonstrates a more robust case of rewriting.)

The second case uses the exact same arguments as the first to conclude

S(r1, r2) = oG(u1r1).

This finishes the base case.

Assume S(r1, r2) = oG(u1r1) if α syzygies of head terms are needed

to remove all syzygies of head terms from the right-hand-side.

(The induction hypothesis.)

Prove if α+ 1 syzygies of head terms are needed. So we are looking at the

following (derived from equation 3.4):

∑
β∈A

λβS(xβ , yβ)− u2r2

where the first α syzygies of head terms have produced an index set A

of S-polynomials (and/or fj ’s), all of which have been added (or will be
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added) to the Grobner basis. If HT (u2r2) would have been a part of the

first α syzygies of head terms, then the head term of the right-hand-side

would already be less than HT (u1r1) (i.e., HT (u2r2)) and we would have

S(r1, r2) = oG(u1r1) immediately. Thus we assume that, after the first α

syzygies of head terms, u2r2 is still intact in the representation. Since, by

assumption, there is only one syzygy of head terms remaining on the right-

hand-side, it must be between u2r2 and λβ′S(xβ′ , yβ′) for some β′ ∈ A.

Since we assumed without loss of generality in equation 3.4 that all com-

ponents of the representation were normalized and would not trigger Is-

Rewritable?, we can assume S(S(xβ′ , yβ′), u2r2) is normalized and is not

Rewritten. Thus S(S(xβ′ , yβ′), u2r2) has already been added to G, will be

added to G later in the iteration (during this degree) or reduced to 0 in

Reduction; in either case, S(S(xβ′ , yβ′), u2r2) = oG(u1r1), thus implying

S(r1, r2) = oG(u1r1).

This completes the induction proof.

This completes case 1.

(2) Rewritten is activated by only (u2, r2). This case mirrors case 1.

(3) Rewritten is activated by both (u1, r1) and (u2, r2). Define L, k1, c and d

as in case 1. In addition there exists a rule (L2, k2) such that L2|(u2S(r2)).

Let a = (u2S(r2))
L2

and S(r2) = bFi. Then in a similar construction as

equation 3.4 introduced in case 1,

S(r1, r2) = crk1 +
m∑
j=i

q′jfj − ark2 +
m∑
j=i

q′′j fj

where

crk1 +
m∑
j=i

q′jfj

is a new representation of u1r1 and
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ark2 +
m∑
j=i

q′′j fj

is a new representation of u2r2, with q′j , q
′′
j ∈ K[x]∀j and HT (q′i)Fi ≺

S(crk1). From here the case mirrors 1.

Thus in all three cases S(r1, r2) = oG(u1r1), implying by Theorem 3.3.1 S(r1, r2)

is not needed.

�

Now we have shown the validity of Rewritten as a criterion for removing critical

pairs in F5. Again we emphasize that no assumption of regularity in the input

sequences was required. Thus, when used in regards to the ”little-o” condition of

Theorem 3.3.1 for regulating a Grobner basis, Rewritten is quite robust – it is a

criterion that works harmoniously and in tandem with the ”little-o” condition. We

will utilize this property later when we introduce a new algorithm for computing

Grobner bases in section 4.

3.4.4. Proof of F5’s Correctness. In this section we prove that F5 is correct (if it

terminates). Our primary bases for this proof will be Theorems 3.3.1 and 3.4.1.

The reader is encouraged to note that no assumption of regularity is required for

correctness; this is an important comment because, as mentioned in section 3.2,

the hypothesis of regularity is mathematically quite strong and we would like to

distance ourselves from it as much as possible.

Theorem 3.4.2. If F5 terminates on input (f1, . . . , fm), the set poly(G) is a Grob-

ner basis for 〈f1, . . . , fm〉.

Proof. We will prove the correctness of F5 using the same language and notation

from Theorem 3.3.1.

We begin by noting that F ⊂ poly(G) because (Fi, fi) is added to the output at

the very beginning of the ith iteration of Algorithm F5.



72

It is also clear that all the ri ∈ G are monic. Before any signed polynomial is added

to the output during an iteration of Algorithm F5, it is made monic by the line:

rk0 := (
1

HC(rk0)
)rk0 ;

in TopReduction.

It requires a little more analysis to prove the claim that all the ri ∈ G are admissible.

We will do so here; a reader may also find the proof in [7, 15].

We will prove admissibility by induction on the index i.

Base Case (i = m). This is clear because the only polynomial of index m that ap-

pears in G is (Fm, fm), which is trivially admissible.

Assume all polynomials appearing in G of index k or greater are admissible.

Prove that all polynomials appearing in G of index k − 1 are admissible. If k = 1,

there are no polynomials of this index or lower; thus we are trivially done. So,

without loss of generality, we assume that k − 1 ≥ 1.

To prove this we will need another proof by induction (so the proof of Theorem 3.4.2

is a proof by nested induction). We will induct on the signatures of the polynomials

of index k − 1 (i.e., we will induct on ≺).

Base Case (signature of the polynomial is Fk−1). As mentioned prior, the

signed polynomial (Fk−1, fk−1) is clearly admissible.

Assume all rp ∈ G of index k − 1, S(rp) � tFk−1, are admissible.

Prove all rp ∈ G of index k − 1, S(rp) � tFk−1, are admissible. The oper-

ation to create new signed polynomials for possible addition to G is done

in SPol in the line:

rN := (uLS(riL), uLpoly(riL)− vLpoly(rjL));
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where

uLS(riL) � vLS(rjL)

If riL and rjL are of index k or greater, then they are admissible by the

outer induction hypothesis. If riL and rjL are of index k − 1, but have

signatures � tFk−1, they are admissible by the inner induction hypothesis.

If they are of index k− 1, but have signatures � tFk−1, then we recall that

riL was generated from an S-polynomial of polynomials of strictly smaller

signature (along with possible reduction in Reduction). So

riL = u1ri1 − u2ri2 −
∑
rp∈G

urp
rp

where u1ri1 − u2ri2 is representative of the S-polynomial calculation from

SPol and
∑
rj∈G urj

rj represents the reduction of riL in Reduction. If any

of the elements of R in the above representation of riL still fall outside

of the range of the two induction hypotheses, then this process can be

repeated; since the signatures of the polynomials rj are strictly decreasing,

we will eventually find ourselves with a representation of riL for which the

induction hypotheses apply. A similar argument will hold for rjL . So, in

short, without loss of generality, riL and rjL are admissible.

It follows immediately that rN is also admissible, since it’s signature is

inherited from riL . Since rN was arbitrary, this concludes the inner induc-

tion.

This concludes the outer induction, and the proof of admissibility in F5.

The only remaining item to prove is the third condition of Theorem 3.3.1. The

procedure CritPair ensures that only normalized critical pairs are being considered

in F5. Once a critical pair is being considered, there are only a few things that can

happen to it:
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(1) The critical pair is eliminated by Rewritten? in SPol. By Theorem 3.4.1,

this meets the little-o condition of Theorem 3.3.1.

(2) The polynomial is reduced to 0 in Reduction. By definition, this meets the

little-o condition of Theorem 3.3.1.

(3) The polynomial is reduced (not to 0) and then added. This is fine too. Note

that, once a signed polynomial makes it into Reduction, it is guaranteed that

a reduced version of the same signature will be added to the Grobner

basis. (It is also possible the reduction will yield the addition of a signed

polynomial with larger signature to the Grobner basis, but that is irrelevant

to meeting the little-o condition for the original signed polynomial.) The

addition of this signed polynomial immediately meets the little-o condition

of Theorem 3.3.1.

This list covers all possible cases; thus, we can conclude the third condition of

Theorem 3.3.1 is satisfied. Thus all hypotheses of Theorem 3.3.1 have been met.

This proves the correctness of the F5 algorithm and completes our proof.

�

3.4.5. A Regular Input Sequence Yields No Reductions to 0. The real benefit of

using F5 is an increase in speed (measured empirically, on average) over previously

used Grobner-basis-producing algorithms. As mentioned in [7], it is a full order

of magnitude faster than the F4 algorithm (see [8]) and is more than two orders

of magnitude faster than other algorithms. The natural question to ask would be:

where does F5 makes such positive gains in speed.

The answer is that F5 uses the signature of the polynomials to avoid some full

normal-form computations – the computations primarily responsible for giving

Grobner-basis-producing algorithms their double-exponential time complexity on

the number of variables in the polynomials ring (see [2]). The number of full reduc-

tions to 0 – the criterion for not adding a polynomial to the Grobner basis in the
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Buchberger algorithm – varies depending on the properties of the input sequence.

Once again we will see that assuming regularity of the input sequence yields (not

surprisingly) a very strong result.

Theorem 3.4.3. If the input sequence (f1, . . . , fm) is regular, there are no reduc-

tions to 0 in Reduction in the F5 algorithm.

Proof. Let r ∈ R, r = (uFi, p) be a signed polynomial that is a candidate for

admission into G in F5 (i.e., r has made it into Reduction). Then we know that r

is admissible, and we know that r is normalized.

Assume, for contradiction, that r is reduced to 0 in F5. Then we have the following

witness of this reduction:

(3.5) p− (
∑

gi∈poly(G)

qigi) = 0

where qi ∈ K[x]∀i.

By property (b) of IsReducible, all the qigi are normalized. By property (d) of

IsReducible, S(3.5) is either S(
∑
gi∈poly(G) qigi) or uFi. Without loss of generality,

let’s say that S(3.5) = S(
∑
gi∈poly(G) qigi).

Then ∃g, g′ ∈ Pm such that the following hold:

(1) v(g) = v(g′) = p =
∑
gi∈poly(G) qigi

(2) HT (g) = u

(3) HT (g′) = S(
∑
gi∈poly(G) qigi)

(4) index(g) = index(g′) = i
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This implies that (g′− g) ∈ Syz. Since (f1, . . . , fm) is regular, (g′− g) ∈ PSyz. By

Theorem 3.2.1, we know S(
∑
gi∈poly(G) qigi) is not normalized. This is a contradic-

tion to the fact that, by property (b) of IsReducible, all the qigi are normalized.

Thus our assumption that r is reduced to 0 in F5 was incorrect.

Since r was arbitrary in an arbitrary index i, we know that there are no reductions

to 0 in F5 if the input sequence is regular.

This completes the proof.

�

So if we assume the input sequence is regular, there will be no reductions to 0 in F5.

Perhaps not surprisingly, if we start with an input sequence that is non-regular, F5

may have some reductions to 0. (Any such reduction to 0 is output with a message

in TopReduction.) Such examples are plentiful.

3.5. (Error in) Proof of Termination in F5. In this subsection we will discuss

an error in reasoning that currently exists in the proof of termination of the F5

algorithm. This proof was originally presented in [7] and was labeled as a conjecture

in [15]. Understanding the cases when F5 terminates is of key importance. In

section 4.4, we will introduce a new hybridization of F5 and Buchberger’s algorithm.

This algorithm will always terminate, but it will come at great cost to the timing of

F5 under certain input. Any attempt to minimize the time F5 takes should begin

with a strong understanding of the situations in which it terminates.

To that end, we begin our discussion with the following proposition from [7]:

Proposition 3.5.1. For all degree d, the result of Reduction will be denoted as Rd.

Suppose that there are no reductions to 0 during the run of F5. Then, at index i,

〈HT (Gi)〉 = 〈HT (Gi ∪Rd)〉.

This proposition, if true, would lead immediately (via Theorem 3.4.3) to the fol-

lowing corollary:
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Corollary 3.5.1. If an input sequence to F5 is regular, F5 terminates for that

sequence.

The problem is that Proposition 3.5.1 is plainly false. To witness this fact, we can

look at the example run of F5 from sub-subsection 3.4.2. Note that this example

has no reductions to 0 within it, yet R8 fails to meet the conclusion of Proposition

3.5.1. Thus we have a counterexample to the proposition. For more exposition on

this situation, see Appendix A.

This causes an immediate dilemma because it destroys Corollary 3.5.1. This corol-

lary is the standard by which F5 is considered to terminate. Now we must strive

to find a replacement standard. We will attempt to do this in this section.

We will now change course. Consider this new proposition that is introduced by

[15] (during the conjecture of termination) and strongly implied by [7] (during the

discussion of Proposition 3.5.1).

Conjecture 3.5.1. Let F5 run on input (f1, f2, . . . , fm) and let rj = (ujFi, pj)

be a signed polynomial that has been added to Gi during index i’s iteration. Then

there will not be a signed polynomial rk = (ukFi, pk), rk 6= rj added to Gi where

uk = uuj and HT (pk) = uHT (pj).

We will deal with the validity of Conjecture 3.5.1 at a later time. No proof will be

offered now. For the moment, let’s accept it as true.

Then we have the following theorem that will shed some light on the terminating

conditions of F5.

Consequence 3.5.1. Assume that K is a finite field with |K| = ρ = pk for

some prime p. Let (f1, f2, . . . , fm) be a proposed input sequence into F5, fi ∈

K[x1, x2, . . . , xn] ∀i. Assume, instead, that the sequence

(xρ1 − x1t
ρ−1, xρ2 − x2t

ρ−1, . . . , xρn − xntρ−1, fm, fm−1, . . . , f1)



78

is input into F5, from left to right in order, where t is a homogenizing variable.

Then F5 will terminate under this input.

Proof. Assume, for contradiction, that F5 does not terminate under this input at

index i. Also assume, without loss of generality, that i = 1. There exists a degree d

such that the degree-d Grobner basis (GBd) for 〈xρ1−x1t
ρ−1, xρ2−x2t

ρ−1, . . . , xρn−

xnt
ρ−1, fm, fm−1, . . . , f1〉 is in fact a Grobner basis.

Since we assumed that F5 does not terminate under this input, there exists q ∈ GBd

and an infinite sequence of terms {uk}∞k=1 and an infinite sequence of polynomials

{pk}∞k=0 such that q = p0 and HT (pj) = ujHT (pj−1), with pk being added to the

Grobner basis for all k.

It must be the case that 6 ∃(N,α) pair such that

xρα|
N∏
`=1

u`

In this case, pN would not have been added to the Grobner basis because it would

be top-reducible by xρα − xαtρ−1. So there exists and N such that, for all n′ > N ,

un′ is only divisible by term t (and not x1, x2, . . . , xn).

Now we must consider the following fact (∀k):

pk = h1,kf1+h2,kf2+· · ·+hm,kfm+hm+1,k(xρ1−x1t
ρ−1)+· · ·+hm+n,k(xρn−xntρ−1)

where h`,k ∈ K[x]∀` and S(pk) = HT (h1,k)Fm+n. Without loss of generality, we

will consider h1,k to be a totally normalized polynomial; that is to say that all terms

of h1,k are normalized. By Lemma 3.2.1, this assumption does not change the head

term of pk. Moreover, since we assumed pk was added to the Grobner basis, we can

assume that normalization does not change the signature of pk.
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We will call a polynomial ”docked in term y” if each term from the polynomial

is re-written without y. For example, the polynomial 3x2
1x2 + 4x1x

2
2 ∈ F5[x1, x2]

would be docked in x2 into 3x2
1 + 4x1.

If we consider all possible h1,k’s (i.e., ranging over k) docked in t, since K is a finite

field and we assumed total normalization, there are only finitely many distinct h1,k’s

docked in t. This means we can find two polynomials pβ and pγ , β, γ > N , β > γ,

such that h1,β docked in t equals h1,γ docked in t. Since β, γ > N and β > γ,

HT (pβ) = t∆HT (pγ)

for some exponent ∆. Moreover, h1,β = t∆h1,γ . This means that we have two

polynomials pβ and pγ such that

HT (pβ) = t∆HT (pγ)

and

S(pβ) = t∆S(pγ)

By Conjecture 3.5.1, this is impossible.

Thus our assumption that F5 doesn’t terminate at index i must be incorrect. There-

fore F5 does terminate at index i. Since i was arbitrary, this means F5 terminates.

This completes the proof.

�

We now make a few remarks regarding Consequence 3.5.1.

Remark 3.5.1. If Conjecture 3.5.1 is in fact true, we have a new standard for

F5 terminating. Perhaps even more impressively, this standard does not appeal

to a hypothesis of regularity. The removal of such a hypothesis is very attractive

mathematically.
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Remark 3.5.2. However, this author has been unable to prove (or disprove) Con-

jecture 3.5.1. Folklore certainly claims it’s validity. But without proof, we cannot

show that Consequence 3.5.1 is valid.

Consider the problem we witnessed during our example from section 3.4.2. Recall

that we had two polynomials r8 and r9 whose orders were switched in Faugere’s

example from [7]. In our example here, we admitted r11 into the Grobner basis. In

the example from [7], r11 is Rewritten by r8 and not added to the Grobner basis.

The point here is that just because something can be rewritten doesn’t mean that

it will trigger the subroutine Rewritten. The author has run into a similar problem

in attempting to prove Conjecture 3.5.1.

Remark 3.5.3. The added condition that the polynomials xρ1 − x1t
ρ−1, xρ2 −

x2t
ρ−1, . . . , xρn − xntρ−1 is a extremely weak hypothesis, and should not be consid-

ered a hindrance. These are the so-called field polynomials (derived from the field

equations of K by letting t = 1). If, as instructed in the statement of Consequence

3.5.1, F5 is run on these polynomials first, the first n iterations of Algorithm F5

will pass extremely quickly; the only polynomial added to the Grobner basis at

each of these first n iterations will be the corresponding field polynomial. So there

is no significant time added to the run of F5.

It is also not unfair to suspect that K is a finite field for many applications. As

mentioned in the Introduction, the system of equations produced by AES is over a

finite field.

Remark 3.5.4. While Consequence 3.5.1 does offer proof of termination (assuming

the folklore concerning Conjecture 3.5.1 is true), it does not offer a tight bound on

when this termination must occur. The degree at which the contradiction occurs

may be well above the degree needed for a Grobner basis.
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In an attempt to make Consequence 3.5.1 provably correct, we will make a slight

modification to the F5 algorithm. In the subroutine IsReducible? we will remove

the fourth if-condition:

utjFkj
6= S(rk0)

This means that we will allow reductors that have the same signature as the signed

polynomial they are reducing. If we were to make this change, it would clearly act

as Conjecture 3.5.1 does in the proof of Consequence 3.5.1; pγ would have been

further reduced by pβ . Thus we do not need Conjecture 3.5.1 anymore.

But we must also make sure that making this change would not produce an error

in the F5 algorithm. Recall that this if-condition exists because, if we reduce a

signed polynomial using a reductor with the same signature, we will lose track of

the resulting signed polynomial’s signature. The following theorem speaks to this

issue.

Theorem 3.5.1. The fourth if-condition of IsReducible?:

utjFkj
6= S(rk0)

(hereafter referred to as ”the condition to be removed”) can be removed without

hurting the correctness of F5.

Proof. By Theorem 3.4.4, we know that F5 is a correct algorithm. This correctness

is established by meeting the hypotheses of Theorem 3.3. In this proof we will show

that if the condition to be removed is removed, the hypotheses of Theorem 3.3 are

still met, and thus our modified F5 is still a valid algorithm.

Let r = (eFi, p) be a signed polynomial that is to be reduced (if possible) by

TopReduction. Assume that r′ = (e′Fi, p′) has already been added to the Grobner

basis and is such that HT (p) = yHT (p′) and S(yr′) = S(r) for some y ∈ T .
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(Assume, without loss of generality, that this candidate reductor is not Rewritten;

if it is, simply replace with it’s rewrite.)

If the condition to be removed has been removed, and no other reductor is found

prior to r′ being checked, IsReducible will return r′ as a legal reductor of r. Then

S(r − yr′) = sFj ≺ eFi for some term s < e and for some integer j ≥ i.

Thus we have

r − yr′ =
m∑
k=j

hkfk

for hk ∈ K[x]∀k. Adding yr′ to both sides, we get

r =
m∑
k=j

hkfk + yr′

Note that S(righthandside) = S(lefthandside).

In addition, we make the following observation regarding
∑m
k=j hkfk. Without loss

of generality, by Lemma 3.2.1, assume that
∑m
k=j hkfk is normalized. It must be

the case, given that TopReduction is working with polynomials of signature greater

than that of
∑m
k=j hkfk, that

m∑
k=j

hkfk
∗−−−−−→

Gi+1∪R
0

without an increase in signature during the reduction. (Otherwise there would

be a normalized S-polynomial of signature less than eFi that was left out of F5’s

computation, which is clearly absurd.)

Thus we are left to conclude

r
∗−−−−−→

Gi+1∪R
0

without an increase in signature. This meets the requirement of the ”little-o”

condition of Theorem 3.3. (The head term condition is trivially met because all



83

polynomials in Reduction have head terms smaller than the head terms canceled in

the S-polynomial creation.)

This completes the proof.

�

In short, the fact that we have lost the signature is irrelevant because, no matter

what sFj is, the resulting polynomial reduces to 0. Thus we have the following

corollary:

Corollary 3.5.2. Assume the hypotheses of Consequence 3.5.1 with the added hy-

pothesis that the if-condition

utjFkj
6= S(rk0)

has been removed from IsReducible?. Then this altered F5 will terminate on this

input.

Proof. Immediate. �
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4. Improving F5 and Introducing F5t

In this section of the paper, we focus our attention on improving (both theoretically

and in implementation) the F5 algorithm. We will begin with a small clean-up of

the pseudocode in CritPair. Then we will strive to implement Buchberger’s first

and second criteria within F5. Finally we will introduce a new variant of F5 called

F5t – this version of F5 is guaranteed to terminate regardless of input but still

heavily relies upon F5-criteria for accepting/rejecting critical pairs. Thus F5t saves

many of the speed improvements of F5.

4.1. Removal of Check of Index in CritPair. In this subsection we will show

that the line

if (index(r1) > k) then

return ∅;

from CritPair can be eliminated from the pseudocode of F5. This fact is not new

– it is made in [15]. However it is not proven in [15] and in the reprint of [7], the

change was not made. Thus we aim to provide proof of this deletion’s correctness

here.

Proposition 4.1.1. The line

if (index(r1) > k) then

return ∅;

(henceforth referred to as ”the line to be removed”) can be removed.

Proof. We will prove the proposition by induction on the index i.

Base Case (i = m). The only polynomial added with this index is the signed poly-

nomial (Fm, fm). This polynomial isn’t even checked by the line to be removed

because it occurs outside the for-loop in Incremental F5.

Assume the line to be removed can be removed for all polynomials having index

greater than or equal to k.
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Prove for index k − 1. First we note that all signatures of signed polynomials formed

during the k− 1st iteration of Algorithm F5 inherit the index from one of the par-

ents. Polynomial creation only happens in SPol in the line:

rN := (uLS(riL), uLpoly(riL)− vLpoly(rjL));

and in TopReduction in the line:

rN := (uS(rk1), upoly(rk1)− poly(rk0));

Thus it is impossible for a signed polynomial during the k − 1st iteration of Algo-

rithm F5 to have an index less than k − 1 because, if this were possible, an initial

signed polynomial of index less than k− 1 would have to be added. This occurs for

the first time in subsequent iterations of Algorithm F5.

Moreover, we note that the line:

(h1, T oDo1) := TopReduction(φi+1(h), Gi ∪Done, k, φi+1);

has a normal form operation imbedded within it. This means that if any signed

polynomial during the k−1st iteration of Algorithm F5 could be written with larger

index, then it would be eliminated by the normal form operation (i.e., the normal

form operation would reduce it to 0 and TopReduction would subsequently drop

it).

(In the above paragraph, we paint with a broad brush for ease. But one can be finer

with the argument. In particular, since our signatures, regardless of minimality,

are inherited from the parents and all S-polynomials considered during the k −

1st iteration are children of (Fk−1, fk−1), there won’t be any signed polynomials

admitted of larger index.)
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In short, we can conclude that all signed polynomials that will be added to the

Grobner basis during the k − 1st iteration have index k − 1. This is immediately

implies that the line to be removed is not needed and can, in fact, be removed.

This completes the proof.

�

In some sense the key result of the above proposition is that, within each iteration

of Algorithm F5, there will only be one index admitted – the index of that iteration.

Of course it is possible, in cases where the input sequence is non-regular, that a

signed polynomial could have a signature of the wrong index; but, as mentioned in

the above proof, this case is absorbed by the normal form operation taken during

Reduction.

4.2. Applying Buchberger’s First Criterion in F5.

Theorem 4.2.1. Let (xFi, f) and (yFj , g) be signed polynomials that have been

added to the Grobner basis G during a run of F5. Furthermore, assume that HT (f)

and HT (g) are disjoint. Then either S(S(f, g)) is not normalized or S(f, g) =

oG(HT (g)f).

Proof. As per common notation, let f = HT (f) + p and g = HT (g) + q. Then

S(f, g) = HT (g)f − HT (f)g. If i > j, S(S(f, g)) = HT (g)xFi; since g ∈

GB〈fj , . . . , fm〉, S(S(f, g)) is not normalized. The case of i < j is similar.

Without loss of generality, assume i = j. Also, without loss of generality, assume

S(S(f, g)) = HT (g)xFi. We remind ourselves that:

S(f, g) = (g − q)f − (f − p)g

= gf − qf − fg + pg(4.1)

= pg − qf
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Since HT (f) and HT (g) are disjoint, HT (pg) 6= HT (qf). Note that both S(pg)

and S(qf) ≺ S(S(f, g)) = HT (g)xFi. Since f, g ∈ G, S(f, g) = oG(HT (g)f).

�

An immediate corollary to this would be:

Corollary 4.2.1. Buchberger’s First Criterion is a valid criterion for eliminating

critical pairs in F5.

Proof. Immediate.

�

Thus we have shown that Buchberger’s first criterion is quite compatible with the F5

criterion. This is not only of note because it gives us a new method for eliminating

critical pairs during a run of F5, but it forms another concrete link between F5 and

previous Grobner-basis-producing algorithms.

Of course, the next question to ask is: Does using Buchberger’s first criterion

actually save time in a run of F5? That is to say, we know it is fair to apply

Buchberger’s first criterion for eliminating pairs; do we know that it is removing

pairs that F5 wouldn’t have removed before Reduction? The following corollary to

Theorem 4.2.1 explores this question.

Corollary 4.2.2. Let (f1, . . . , fm) be a regular sequence of polynomials. Assume

this sequence is input for F5. Then no critical pairs of the form (t, u1, r1, u2, r2),

with HT (r1) and HT (r2) disjoint, will be considered by SPol.

Proof. Assume, for contradiction, such a pair exists – call it (t, u1, r1, u2, r2), as in

the corollary’s hypothesis. Then S(S(r1, r2)) = S(u1r1) and u1r1 is normalized.

We know from equation 4.1 that S(r1, r2) = pr2 − qr1, where r1 and r2 are taking

the place of f and g respectively. Note that this representation of S(r1, r2) has

smaller signature than S(u1r1).

Thus we have two elements g1, g2 ∈ Pm, g1 with signature S(u1r1) and g2 with

signature less than S(u1r1) such that v(g1) = v(g2) = S(r1, r2), where v is the map
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introduced in section 3.1. Then (g1 − g2) ∈ Syz. Since we assumed the input is

regular, Syz = PSyz; this directly implies by Corollary 3.2.1 that S(g1 − g2) =

S(u1r1) is not normalized. This contradicts our opening assumption: that such a

critical pair (t, u1, r1, u2, r2) exists.

Thus, SPol considers no such critical pair (i.e., CritPair eliminates it because it is

not normalized).

�

So in the case that the input sequence to F5 is regular, testing Buchberger’s first

criterion fails to eliminate any critical pair that F5 wouldn’t eliminate anyway.

(Also, by looking at the details of the proof of Corollary 4.2.2, we can see that

implementing Buchberger’s first criterion would have negligible effect on the timings

of regular input sequences as well.) However, it is worth noting that we have not

concluded Buchberger’s first criterion wouldn’t eliminate new (i.e., different) critical

pairs if the input sequence were not regular. Thus it seems reasonable to consider

the application of Buchberger’s first criterion as an improvement to F5; it may

help with non-regular input sequences, and it doesn’t hurt if the input sequence is

regular.

4.3. Applying a Modified Buchberger’s Second Criterion in F5. This dis-

cussion of Buchberger’s first criterion leads naturally into a discussion of trying to

implement Buchberger’s second criterion in F5. Unfortunately, Buchberger’s sec-

ond criterion cannot be implemented in it’s classic form in F5. The reason is simple

(and I use the notation introduced in section 2.3): in the classic list of hypothesis

in Buchberger’s second criterion, there is no constraint placed on the signature of p.

In short, if p’s signature is too large, the ”little-o” condition will fail to materialize

as easily as it did in the proof of Theorem 4.2.1.

However, we will introduce a modification to Buchberger’s second criterion by tak-

ing care to look at the signature of rk. Consider the following:
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Theorem 4.3.1. Modified Buchberger’s Second Criterion. Assume, during

a run of F5, that ri, rj and rk have been added to the Grobner basis. Assume

that HT (rk)|lcm(HT (ri), HT (rj)) and let t = lcm(HM(ri),HM(rj))
HM(rk) . Further assume

that S(ri, rj) = uiri − ujrj and S(S(ri, rj)) = S(uiri). If S(trk) ≺ S(ujrj), then

S(ri, rj) need not be added.

Proof. We will use some notation from [5]. Define xγij = lcm(HM(ri), HM(rj))

and similarly define xγik and xγjk . Define S(ri, rk) = uki ri − uikrk and S(rj , rk) =

ukj rj − u
j
krk.

Now let’s look at S(ri, rj):

S(ri, rj) = uiri − ujrj

=
xγij

HM(ri)
ri −

xγij

HM(rj)
rj

=
xγij

xγik
uki ri −

xγij

xγjk
ukj rj(4.2)

=
xγij

xγik
(uki ri − uikrk)− xγij

xγjk
(ukj rj − u

j
krk)

=
xγij

xγik
S(ri, rk)− xγij

xγjk
S(rj , rk)

Note that

S(righthandside) = S
(
xγij

xγik
(uki ri)

)
= S(uiri)

because

xγij

xγik
(uki ri) =

xγij

xγjk
(ujkrk) = trk

So if

xγij

xγik
S(ri, rk) = oG(uiri)

and

xγij

xγjk
S(rj , rk) = oG(uiri)
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then S(ri, rj) = oG(uiri), which implies it is not needed (by the F5 criterion). But

since

xγij

xγik
(uki ri) = uiri

and

ukj rj = ujrj

this problem reduces to whether S(ri, rk) = oG(uki ri) and S(rj , rk) = oG(ukj rj).

Let’s focus our attention on S(ri, rk) = uki ri − uikrk. We know that uki ri is nor-

malized; if it wasn’t, since xγik |xγij , uiri wouldn’t be. So this leaves us with two

distinct cases: uikrk is normalized and uikrk is not.

Case 1:uikrk is normalized. In this case, there are a variety of things that can

happen to S(ri, rk):

(1) It is eliminated by Rewritten. In this case, by Theorem 3.4.1, S(ri, rk) =

oG(uki ri). (See the proof.)

(2) It is eliminated by an implementation of Buchberger’s first criterion (if

applicable). In this case, by Theorem 4.2.1, S(ri, rk) = oG(uki ri).

(3) It is reduced to 0 in Reduction. Then, by definition, S(ri, rk) = oG(uki ri).

(4) It is added to the Grobner basis G. Then, by construction of G, S(ri, rk) =

oG(uki ri).

(5) It is eliminated by Buchberger’s second criterion. We will deal with this

case later in the proof.

Case 2:uikrk is not normalized. Then, as per Lemma 3.2.1,

uikrk = λβSβ +
m∑
l=1

pLfL
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where pL ∈ K[x]∀L, HT (uikrk) = HT (λβSβ), S(λβSβ) ≺ S(uikrk),

S

(
m∑
l=1

pLfL

)
≺ S(λβSβ)

and

HT

(
m∑
l=1

pLfL

)
< HT (λβSβ)

Thus we could rewrite S(ri, rj)as:

S(ri, rj) =
xγij

xγik
S(ri, Sβ)− xγij

xγjk
S(rj , rk)− xγij

xγik

m∑
l=1

pLfL

Without loss of generality, we assume λβSβ is normalized and is not Rewritten. So

we are now back in case 1, but with S(ri, Sβ) instead of S(ri, rk). Now, without

loss of generality, we can ignore case 2 and simply focus back on case 1.

That leaves us ready to deal with Case 1, option 5 (that is, S(ri, rk) is eliminated

by Buchberger’s second criterion). In this case, just like the original S(ri, rj) was

written in terms of S(ri, rk) and S(rj , rk) in equation 4.2, S(ri, rk) is written in

terms of S(ri, rk1) and S(rk, rk1) for some rk1 ∈ G. We will call such a rewrite

a BSC step (BSC for Buchberger’s second criterion). Since the polynomial used

to rewrite must involve a decrease in signature – this was the special condition

that embodied our modification to the original Buchberger’s second criterion (i.e.,

S(trk) ≺ S(uiri) and S(ujrj)) – there will only be finitely many of these BSC steps.

We claim that S(ri, rk) = oG(uki ri) is true regardless of the number of BSC steps

taken. We will prove this claim by induction on the number of BSC steps.

Base Case (the number of BSC is 1): This is the situation discussed under Case 1

above, but with the added condition that option 5 is not possible. Then, trivially,

S(ri, rk) = oG(uki ri).

Assume true for the number of BSC ≤ n, for some n. (The induction hypothesis.)
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Prove for the number of BSC steps = n+ 1. Let S(rα1 , rα2) be a child of S(ri, rk)

in the BSC stepping process after n BSC steps. Assume that S(rα1 , rα2) is elimi-

nated from consideration in F5 due to Buchberger’s second criterion; then ∃rα3 ∈ G

such that

S(rα1 , rα2) = xγS(rα1 , rα3) + xγ
′
S(rα2 , rα3)

Without loss of generality, based on the arguments under Case 2, assume both

S(rα1 , rα3) and S(rα2 , rα3) are not dismissed from F5 due to lack of normalization.

Then both are under the options of Case 1, with the exception of option 5 since we

are assuming that the number of BSC steps is n + 1. Thus, both S(rα1 , rα3) and

S(rα2 , rα3) meet the little-o condition. It follows then, by the arguments given ear-

lier in this proof, that S(rα1 , rα2) meets the little-o condition. Since S(rα1 , rα2) was

arbitrary, we activate the induction hypothesis and we have S(ri, rk) = oG(uki ri).

This completes the proof of the claim.

So we can conclude that S(ri, rk) = oG(uki ri). By a similar argument, we can also

conclude S(rj , rk) = oG(ukj rj).

Thus we conclude that S(ri, rj) = oG(uiri), and this completes the proof.

�

Now we have shown that both Buchberger’s first and second criteria can be applied

within the body of F5. Note that this proof does not demonstrate that applying

Buchberger’s second criterion would necessarily we useful; that is, we have not

shown that applying Buchberger’s second criterion would eliminate critical pairs

that F5 would otherwise keep.

It is worth noting that Gwenole Ars applies Buchberger’s second criterion in [1], but

with several distinct differences between our implementation here. First, his version

of F5 uses Buchberger’s second criterion to determine a bound for the degree of

the Grobner basis under some specialized assumptions (see [1, 2]). Second, he does
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not use this application of Buchberger’s second criterion to eliminate critical pairs

(except those eliminated by degree under his specialized conditions).

One other point to note is that, under the current hypotheses of this modified

second criterion, there is no two-out-of-three problem. This is because of the strict

condition on rk that S(trk) ≺ S(ujrj). An astute observer will note that this

modified theorem could have it’s hypotheses loosened a bit to:

Theorem 4.3.2. Modified Buchberger’s Second Criterion, version 2. As-

sume, during a run of F5, that ri, rj and rk have been added to the Grobner basis.

Assume that HT (rk)|lcm(HT (ri), HT (rj)) and let t = lcm(HT (ri),HT (rj))
HT (rk) . Further

assume that S(ri, rj) = uiri−ujrj and S(S(ri, rj)) = S(uiri). If S(trk) ≺ S(uiri),

then S(ri, rj) need not be added.

This would still work because, borrowing our notation from the proof of Theorem

4.3.1,

S(righthandside) = S
(
xγij

xγik
(uki ri)

)
= S(uiri)

However, if one were to choose this second version for application, one would have

to also implement code to avoid the two-out-of-three problem.

4.4. New Hybrid Algorithm – F5t. Now we introduce a new hybrid of F5 and

Buchberger’s original algorithm. We call this hybrid F5t – the ”t” standing for

terminating. This new version of F5 will always terminate (provably), regardless

of the input sequence.

It is worth noting that, on it’s own, it is not difficult to create a hybrid of F5 and

another Grobner-basis-generating algorithm that is guaranteed to terminate. From

a strictly mathematical point of view, one could claim to have a hybrid of F5 and

Buchberger’s algorithm that was essentially almost entirely dominated by using

Buchberger’s original methods and criterions (like checking the normal forms of

new polynomials relative to the polynomials already added to the Grobner basis).
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The problem with such a trivial hybrid is obvious – the timings would be slower

than F5 timings. The reason to use F5 in the first place is to achieve better timings

(measured by doing empirical tests).

F5t however is not a trivial hybrid of algorithms, as will be demonstrated in this

subsection. Rather it uses F5’s criterion for including/excluding critical pairs exten-

sively, using normal form computations only when required to achieve termination.

Thus F5t has timings that conserve much of the gain made by F5.

The author programmed F5t in MAGMA (see [13]), using Stegers’ program in [15]

as a starting point. An array of empirical experiments were conducted, comparing

Stegers’ implementation of F5 and F5t.

In section 4.4.1, the F5t criterion – the analog to the F5 criterion – is proven.

4.4.1. The F5t Criterion. We will need a few tools in order to construct our new

criterion for the hybrid algorithm. First we must recall the definition of ≤1 from

section 3.3. Then, just as in section 3.3, we will need two lemmas. These lemmas are

very similar in both hypotheses and proofs to Lemmas 3.3.1 and 3.3.2 respectively.

The reader will notice that the hypotheses to Lemmas 4.4.1 and 4.4.2 are more

complicated than their respective F5 analogs. The proofs of Lemmas 3.3.2 and

4.4.2 are extremely similar. The reader should focus more on the change in the

hypotheses than the proofs; it is the new hypotheses that hold the new ideas that

will be used to form F5t.

Lemma 4.4.1. Let F = (fL, . . . , fm) be a list of polynomials in K[x], K a field.

Let G = (r1, . . . , r|G|) ∈ R|G| such that: GL = Poly(G); G = N ∪D ∪ B with N ,

D and B pairwise disjoint; fL ⊂ Poly(N); fL+1, . . . , fm ⊂ (B); B is a Grobner

Basis for 〈fL+1, . . . , fm〉; all the ri are admissible; and S(rj) � FL∀rj ∈ D ∪ N .

Let f ∈ 〈GL〉,

f =
∑
di∈D

tidi +
∑
ni∈N

sini +
∑
bi∈B

zibi
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si, ti, zi ∈ K[x], with the following conditions on the representation of f:

(1) HT (f) = t

(2) t′ = max(maxdi∈DHT (tidi),maxni∈NHT (sini),maxbi∈BHT (zibi))

= maxni∈N (HT (s′ini))

(3) t′ > t (in the term order)

(4) The above representation of f is minimal (under ≤1) among all represen-

tations of f satisfying conditions (1) through (3).

Then (si, ri) is normalized ∀ri ∈ N .

Proof. Assume ∃L such that (sL, rL) is not normalized, rL ∈ N . In other words,

S(rL) = uFL and HT (sL)u ∈ 〈fL+1, . . . , fm〉. Since all the ri are admissible,

nL =
m∑
j=L

wjfj

where HT (wL) = u. Then we can say the following about f :

f =
∑
di∈D

tidi +
∑
ni∈N
i 6=L

sini +
∑
bi∈B

zibi + sLnL

=
∑
di∈D

tidi +
∑
ni∈N
i 6=L

sini +
∑
bi∈B

zibi + sL

m∑
j=L

wjfj(4.3)

=
∑
di∈D

tidi +
∑
ni∈N
i 6=L

sini +
∑
bi∈B

zibi + sLwLfL + sL

m∑
j=L+1

wjfj

By Lemma 3.2.1, we know that

sLwLfL = (a+
∑
r∈G
S≺FL

λrpoly(r))fL

where a is a polynomial in K[x], HT (a) < HT (sLu) and λr ∈ K[x]∀r ∈ G.
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Since S(rj) � FL∀j ∈ D, this rewrite doesn’t use polynomials from D. Thus

conditions (1) through (3) still hold. Yet we created a new representation of f that

is smaller under ≤1. This contradicts condition (4) above.

Thus we must conclude that (si, ri) is normalized ∀ri ∈ N . �

Lemma 4.4.2. Adopt all notation and assumptions from Lemma 4.4.1. Let I =

{nj ∈ N |HT (sjnj) = t′}, w = max{S(sini)|i ∈ I} and let J = {i ∈ I|S(sini) =

w}. Then |J | = 1.

Proof. Assume for contradiction that |J | ≥ 2. Let k1 = min{i|i ∈ J} and k2 =

min{i|i ∈ J\k1}. Let w = uFL. So,

f =
∑
di∈D

tidi +
∑
ni∈N

ni 6=k1,k2

sini +
∑
bi∈B

zibi + sk1nk1 + sk2nk2

For ease of reading throughout this proof, denote

Φ =
∑
di∈D

tidi +
∑
ni∈N

ni 6=k1,k2

sini +
∑
bi∈B

zibi

Thus we are now working with the following representation of f :

f = Φ + sk1nk1 + sk2nk2

We will denote

nk1 =
m∑
j=L

h1
jfj , nk2 =

m∑
j=L

h2
jfj

This leaves us with the following chain of equalities, for some c, d ∈ K:
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f = Φ + sk1(
m∑
j=L

h1
jfj) + sk2(

m∑
j=L

h2
jfj)

= Φ + sk1h
1
LfL + sk2h

2
LfL + sk1(

m∑
j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

= Φ + (cu+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ (du+ (sk2 −HT (sk2))h2
L +HT (sk2)(h2

l −HT (h2
L)))fL

+ sk1(
m∑

j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

= Φ + ((c+ d)u+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ ((sk2 −HT (sk2))h2
L +HT (sk2)(h2

l −HT (h2
L)))fL

+ sk1(
m∑

j=L+1

h1
jfj) + sk2(

m∑
j=L+1

h2
jfj)

= Φ + ((c+ d)u+ (sk1 −HT (sk1))h1
L +HT (sk1)(h1

l −HT (h1
L)))fL

+ (sk2 −HT (sk2))(
m∑
j=L

h2
jfj) + (HT (sk2))(h2

L −HT (h2
L))fL

+ sk1(
m∑

j=L+1

h1
jfj) + (HT (sk2))(

m∑
j=L+1

h2
jfj)

= Φ + s′k1nk1 + (sk2 −HT (sk2))nk2 − d(HT (sk1))(
m∑

j=L+1

h1
jfj)

+ (HT (sk2))(h2
L −HT (h2

L))fL

where s′k1 = sk1 + dHT (sk1).

This leaves us with the following representation of f :
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f =
∑
di∈D

tidi +
∑
ni∈N

ni 6=k1,k2

sini +
∑
bi∈B

zibi

+ s′k1nk1 + (sk2 −HT (sk2))nk2(4.4)

− d(HT (sk1))(
m∑

j=L+1

h1
jfj) + (HT (sk2))(h2

L −HT (h2
L))fL

This representation of f is smaller (under ≤1) than
∑
di∈D tidi +

∑
ni∈N

ni 6=k1,k2
sini +∑

bi∈B zibi. This fact can be divined by looking at four separate cases:

(1) fL = nx for some x 6= k1, k2 where S(sxnx) � S(sk1nk1). In this case,

(HT (sk2))(h2
L −HT (h2

L))fL can be ”absorbed” into
∑

ni∈N
ni 6=k1,k2

sini by al-

tering sx to sx + (HT (sk2))(h2
L − HT (h2

L)). This change to sx does not

change S(sxrx). Of the remaining summands in equation 4.4, S(s′k1nk1) =

S(sk1nk1), S((sk2−HT (sk2))nk2) ≺ S(sk2nk2) and dHT (sk1)(
∑m
j=L+1 h

1
jfj)

has the smallest signature of the three. Thus this new representation of f

is smaller (under ≤1) than
∑
di∈D tidi +

∑
ni∈N

ni 6=k1,k2
sini +

∑
bi∈B zibi.

(2) fL = nk1 . In this case the exact same argument as in (1) holds, except

”absorption” would occur into s′k1nk1 .

(3) fL = nk2 . In this case, f could have been written without s′k1nk1 at all.

This would have immediately led to a contradiction as in case (1).

(4) fL = nx for some x 6= k1, k2 where S(sxnx) ≺ S(sk1nk2). Then the

exact same argument as in case (1) holds, except tracking the result-

ing signature of sxrx after ”absorption” is irrelevant (because S(sxnx) ≺

S(thenewrepresentationoff, under ≤1)).

This list covers all possible cases for fL. Thus we are forced to conclude that our

assumption that |J | ≥ 2 is false.

Thus, |J | = 1. �
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Now we can prove the F5t criterion. Instead of simply looking at a set G of signed

polynomials, we split G into three disjoint subsets B, N and D.

Theorem 4.4.1. Let F = (fL, . . . , fm) be a list of polynomials in K[x], K a field.

Let G = {r1, . . . , r|G|}, ri ∈ R ∀i, such that:

(1) G = N ∪D ∪B; N , D and B pairwise disjoint; Poly(N) = (n1, . . . , n|N |);

Poly(D) = (d1, . . . , d|D|); Poly(B) = (b1, . . . , b|B|); fL ⊂ Poly(N);

fL+1, . . . , fm ⊂ Poly(B); GL =Poly(G)

(2) all the ri are admissible

(3) ∀ri, rj such that ri, rj ∈ N (or ri ∈ N and rj ∈ B), if (ri, rj) is normalized

then S(ni, nj) = oGL
(uiHT (ni)) (or 0) where ui = lcm(HT (ni),HT (nj))

HT (ni)

(4) ∀ri ∈ D, rj ∈ G,S(ri, rj)
∗−−→
GL

0

(5) ∀ri ∈ D,S(ri) � FL

(6) B is a Grobner Basis for 〈fL+1, . . . , fm〉

Then GL is a Grobner Basis for 〈fL, . . . , fm〉.

Proof. Let t ∈ HT (〈F 〉). We will show that t is top-reducible via GL, thus making

GL a Grobner Basis of 〈F 〉.

Let f ∈ 〈F 〉,

f =
∑
di∈D

tidi +
∑
ni∈N

sini +
∑
bi∈B

zibi

such that:

(1) HT (f) = t

(2) t′ = max(maxdi∈DHT (tidi),maxni∈NHT (sini),maxbi∈BHT (zibi)) and no

other polynomial in 〈F 〉 would have a smaller t′ (under the term order)

while still holding condition (1).

Note that this is possible because of assumption 1 of the theorem and the fact that

f ∈ 〈F 〉.
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Assume, for contradiction, that t′ > t. Then there is a syzygy on the leading terms

of the sini’s, tidi’s and zibi’s. By Theorem 2.5.2, the module of syzygies on the

leading terms of these polynomials is generated by all the S-polynomials of these

polynomials. Thus, by assumptions 4 and 6 of this theorem, f can be reduced (not

necessarily top-reduced) to a new f ′,

f ′ =
∑
di∈D

t′idi +
∑
ni∈N

s′ini +
∑
bi∈B

z′ibi

such that

(3) t′′ = max(maxdi∈DHT (t′idi),maxni∈NHT (s′ini),maxbi∈BHT (z′ibi))

= maxi∈N (HT (s′ini))

(4) Among all representations of f ′ that satisfy condition (3), the chosen rep-

resentation is minimal under ≤1 (the order introduced in Definition 3.3.1).

Note that f = f ′; f ′ is only a different representation of f . If t′′ < t′, then we have

contradicted the minimality of t′ under constraint (2). Thus we know t′′ = t′.

Then by Lemma 4.4.1, (s′i, ri) is normalized ∀ri ∈ N . Let I = {j ∈ N |HT (s′jnj) =

t′}, w = max{S(s′ini)|i ∈ I} and J = {i ∈ I|S(s′ini) = w}. By Lemma 4.4.2,

|J | = 1. Note that |I| ≥ 2 because t′ > t (i.e., there must be a syzygy on the

leading terms of the s′ini’s). Let k ∈ J and L ∈ I\{k}.

Then,

f ′ =
∑
di∈D

t′idi +
∑
ni∈N
i 6=k,l

s′ini +
∑
bi∈B

z′ibi + s′knk−
HC(s′k)
HC(s′L)

s′LnL+
[
1 +

HC(s′k)
HC(s′L)

]
s′LnL

For ease of notation in the upcoming argument, define m′k = HM(s′k) and m′L =
HC(s′k)
HC(s′L)HM(s′L). Then, by definition of I and J , t′ = HT (m′knk) = HT (m′LnL).

Consequently, lcm(HT (nk), HT (nL))|t′; in other words,

m′knk −m′LnL =
HC(s′k)t′

lcm(HT (nk), HT (nL))
S(nk, nL)
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Since (s′k, nk) and (s′L, nL) are normalized, (rk, rL) is normalized. Thus, using

assumption 3 of the theorem, in a manner similar to the argument in the proof of

Theorem 3.3.1,

m′knk −m′LnL =
t′

lcm(HT (nk), HT (nL))
oGL

(uk, rk) = oGL
(s′krk)

This means that there is a smaller representation of f ′, under ≤1, such that condi-

tion (3) still holds (a contradiction to condition (4)) or a new representation of f ′

has been discovered such that t′ under this new representation is smaller than the

original t′ (a contradiction to condition (2)).

We are forced to conclude that our original assumption that t′ > t is false. Thus

t′ = t, making t top-reducible via GL.

Since t was arbitrary, GL is a Grobner Basis of 〈F 〉. �

4.4.2. The F5t Algorithm. Here we will outline the pseudocode for F5t. As men-

tioned previously, F5t relies heavily on the skeleton of F5 because it tries to utilize

as much of the F5 criterion as possible. However, the reader should note that the

following algorithm uses the F5t criterion, outlined in section 4.4.1 in Theorem

4.4.1.

We will begin by showing the modification to Reduction.

F5tReduction

Input: ToDo and Gi finite lists of signed polynomials; k an integer; φi+1 a normal

form mapping; a set of polynomials D; an integer bound M .

Output: Done a finite list of reduced signed polynomials; addtoD a boolean.

Done := ∅;

while ToDo 6= ∅ do

h :=Sig Sort(ToDo)[1];

ToDo := ToDo\{h};
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(h1, T oDo1) :=TopReduction(φi+1(h), Gi ∪Done, k, φi+1);

Done := Done ∪ h1;

ToDo := ToDo ∪ ToDo1;

temp := Done;

reducerset := Done ∪Gi ∪D;

addtoD := 0;

if degree of polynomials in Done < M and Done 6= ∅ then

h := Done[1];

Done := Done\{h};

h :=NormalForm(h, reducerset);

if h 6= 0 then

Done := temp;

break;

if Done = ∅ then

addtoD := 1;

Done := temp;

for r ∈ Done do

RemoveRule(k, r);

return Done;

The subroutine F5tReduction regulates entry of signed polynomials into the set

D, D being the set described in Theorem 4.4.1. Once the statements from F5’s

Reduction have been completed, F5tReduction carries on additional steps. These

steps are meant to decide whether any new candidate polynomial is truly adding

to the ideal of head terms being created. If it is the case that the degree is high

enough and all candidate polynomials of that degree reduce to 0 (please note that

this reduction operation is the normal form operation from Buchberger’s algorithm

– no additional conditions, like those in IsReducible, are used) then the boolean
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addtoD is set to 1 (true); otherwise, addtoD remains 0 (false) and everything carries

on as usual as per the original F5 algorithm.

F5tReduction carries with it two other items of note. First, the boolean addtoD

acts exactly as is implied by it’s name: if addtoD is set to 1, then all the signed

polynomials of Done will be placed in the set D. Second, there is a new routine

RemoveRule. This routine is the opposite of AddRule. Given an integer input k

and a signed polynomial r, RemoveRule searches through the list of lists that make

up the rules, finds sublist k (i.e., the sublist for index k), searches for a rule for

polynomial r and removes it. This must be done for the following reason. As was

described in section 3.4.1, Rewritten uses rules to eliminate signed polynomials and

this elimination is valid through the ”little-o” condition. The hypotheses of Theo-

rem 4.4.1 do not imply any ”little-o” condition existing relative to the polynomials

in D. Thus the rules for polynomials in D cannot be used during the running of

F5t and must be removed.

This spirit of rule management with respect to D can be seen again in F5tSPol.

Note the slight change from SPol.

F5tSPol

Input: A list [p1, p2, . . . , ph] of critical pairs of the form (t, u1, r1, u2, r2); a list

hasbeeninD of signed polynomials that are in D (or have been during a previous

iteration).

Output: A list F of new, signed polynomials that is sorted in ascending order by S.

for L = 1 to h do

pL := (tL, uL, riL , vL, rjL);

F := ∅;

for L = 1 to h do

if (not((riL ∈ hasbeeninD) or (rjL ∈ hasbeeninD))) then

if (not Rewritten?(uL, riL) and not Rewritten?(vL, rjL)) then
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N := N + 1;

rN := (uLS(riL), uLpoly(riL)− vLpoly(rjL));

Add Rule(rN );

F := F ∪ {rN};

F :=Sig Sort(F );

return F ;

In F5tSPol we outlaw using current or past elements of D for Rewritten. Again

this is because the element of D are not subject to the ”little-o” condition like other

signed polynomials of the Grobner basis.

Another pseudocode augmentation needed to convert F5 to F5t is a change in

Algorithm F5.

Algorithm F5t

Input: i an integer; fi a polynomial; Gi+1 a collection of signed polynomials such

that poly(Gi+1) is a Grobner basis for 〈fi+1, . . . , fm〉.

Output: A set of signed polynomials Gi where Gi is a Grobner basis for 〈fi, . . . , fm〉.

ri := (Fi, fi);

φi+1 := NF (·, poly(Gi+1));

Gi := Gi+1 ∪ {ri};

P :=Deg Sort([CritPair(ri, r, i, φi+1, φindex(r)+1)|r ∈ Gi+1]);

D := ∅;

addedtoD := ∅;

hasbeeninD := ∅;

holder := ∅;

while (P 6= ∅ or holder 6= ∅) do

d := deg(P [1]);

Pd := {p ∈ P |deg(p) = d};
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P := P\Pd;

F :=SPol(Pd, hasbeeninD);

< Rd, addtoD >:=Reduction(F,Gi, i, φi+1);

if addtoD = 0 then

for r ∈ Rd do

create all critical pairs between r and D and store in holder;

Deg Sort(holder);

for r ∈ Rd do

P := P ∪ {CritPair(r, p, i, φi+1, φindex(p)+1|p ∈ Gi};

Gi := Gi ∪ {r};

Deg Sort(P );

reducer := Rd ∪D ∪Gi;

while (holder 6= ∅) and (deg(holder[1]) = d) do

r := holder[1];

holder := holder\{r};

if r doesn’t reduce to 0 via reducer then

D := D ∪ {r};

hasbeeninD := hasbeeninD ∪ {r};

reducer := reducer ∪ {r};

create all critical pairs between {r} and D ∪Rd ∪Gi and store in holder;

Deg Sort(holder);

else

reducer := Rd ∪D ∪Gi;

create all critical pairs between S(r, h) and D ∪Rd ∪Gi and store in holder;

Deg Sort(holder);

D := D ∪Rd;

hasbeeninD := hasbeeninD ∪Rd;

while (holder 6= ∅) and (deg(holder[1]) = d) do

r := holder[1];
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holder := holder\{r};

if r doesn’t reduce to 0 via reducer then

D := D ∪ {r};

hasbeeninD := hasbeeninD ∪ {r};

reducer := reducer ∪ {r};

create all critical pairs between {r} and D ∪Rd ∪Gi and store in holder;

Deg Sort(holder);

return Gi ∪D;

To describe this section of pseudocode, I will refer to the notation used in Theorem

4.4.1.

In the above section of code B is the Grobner basis from the previous iteration.

The set N is composed of all polynomials added to Gi in the line

Gi := Gi ∪ {r};

The bottom portion of code ensures that all S-polynomials borne from the signed

polynomials in D (and children of such S-polynomials) reduce to 0 via Gi. Thus

this section of code is enforcing hypothesis (4) from Theorem 4.4.1. Every time an

S-polynomial does not reduce to 0, it is manually added to D (and thus, eventually,

Gi) and the process begins again. This process is regulated by a special list holder.

As long as holder has a critical pair of the current degree to be considered, the

bottom portion of this pseudocode continues to run.

One aspect of the pseudocode that is important to note is that most of the ad-

ditional code is meant to regulate additional normal form computations. It was

these computations that cause Grobner basis algorithms to have enormous time

complexity. Thus we have chosen, at least in the case of F5tReduction to be very

conservative. If even one of a batch of candidate polynomials in Rd truly con-

tributes a new head term to the monomial ideal of head terms, then the entire
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batch is accepted as per F5. This standard keeps D at a minimum. This is of great

importance since every signed polynomial in D is responsible for a host of normal

form calculations. Keeping D of minimal size will greatly help in reducing the time

taken by F5t.

One other important item to point out is that these normal form operations are

required to maintain signature. That is to say, just as in F5, we want all signed

polynomials admitted into the Grobner basis to be admissible. It is quite possible

that some elements of D are not normalized; after all, we are not placing extra

conditions on the reductors in the bottom part of Algorithm F5t. That is just fine,

but the polynomials in D must still be admissible.

This completes the pseudocode needed to create F5t.

4.4.3. Proof of F5t’s Correctness. The first order of business is to show that F5t

is correct. We will prove this in a manner similar to our proof of Theorem 3.4.2.

But instead of using Theorem 3.3.1, we will use Theorem 4.4.1 and check off each

hypothesis one-by-one.

Theorem 4.4.2. If (fL, . . . , fm) is input into F5t, the set poly(G) is a Grobner

basis for 〈fL, . . . , fm〉.

Proof. We will prove the correctness of F5t using the same notation and language

as Theorem 4.4.1. We will prove correctness by induction on the index i.

Base Case (i = m).: This is trivially true since the only polynomial of index m

admitted is (Fm, fm), which is clearly a Grobner basis of 〈fm〉.

Assume F5t correct for indices up to L+ 1.

Prove F5t correct for index L. Condition (1) of Theorem 4.4.1 in essentially all no-

tation. We can see that (FL, fL) is manually added to GL during the Lth iteration

of Algorithm F5t. It is also clear that N , B and D are kept disjoint (where B is
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the output of Algorithm F5t after index L + 1) during the running of F5t. Thus

we have achieved hypothesis (1) of Theorem 4.4.1.

We have already seen in the proof of Theorem 3.4.2 that all polynomials added

to GL during F5’s final iteration of Algorithm F5 are admissible. In the closing

comments of section 4.4.2 we assert that the additional code augmenting F5 into

F5t maintains admissibility in a similar fashion. Thus we have achieved hypothesis

(2) of Theorem 4.4.1. The same set of arguments also implies hypothesis (5) of

Theorem 4.4.1.

By induction hypothesis, B is a Grobner basis of 〈fL+1, . . . , fm〉. Thus we have

achieved hypothesis (6) of Theorem 4.4.1.

The tail-end of the pseudocode of Algorithm F5 ensures, by exhaustion, that hy-

pothesis (4) of Theorem 4.4.1 is achieved.

This only leaves hypothesis (3) of Theorem 4.4.1. This is clearly witnessed by

theorem 3.4.2 as this hypothesis has nothing to do with the set D; as long as a

polynomial is not in D, the ”little-o” condition is satisfied.

Thus F5t is correct. This completes the proof.

�

We are now ready to deal with the issue of F5t’s termination.

4.4.4. Proof of F5t’s Termination. Unlike the F5 algorithm, F5t is always guaran-

teed to terminate. We will prove this fact now.

Theorem 4.4.3. For an input (f1, . . . , fm), F5t terminates.

Proof. To prove this theorem we could prove that there is termination at every

index. We will prove this by induction on the index i.

Base Case (i = m).: This is trivially true since the only polynomial of index m

admitted is (Fm, fm).
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Assume F5t terminates for indices up to L+ 1.

Prove F5t terminates for index L. Let d be the smallest degree such that D ∪ GL

form a Grobner basis of 〈fL, . . . , fm〉 and d ≥M (if this is impossible then F5t must

have terminated prior to degree d, in which case we are done). In other words, the

degree-d Grobner basis for 〈fL, . . . , fm〉 is actually a Grobner basis for 〈fL, . . . , fm〉.

By Theorem 2.2.2, we know that such a degree d exists; by Theorem 4.4.3, we know

that F5t will achieve the Grobner basis for 〈fL, . . . , fm〉 at degree d.

Then we can turn our attention to the subroutine F5tReduction. In the pseudocode

(in index L), we note that reducerset is comprised of GL and D. Thus, once we are

at (or beyond) degree d, the reducerset is a Grobner basis for 〈fL, . . . , fm〉. Thus,

from degree d on, reducerset will reduce all polynomials to 0. This means that all

subsequent calls to F5tReduction will result in addtoD being set to 1.

This will cause the tail-end of Algorithm F5t to never add any signed polynomials

to P (P is only used if addtoD = 0). This means at some degree d′ ≥ d, P = ∅.

Once P = ∅, the only carrier of critical pairs left is holder. But, just as in

F5tReduction, the reducer in Algorithm F5t is comprised of GL and D; this means

that the reducer in Algorithm F5t is also a Grobner basis for 〈fL, . . . , fm〉. Thus,

at degree d′ (starting at degree d), all S-polynomials borne from elements in D will

reduce to 0 via reducer. This means nothing new is added to holder. This means

at some degree d′′ ≥ d′ ≥ d, P = holder = ∅.

This is the condition that terminates the outer while-loop in Algorithm F5t. Thus

we have proven termination at index L.

This completes the induction: Algorithm F5t terminates at every index i.

This completes the proof.

�
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Note that this proof of termination relies heavily on Theorem 4.4.3 – our theorem of

F5t’s correctness. This relationship is similar to the relationship between termina-

tion and correctness in Buchberger’s algorithm. The appearance of the relationship

in our proof should come as no surprise. This additional code at the bottom of

Algorithm F5t is essentially a hybridization Buchberger’s algorithm with F5. In

short, we are using Buchberger’s exhaustive approach to patch the holes in F5.

4.4.5. Timing Data for F5 and F5t. In this section we compare the timings between

F5 and F5t. The table below yields a collection of data. The systems of polynomials

used for the empirical test were found in an appendix of [15].

The code for F5 was taken from [15] and the code for F5t was created by the author;

both programs were written in MAGMA ([13]). The times given are in seconds.

They were compiled on an Athlon-chip home computer.

The variable M was set to twice the Macaulay bound for the input sequence (see

[2]).

The author was only able to afford the student version of MAGMA, which allows

a maximum of 100MB of memory per program run. In some cases the input to F5

and F5t required more memory than that, in which case the program was forced

to prematurely terminate. These cases are denoted with an ”ML” (memory limit).

In the single case where F5 did not terminate, an ”x” is shown.

The confirmation column describes the author’s attempts to verify externally that

the output of F5t was in fact a valid Grobner basis for the input sequence. The test

for verifying that the output is, in fact, a Grobner basis is extremely costly. When

possible, confirmation was made (c); there were also times when an output was

impossible (due to time constraints) to verify (n); finally, there were cases where

no output was obtained to be tested (x).
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Table 1. Timing Data for F5 and F5t

TIMING DATA FOR F5 AND F5t
Polynomial System F5 Timing Confirmation F5t Timing Comment

Augot ML x ML
BenchmarkD1 5396.125 n 5345.000
Bronstein86 0.000 c 0.000

Buchberger87 0.000 c 0.000
Butcher ML x ML
Caprasse 0.297 c 0.313
Chemkin 175.765 n XL 174.672
Cyclic5 0.063 c 0.094
Cyclic6 2.984 c 3.016
Cyclic7 336.360 n 336.922
Cyclic8 ML x ML

Czapor86 0.047 c 0.000
Ducos1 ML x ML
Eco6 0.125 c 0.141
f633 0.156 c 0.172
f744 958.282 n 877.968
f855 ML x ML

Fabrice24 128.781 n XL 128.969
Faugere’sF5Paper(MMT) 0.016 c 0.000

Filter9 ML x ML
Gerdt93 0.031 c 0.032

Gonnet83 ML x ML
Hairer1 0.000 c 0.016
Hairer2 ML x ML

ISSACChallenge 0.063 c 0.015
Katsura10 ML x ML
Katsura3 0.016 c 0.016
Katsura5 0.109 c 0.110
Katsura6 0.343 c 0.297
Katsura7 4.968 n 4.969
Katsura8 81.297 n 81.750
Katsura9 ML x ML
KernE150 ML n ML
Lichtblau 3.860 c 3.843

Liu 0.015 c 0.015
Neff89 0.000 c 0.000

Non-terminatingExample x c 0.843 3.840
Noon3 0.109 c 0.031
Noon4 0.106 c 0.031
Pavelle 0.000 c 0.015

Schrans-Troost ML n ML
SegersHFE 1.594 c 1.656
Sym1-411 0.000 c 0.000
Sym3-3 0.016 c 0.015
Sym3-4 0.016 c 0.015
Trinks 0.032 c 0.015

Trivial1 0.000 c 0.000
Trivial2 0.000 c 0.000

Uteshev-Bikker 0.000 c 0.015
Vermeer 1.703 c 1.657
Wang89 0.000 c 0.000

Weispfenning94 0.188 c 0.281

There were two cases where F5t took an extremely long time and the program

was forcefully terminated. Those cases are marked with an ”XL” (extremely long).

These cases were re-tested with M set to three times the Macaulay bound. The

times of those runs are given in the comments column.

Finally, the Non-terminating example was run on a coded version of Buchberger’s

algorithm (in MAGMA). The runtime for this implementation is given in the com-

ments column.
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Remark 4.4.1. Just as Stegers does in [15], we make no claim that the code

for F5 or F5t is most efficient. In fact, it is quite likely that a matrix-oriented

implementation would work more quickly in both cases ([7, 15]). However the data

does show that, in most cases, both F5 and F5t are the same order of magnitude

for the standard bound M .

Remark 4.4.2. Anytime an element is added to D, the Buchberger portion of

the algorithm starts doing it’s exhaustive tests. In some cases this results in a

very huge delay in receiving the output. Specifically we can see that Chemkin

and Fabrice24 took so much additional time that they became impossible (on a

home computer with limited resources) for which to receive timings; on the other

hand, the Non-terminating example that doesn’t even terminate in F5 terminates

very quickly in F5t. This set of extreme cases highlights the fragility of the set D.

Though D allows us to guarantee termination it can also dramatically increase the

time unnecessarily.

The Chemkin and Fabrice24 systems were run again with M set to three times the

Macaulay bound. In these cases, the program terminated before F5t even began

testing for polynomial entries into D. It seems that a conservative approach to

testing for D is appropriate. One seems to be better off setting a relatively high

value for M in the hopes that F5t (and, thus, F5) will terminate on its own before

reaching that degree.

Remark 4.4.3. We should also take note that Buchberger’s algorithm takes about

four times as long computing the Non-terminating example for F5. This illustrates

that F5t is using it’s F5-component to achieve a speed advantage over Buchberger’s

algorithm. The advantage is by about a factor of 4. Thus it seems the hybrid

program is demonstrating a level of success – it is providing provable termination

(which F5 cannot provide in all cases) while still moving faster than Buchberger.
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5. Conclusion

In this final section we will attempt to take stock in what we have accomplished in

this thesis.

On a practical note we have implemented a new hybrid Grobner-basis-producing

algorithm called F5t (t for terminating) that provably terminates for all input

sequences. F5t is a hybrid of the classic Buchberger’s algorithm and F5 found in [7].

We prove that this hybrid is correct using a new Grobner basis criterion introduced

in sub-subsection 4.4.1; we also prove its termination for all input sequences. This

guaranteed termination comes at the cost of increased run times for some input

sequences, as illustrated in sub-subsection 4.4.5. We conclude that extra effort

should be made to make D minimal in size.

Much has been gained in terms of mathematical theory. In subsection 3.5, we

highlight an error in a previous (and often cited – see [1, 2, 15]) proof of F5’s

termination for regular input sequences; in this same section, we offer a minor

alteration to the code of F5 that should alleviate the problem under certain weak

additional constraints to the input sequences over finite fields. (In Appendix A

we give this topic a more thorough discussion.) In sub-subsection 3.4.1, we prove

the validity of the subroutine Rewritten in the language and criteria of F5 for the

first time (to our knowledge). In subsection 4.1 we verify a minor improvement to

F5 first introduced in [15]. In subsections 4.2 and 4.3 we apply Buchberger’s first

and (modified) second criteria to F5; these applications come with some corollary

results. In subsections 3.1 and 3.2 we prove Proposition 1 from [7] (which, to our

knowledge, had not been proven in print before) and we prove two new important

ideas: the normalization lemma (Lemma 3.2.1) and that normalized polynomials

derived from regular sequences have minimal signature (Theorem 3.2.1).

There is much room for future work, and we hope that this thesis serves a spring-

board for additional strides in Grobner basis theory. There is specific room for

study in minimizing the set D. Finding a bound for the variable M given certain
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properties of the input (like regularity, for example) would be a great start. In

addition, there may be ways to better integrate D with the rewriting rules so that,

if D does become non-empty, more polynomials can be removed without reduc-

tion. It would also seem prudent to use a better hybridization that the one in this

paper (now that a hybridization has been established); replacing the Buchberger’s-

algorithm portion with an F4 [8] portion might save a significant amount of run

time. In a different vein of study, it is still worthwhile to determine precisely when

F5 does terminate.
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Appendices

Appendix A: Exposition on Error in Original Proof of F5

Termination

In this section we will spend some time looking at the errors in previous arguments

of F5’s termination for regular input sequences. It is of great importance to do this;

since the inception of the argument by Faugere in [7], it has been cited in numer-

ous places, including [2]. In [15], Stegers acknowledges difficulty in proving F5’s

termination for regular input sequences. Thus he leaves the claim as a conjecture.

For expository clarity, we will begin this section by paraphrasing (almost quoting)

the statement and partial proof of Conjecture 3.31 from pages 38 and 39 of [15].

Though the same ideas can be found in [7], [15] gives a lengthier exposition on the

topic. Once we have a handle on the reasoning involved, we will be able to show

a specific counterexample that challenges the reasoning of the proof of termination

originally offered by Faugere in [7].

Conjecture. Let F = (f1, f2, . . . , fm) be a sequence of polynomials such that, if F

is given as input to F5, there are no reductions to 0 in F5. Then on input F , F5

terminates.

This conjecture, if true, has an immediate corollary. We know by Theorem 3.5

that there are no reductions to 0 during a run of F5 if the input sequence to F5

is regular. Thus, if the above conjecture is true, F5 would always terminate for

regular input sequences.

We will begin our exposition with Stegers’ attempt at proof.

Proof. Partial Proof of Conjecture. Let R̂ be the result of a call of the function

Reduction and Ĝi the intermediate Grobner basis prior to including the elements

of R̂. It suffices to show that if R 6= ∅, then 〈HT (Ĝi)〉 6= 〈HT (Ĝi ∪ R̂)〉, for then,

since K[x] is Noetherian, eventually R̂ will be the empty set and remain empty.
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Suppose R̂ is nonempty. Without loss of generality we may furthermore assume

that R̂ is finite and i = 1. Choose rk ∈ R̂ such that S(rk) is ≺-maximal. We show

that rk is not top-reducible by any other element of Ĝ1 ∪ R̂ and thus in particular

〈HT (Ĝi)〉 6= 〈HT (Ĝ1 ∪ R̂)〉.

Suppose by way of contradiction that there exists an r` ∈ (Ĝ1 ∪ R̂)\{rk} such that

HT (r`)|HT (rk), say uHT (r`) = HT (rk) with u ∈ T . Clearly poly(r`) 6∈ 〈Ĝ2〉,

otherwise rk could have been reduced by G2 during Reduction.

We distinguish four cases.

(1) ur` is normalized. Note that uS(r`) 6= S(rk), otherwise rk would have been

discarded due to rewriting rules. [Author’s note: This statement is given

(without proof) in [15] and implied (again, without proof) by [7]. This

author has been unable to verify the truth of the statement. However, it

is not of major concern for us here. For more exposition on the topic, turn

to section 3.5.]

(a) S(rk) ≺ S(ur`). Note the critical pair (HT (rk), u, r`, 1, rk) was intro-

duced into the list. Indeed, (u, r`) is normalized since uS(r`) is not

top-reducible by G2; clearly, (1, rk) is normalized as well. Together

with the assumption that S(rk) ≺ S(ur`), this implies that the critical

pair is normalized, hence it was created by CritPair. The correspond-

ing S-polynomial produced by the procedure SPol is (uS(r`), ur`−rk).

As the signature of a labeled polynomial is not changed during the re-

duction and by assumption no reduction to 0 occurs, R̂ contains some

polynomial with signature S(ur`). But S(rk) ≺ S(ur`), contradicting

the assumption that S(rk) is ≺-maximal.

(b) uS(r`) ≺ S(rk). Since S(rk) is maximal, rk was the last labeled poly-

nomial to be included in R̂. In particular, when TopReduction is passed
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rk, the labeled polynomial r` is already in the Grobner basis. But then

uS(r`) ≺ S(rk) implies rk can be reduced by r`, a contradiction.

(2) ur` is not normalized. Since r` is admissible, there exists s′ ∈ K[x]m such

that s′1 6= 0, v(s′) = poly(r`) and HT (s′1)F1 = S(r`). Let

us′1 = v′ +
m∑
j=2

λjfj

where v′, λ2, . . . , λm ∈ K[x], v′ not top-reducible by G2. Since uHT (s′1)

is reducible by G2, either v′ = 0 or HT (v) < HT (us′1). If v′ = 0, the

upoly(r`) ∈ 〈G2〉, so poly(rk) would have been reduced by G2. Therefore,

v′ 6= 0. We have

(A-1) upoly(r`) = us′1f1 +
m∑
j=2

us′jfj = v′f1 +
m∑
j=2

(λjf1 + us′j)fj

Now we define a set T̂ = {t ∈ T (v′)|HT (tf1) > HT (rk)}. Since v′ is in

normal form with respect to 〈f2, f3, . . . , fm〉, the signed polynomial tr1 is

normalized for every t ∈ T̂ .

(a) T̂ = ∅. In this case, there is a representation

m∑
j=2

(λjf1 + us′j)fj =
∑
g∈G2

µgg

where µg are polynomials such that µg = 0 or HT (µgg) < HT (rk).

As the head term of upoly(r`) is HT (rk), it must occur on the right-

hand-side of equation A-1 somewhere. We conclude that HT (v′f1) =

HT (rk), in which case either rk would have been reduced by the

normalized signed polynomial HT (v′)r1, or some g ∈ G2 satisfies

HT (µgg) = HT (rk), in which case rk would have been reduced by

g.
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(b) T̂ 6= ∅. [It is this case that makes the above proposition a conjecture.]

For all t ∈ T̂ , the signed polynomial tr1 is normalized. All these

signed polynomials were included in some critical pair, and therefore

there exists a signed polynomial rj ∈ G1 such that S(rj) = HT (v′)F1

and HT (rj) = HT (rk). If so, then rk would have been reduced by rj ,

a contradiction.

Thus, by the reasoning given at the beginning of this proof, we can conclude that

if there is no reduction to 0 within F5, F5 will terminate. This ends the partial

proof. �

This proof seems to be well-constructed. There is an error, however. Before we

delve into where the error lies, let’s first observe that there must be an error.

We can do this by producing a counterexample to the statement of the proposition.

Now we will revisit the example from subsection 3.4.2. In that example, we

added polynomial r9 = (x2zF1, y
5t2 − x4zt2) to the Grobner basis at degree 7.

Then at degree 8 we added polynomial r10 = (z3tF1, y
6t2 − x2z3t3). Notice that

HT (r9)|HT (r10). We also consider polynomial r11 = (x3zF1, x
5zt2 − y2z4t2);

note that r8 = (x3F1, x
5t2 − y2z3t2), so that HT (r8)|HT (r11). In the language

of the above partial proof, this means that in degree 8 we have R̂ 6= ∅ and yet

〈HT (Ĝ1)〉 = 〈HT (Ĝ1∪ R̂)〉. This is the exact opposite of what we proved! Accord-

ing to our proof, if there is no reduction to 0 (which there isn’t during our example

run) then every new subsequent nonempty output R̂ of Reduction should add some-

thing new to the monomial ideal of head terms associated with the Grobner basis

– we should get new elements of 〈HT (Ĝ1)〉. This is, in fact, demonstrably not the

case in our above example. Moreover, the two polynomials r10 and r11 reduce to 0

by the polynomials previously add to the Grobner basis!

(As an aside, we may recall that the example given in this paper deviates slightly

from the example given in [7]. This deviation has no effect on the above argument

– Faugere’s version of the example in [7] also yields the exact same counterexample.
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In fact since the example found here and the example found in [7] represent the only

two legal orderings of the operations of F5 under the input from subsection 3.4.2,

we can feel assured that we have an input sequence that acts as a counterexample

regardless of the ordering of the polynomials.)

So we know that the above proposition is incorrect. The question is: where does

the argument fail? In order to answer this, let’s use the notation from the proof

and look again at the example from subsection 3.4.2. We will let rk = r10, r` = r9

and u = y. Then we will definitely be in case 2 since ur` = yr9 is not normalized.

Then we have s′ = (x2z,−xyz2− y3t, 0) (note that v(s′) = poly(r`)); thus, we have

s′1 = x2z. Just as in the proof, we will put us′1 in a normal form representation.

Thus we will have us′1 = yx2z = z3t+ zpoly(r3). Thus we will have v′ = z3t (note

that v′ 6= 0).

The only candidate for T̂ is z3t. Since HT (z3tr1) = yz6t > HT (r10), we see

that indeed T̂ = {z3t}. Thus we are in subcase b (T̂ 6= ∅). So according to our

”proof”, there exists a signed polynomial rj ∈ G1 such that S(rj) = HT (v′)F1 and

HT (rj) = HT (rk). Now we look through all of the polynomials that have been

added to G1 so far. There is only one candidate for rj ... r10 itself!

And now the problem with the partial proof is clear. There is nothing incorrect

in the proof at all until the very last line of subcase 2b – the proposed rj can be

rk itself. This case does not lead to contradiction because F5 would never try to

reduce a candidate polynomial by itself during Reduction.

Thus we can conclude that the reasoning used in [7] is not quite correct.

It is important to note that we have not shown that the claim made by Faugere

in [7] is incorrect; rather, we have explored why the proof given in [7] (and partial

proof in [15]) is unsatisfactory. It is still plausible that F5 terminates for regular

input sequences, and given that the result has not been challenged in approximately

six years (at the time of this writing), the empirical acceptance certainly bodes well
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for the claim. However, a different line of reasoning must be explored. (This author

has been unable to show that F5 terminates for all regular input sequences.)
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Appendix B: MAGMA Code for F5t

This is the code for F5 written in MAGMA [13]. The homepage for the MAGMA

computer algebra system can be found at:

http://magma.maths.usyd.edu.au/magma/

The code presented below is an extension of the code written by Till Stegers in [15].

The entire code for the program is not given here; rather, only the significantly

altered routines are given. The code presented here has been altered in its spacing

(not in content) to accommodate print.

/*

Updated version written by: Justin M. Gash

(with permission from Till Stegers)

This version is called F5t

Created from Fall 2006 through Spring 2008 as part of the doctoral thesis:

"On Efficient Grobner Basis Computation"

at Indiana University Bloomington.

All of the following header commentary was written by Till Stegers and

still applies.

*/

/*

For a procedure name, the identifier in brackets

refers to the names J.-C. Faugere chose in his paper:

"A new efficient algorithm for computing Gr"obner bases

without reduction to zero ($F_5$)", ISSAC ’02: Proceedings

from the International Symposium on Symbolic and Algebraic

Computation, ACM Press, 2002.
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Version 1.2 of the paper available at

http://www-calfor.lip6.fr/~jcf/Papers/@papers/f5.pdf

During the algorithm, polynomials are augmented using so-called

signatures. These "labeled polynomials", or "rules", as Faug‘ere calls

them, are implemented as tuples in Magma as follows: a labeled

polynomial f is a tuple < t, i, p >, where

t is a term,

i the index of the i-th canonical basisvector F_i of the module P^m,

p the polynomal,

such that the signature of the labeled polynomial is S(p) = t*e_i.

Most of the time, these labeled polynomials will be elements of a unique

global array r, and be referenced by their indices in r, or r-indices for

short.

Critical pairs are stored as tuples <l, u, j, v, k>, where

l is the LCM of the critical pair

u,v are terms, and

j,k are (distinct) r-indices of labeled polynomials.

The variable R contains a sequence sequences of simplification rules,

similar to the array Rule in Faug‘ere’s paper. A simplification rule

in R[i] is a tupel <t,k>, where t is a term and k is an r-index of a

labeled polynomial r_k that has the signature t*e_i.

*/

import "critpairs.mag": NUMBER_OF_CRITERIA;
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/*-------------------------------------------------+

| |

| |

| Main Algorithm |

| |

| |

| |

+-------------------------------------------------*/

/***********************************************************

AlgorithmF5

returns a (not necessarily reduced) Groebner basis

for the ideal generated by {f_i} union G_iplus1.

Eventually, G_iplus1 is set to the resulting basis.

Input:

m_i_fi = <m,i,f_i>

m total number of input polynomials

i # of current global iteration

f_i polynomial to be added in this

iteration



126

G_iplus1 sequence of r-indices of the labeled

polynomials forming the (non-reduced)

Gr"obner basis of the ideal generated

by f_{i+1}, ..., f_m

G_iplus1Reduced: the unique reduced Gr"obner basis

of the ideal generated by

f_{i+1}, ..., f_m

rules sequence of simplificationr rules

statsPerCall: receives statistics generated during

this call, conforms with stats.mag

***********************************************************/

intrinsic AlgorithmF5(~m_i_fi::Tup,

~r::[],

~G_iplus1::[],

~G_iplus1Reduced::[],

~rules::[],

~statsPerCall::[])

{Compute a Groebner basis of the ideal <G_iplus1 cat [f_i]>.}

m := m_i_fi[1];

i := m_i_fi[2];

f_i := m_i_fi[3];

hasbeeninD := m_i_fi[4];

Mbound:= m_i_fi[5];
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pol_ring := Parent(f_i);

pair_univ := PairUniverse(pol_ring);

rule_univ := RuleUniverse(pol_ring);

DD := [];

addedtoDD := [];

holder :=[pair_univ| ]; //will hold ordered S-polynomials

// Statistics per call of F5

// (data structure discussed in IncrementalF5)

// Statistics per degree

statsPerDeg := Stats_Init(m);

r[i]:= <1, i, f_i / LeadingCoefficient(f_i)>;

G_i := Append(G_iplus1,i);

Stats_PolCreate(~statsPerCall,[i],~r);

newPolIndices := [i];

// Given G_{i+1}, compute the unique Groebner basis of the

// ideal generated by G_{i+1}.

procedure ReduceIntermediateBasis(~reduced,~r,~newPols)

// Inefficient variant as in the paper (no reduction):

//reduced cat:= [pol_ring| r[l][3]: l in newPols];

// Efficient variant (using Magma’s Reduce()):

reduced := ReduceGroebnerBasis(reduced cat [pol_ring| r[l][3]:

l in newPols]);
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// Honest variant (using interpreted reduction code, not Magma’s):

//reduced := ReduceGroebnerNaive(reduced cat [pol_ring| r[l][3]:

l in newPols]);

end procedure;

// Collect head terms of G_{i+1}, ..., G_m

// to speed up reduction (phi) and reducibility test (psi)

heads := [ [car<Integers(),pol_ring,pol_ring>|

<l,LM(G_iplus1Reduced[comp][l]),

LC(G_iplus1Reduced[comp][l])>:

l in [1..#G_iplus1Reduced[comp]]]: comp in [1..m]];

// Hand-written top reduction of a

// labeled polynomial x w.r.t. G_{i+1}

function phi(x)

if x[3] ne Parent(x[3])!0 then

LMx := LM(x[3]);

LCx := LC(x[3]);

end if;

while (x[3] ne 0) and exists(g){h: h in heads[i+1] |

IsDivisibleBy(LMx,h[2])} do

y := x[3];

x[3] -:= LCx/g[3]*(LMx div g[2])*G_iplus1Reduced[i+1][g[1]];

if x[3] ne Parent(x[3])!0 then

LMx := LM(x[3]);

LCx := LC(x[3]);

end if;

if GetAssertions() and not AssertReducedTo(y,x[3]) then
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print "x:",y;

print "g:",g;

print "x’:",x[3];

error "not reduced! stopping.";

end if;

end while;

return x;

// very expensive test:

assert x[3] eq NormalForm(x[3],G_iplus1Reduced[i+1]);

end function;

// For a labeled polynomial x = <t, k, p>, psi(x) is true iff the

// term t is top-reducible mod G_{k+1} and k<m, false otherwise

// (i.e. if k=m). In other words, psi(x) is true iff x is

// not normalized.

function psi(x)

if x[2] eq m then

return false;

end if;

return exists{h: h in heads[x[2]+1] | IsDivisibleBy(x[1],h[2])};

end function;

P := [ pair_univ | ];

for j in G_iplus1 do

result := <-42>;

CritPair(i,j,~r,i,~psi,~result);
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pair, is_pair,critUsed := Explode(result);

assert TestCritPair(pair,is_pair,r,pol_ring);

if is_pair then // check if the pair wasn’t redundant

Append(~P,pair);

if GetAssertions() and not AssertPairNormalized

(pair,r,m,pol_ring) then

print "";

print "critUsed:",critUsed;

printf "Accepted non-normalized pair %o at spot 1\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

Stats_PairCreate(~statsPerCall,pair);

else

if GetAssertions() and AssertPairNormalized

(pair,r,m,pol_ring) then

printf "Missed normalized pair %o at spot 1\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

Stats_PairDiscard(~statsPerCall,critUsed);

end if;

end for;

Sort(~P, ~HasLowerDegreeCritPair);

while ((not IsEmpty(P)) or (not IsEmpty(holder))) do

statsPerDeg := Stats_Init(m);
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d := DegreeCritPair(P[1]); // smallest occurring degree

D := DegreeCritPair(P[#P]);

P_d := [ pair_univ | pair: pair in P | DegreeCritPair(pair) eq d ];

ChangeUniverse(~P_d,pair_univ);

printf "\n----- Selecting new P_d...\n";

printf "Size of G_%o so far: %o\n", i, #G_i;

printf "Size of G_%o: %o\n", i+1, #G_iplus1;

printf "Size of G_%o reduced:%o\n", i+1, #G_iplus1Reduced[i+1];

printf "Number of remaining critical pairs: %o\n",#P;

printf "Minimal degree: %3o\n",d;

printf "Maximal degree: %3o\n",D;

printf "Selecting %o pair(s) of degree d=%o...\n\n",#P_d,d;

P := P[#P_d+1..#P];

assert #SequenceToSet(P) eq #P;

//printf "P after removing P_%o: %o\n", d, P;

//printf "P_%o: %o\n",d,P_d;

print "Computing S-polynomials...";

R_d := [];

spols_redPairs := [* *];

iterandhasbeeninD := <i, hasbeeninD>;

//a tuple for argument passing
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Spols(~G_i, ~P_d, iterandhasbeeninD, ~r, ~rules,~spols_redPairs);

spols := spols_redPairs[1];

redundantPairs := spols_redPairs[2];

printf "Number of S-polynomials before reduction: %o\n",#spols;

Stats_PolCreate(~statsPerDeg,spols,~r);

assert #P_d ge #spols;

Stats_PolDiscard(~statsPerDeg,#P_d-#spols);

putinD := 0;

phi_psi_stats := <phi, psi,statsPerDeg, putinD, DD,Mbound>;

//a tuple for argument passing

//ReductionF5(~spols, G_i, i, ~r, ~phi_psi_stats, ~rules);

//SpecialGiplus1 := G_iplus1Reduced[i+1];

ReductionF5(~spols, newPolIndices, i, ~r, ~phi_psi_stats,~rules);

putinD := phi_psi_stats[4];

//determines whether output from ReductionF5 is put in DD or not

// Update statsPerDeg from the tuple

statsPerDeg := phi_psi_stats[3];

printf "Number of S-polynomials after reduction: %o\n\n", #spols;

print "#R_d:",#R_d;

if (putinD eq 1) then //spols should be put in DD

//create Spols of spols and DD
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reducer := G_iplus1 cat DD;

//this is the reducing set for the upcoming section of code

reducer cat:= newPolIndices;

reducer cat:= spols;

reducerset:=[k:k in reducer];

//indices of reducer set, used in upcoming section

for k in DD do

for j in spols do

STerm := LCMCritPair(r[k],r[j]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[j][3]);

pair := <STerm, u_1, k, u_2, j>;

Append(~holder, pair);

end for;

end for;

//create Spols of spols and newPolIndices

for k in newPolIndices do

for j in spols do

STerm := LCMCritPair(r[k],r[j]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[j][3]);

pair := <STerm, u_1, k, u_2, j>;

Append(~holder, pair);

end for;

end for;

//create Spols of spols and G_iplus1
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for k in G_iplus1 do

for j in spols do

STerm := LCMCritPair(r[k],r[j]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[j][3]);

pair := <STerm, u_1, k, u_2, j>;

Append(~holder, pair);

end for;

end for;

//sort holder by degree

Sort(~holder, ~HasLowerDegreeCritPair);

//sort S-polynomials by degree

//attach spols to appropriate lists

DD := DD cat spols; //place the output of Reduction in DD

hasbeeninD cat:= spols;

//place the output of Reduction in hasbeeninD

//reduction for those elements of holder of degree d

//if any polynomial is added to r, it’s S-polynomials

//are also added to holder

holderempty:=IsEmpty(holder);

while ((not holderempty)and(DegreeCritPair(holder[1]) eq d)) do

N := #r + 1;

pair := holder[1];

STerm, u_1, k, u_2, j := Explode(pair);
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holder := Reverse(holder);

Prune(~holder);

holder := Reverse(holder);

if SignatureLess(<u_1*r[k][1],r[k][2]>,

<u_2*r[j][1],r[j][2]>) lt 0 then

r[N] := rule_univ!<u_2*r[j][1], r[j][2], u_1*r[k][3] -

(LC(u_1*r[k][3])/ LC(u_2*r[j][3]))*u_2*r[j][3]>;

else

r[N] := rule_univ!<u_1*r[k][1], r[k][2], u_1*r[k][3] -

(LC(u_1*r[k][3])/ LC(u_2*r[j][3]))*u_2*r[j][3]>;

end if;

F5tSpecialReduction(~N, ~reducerset, ~r, ~phi_psi_stats);

if (r[N][3] ne 0) then

DD cat:= [N];

hasbeeninD cat:= [N];

print "F5t has added an extra polynomial to D";

reducerset cat:= [N];

for k in DD do

STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

for k in G_iplus1 do

STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

for k in newPolIndices do
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STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

Sort(~holder, ~HasLowerDegreeCritPair);

//sort S-polynomials by degree

else

print "Attempt to add an extra polynomial failed.

It reduced to 0.";

Prune(~r);

end if;

holderempty:=IsEmpty(holder);

end while;

else //spols will be added to newPolIndices

//create Spols of spols and DD

for k in DD do

for j in spols do

STerm := LCMCritPair(r[k],r[j]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[j][3]);

pair := <STerm, u_1, k, u_2, j>;

Append(~holder, pair);

end for;

end for;

//sort holder by degree
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Sort(~holder, ~HasLowerDegreeCritPair);

//sort S-polynomials by degree

//normal F5 stuff

R_d := R_d cat spols;

printf "Adding critical pairs

for reduced polynomials...\n",#R_d;

nNewPairs := 0;

for k in R_d do

new_pairs := [pair_univ | ];

for l in G_i do

result := <-42>; //initialize variable receiving result

CritPair(k, l, ~r, i, ~psi, ~result);

pair, is_pair,critUsed := Explode(result);

assert TestCritPair(pair,is_pair,r,pol_ring);

if is_pair then

Include(~new_pairs,pair_univ!pair);

Stats_PairCreate(~statsPerDeg,pair);

if GetAssertions() and not AssertPairNormalized

(pair,r,m,pol_ring) then

printf "Accepted non-normalized

pair %o\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,

~heads,~psi);
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assert false;

end if;

else

Stats_PairDiscard(~statsPerDeg,critUsed);

if GetAssertions() and AssertPairNormalized

(pair,r,m,pol_ring) then

printf "Missed normalized pair %o\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,

~heads,~psi);

assert false;

end if;

end if;

end for;

nNewPairs +:= #new_pairs;

P cat:= new_pairs;

// Add rule k to intermediate basis:

Append(~G_i, k);

Append(~newPolIndices,k);

end for;

printf "Number of new critical pairs: %6o\n", nNewPairs;

reducer := G_iplus1 cat DD;

//this is the reducing set for the upcoming section of code

reducer cat:= newPolIndices;

reducer cat:= spols;

reducerset:=[k:k in reducer];
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//indices of reducer set, used in upcoming section

holderempty:=IsEmpty(holder);

while ((not holderempty)and(DegreeCritPair(holder[1]) eq d)) do

N := #r + 1;

pair := holder[1];

STerm, u_1, k, u_2, j := Explode(pair);

holder := Reverse(holder);

Prune(~holder);

holder := Reverse(holder);

if SignatureLess(<u_1*r[k][1],r[k][2]>,

<u_2*r[j][1],r[j][2]>) lt 0 then

r[N] := rule_univ!<u_2*r[j][1], r[j][2], u_1*r[k][3] -

(LC(u_1*r[k][3])/ LC(u_2*r[j][3]))*u_2*r[j][3]>;

else

r[N] := rule_univ!<u_1*r[k][1], r[k][2], u_1*r[k][3] -

(LC(u_1*r[k][3])/ LC(u_2*r[j][3]))*u_2*r[j][3]>;

end if;

F5tSpecialReduction(~N, ~reducerset, ~r, ~phi_psi_stats);

if (r[N][3] ne 0) then

DD cat:= [N];

hasbeeninD cat:= [N];

print "F5t has added an extra polynomial to D";

reducerset cat:= [N];

for k in DD do

STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

for k in G_iplus1 do
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STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

for k in newPolIndices do

STerm := LCMCritPair(r[k],r[N]);

u_1 := pol_ring!STerm div pol_ring!LM(r[k][3]);

u_2 := pol_ring!STerm div pol_ring!LM(r[N][3]);

pair := <STerm, u_1, k, u_2, N>;

Append(~holder, pair);

end for;

Sort(~holder, ~HasLowerDegreeCritPair);

//sort S-polynomials by degree

else

print "Attempt to add an extra polynomial failed.

It reduced to 0.";

Prune(~r);

end if;

holderempty:=IsEmpty(holder);

end while;

end if;

//printf "#G_i after adding s-polynomials: %o\n",#G_i;

//printf "G_i after adding s-polynomials: %o\n",G_i;

//print "r after one d-loop:",r;

print "Sorting critical pairs...";

Sort(~P, ~HasLowerDegreeCritPair);
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//printf "Statistics for degree %o:\n",d;

//Stats_Print(statsPerDeg);

Stats_Update(~statsPerCall,statsPerDeg);

end while;

stufftoadd:= newPolIndices cat DD;

G_iplus1 cat:= newPolIndices;

G_iplus1 cat:= DD;

assert #SequenceToSet(G_iplus1) eq #G_iplus1;

// initalize for reduction

G_iplus1Reduced[i] := G_iplus1Reduced[i+1];

//Rereduce intermediate basis

ReduceIntermediateBasis(~G_iplus1Reduced[i],~r,~stufftoadd);

print "Size of reduced basis:", #G_iplus1Reduced[i];

m_i_fi := <m, i, f_i, hasbeeninD>;

//print #r;

//printf "\n\n\nStatistics for stage %o:\n\n",i;

//Stats_Print(statsPerCall);

end intrinsic;
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/***********************************************************

Prereduce [no equivalent in Faug‘ere’s text]

Mutual reduction of the input polynomials before

starting F5. Corresponds to Magma’s option ReduceInitial

for the Buchberger algorithm.

Input:

F sequence of polynomials

Returns (in ~F):

F the reduced polynomials

***********************************************************/

intrinsic Prereduce(~F::[])

{Reduce the input before starting F5. Corresponds to Magma’s option

ReduceInitial for the Buchberger algorithm.}

// Faster in most examples (exceptions: Cyclic n, Segers HFE)

F := Reduce(F);

end intrinsic;

/***********************************************************

IncrementalF5 [IncrementalF5]
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Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

ensure_gb If true, IncrementalF5 will check

using Magma’s IsGroebner() that after

each step i, G_i is a Groebner basis.

Slows down the algorithm considerably.

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

G1 the non-reduced Groebner basis of F

as computed by F5. Consists of labeled

polynomials.

is_gb (for testing purposes) true if G1 is

a Groebner basis, false otherwise

stats a statistics object (see stats.mag)

summarizing this run of IncrementalF5

***********************************************************/

intrinsic IncrementalF5(F,ensure_gb) -> [],[],BoolElt,[]
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{Outer routine of F5.}

P := Parent(F[1]);

rule_univ := RuleUniverse(P);

Prereduce(~F);

m := #F;

// Initialize statistics

stats := Stats_Init(m);

rules := ResetRules(m,P);

// Define the Macaulay matrix

r := [rule_univ| ];

r[m] := < 1, m, F[m] / LeadingCoefficient(F[m])>;

Mbound:=TotalDegree(LT(F[m]));

printf "=================== Stage %o/%o =================== \n",m,m;

printf "Adding polynomial r[1].\n\n";

G_iplus1 := [ m ];

G_iplus1Reduced := [ [P| ]: i in [1..m+1] ];

G_iplus1Reduced[m] := [ F[m] ];

Stats_PolCreate(~stats,[m],~r);

hasbeeninD := [];

// will hold a list of all polynomials that are in DD
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for i := m-1 to 1 by -1 do

statsPerCall := Stats_Init(m);

printf "================= Stage %o/%o ================= \n",i,m;

//print "before iteration, has is: ", hasbeeninD;

Mbound:=Mbound + TotalDegree(LT(F[i])) - 1;

m_i_fi := <m,i,F[i], hasbeeninD,Mbound>;

AlgorithmF5(~m_i_fi,~r,~G_iplus1,~G_iplus1Reduced,

~rules,~statsPerCall);

hasbeeninD := m_i_fi[4];

G_rules := [r[l]: l in Sort(G_iplus1)];

print "";

print "";

if ensure_gb then

is_gb := IsGroebner([r[l][3]: l in G_iplus1]);

if is_gb then

printf "G_%o *is* a Groebner basis\n",i;

printf "G_%o generates <f_%o, ..., f_m>: %o\n",i,i,

Ideal([r[l][3]: l in G_iplus1]) eq

Ideal([F[l]: l in [i..m]]);

printf "Size of basis is %o.\n",#G_iplus1;

printf "Size of reduced basis is %o.\n",

#G_iplus1Reduced[i];

else
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printf "G_%o is *not* a Groebner basis.

Size is %o.\n",i,#G_iplus1;

if ensure_gb then

printf "Aborted after step i = %o

and returning G_i\n",i;

return G_iplus1Reduced[i],G_rules,is_gb;

end if;

end if;

print "";

else

is_gb := true;

end if;

//printf "G_%o = %o\n\n",i,G_iplus1;

Stats_Update(~stats,statsPerCall);

end for;

print "Statistics for all stages:";

Stats_Print(stats);

return G_iplus1Reduced[1],G_rules,is_gb,stats;

end intrinsic;

/***********************************************************

F5opt

Wrapper for the F5 algorithm, e.g. for use in a
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comparison with other algorithms.

Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

ensure_gb If true, IncrementalF5 will check

using Magma’s IsGroebner() that after

each step i, G_i is a Groebner basis.

Slows down the algorithm considerably.

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

stats a statistics object (see stats.mag)

summarizing this run of IncrementalF5

name a string identifying the algorithm,

currently simply "F5"

***********************************************************/

intrinsic F5opt(F::[],ensure_gb::BoolElt) -> [],[],MonStgElt

{Faugere’s F5 algorithm}
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t:= Cputime();

placeholder:= 0;

// will be used to pause the output so user can see the running time

error if IsEmpty(F), "F must not be empty!";

P := Parent(F[1]);

homogenized := false;

isHomogeneous := IsHomogeneousSystem(F);

// Make sure we didn’t forget to homogenize

if not isHomogeneous[1] then

read answer,"System is not homogeneous!

Homogenize first y/n? [y]";

if answer ne "n" then

homogenized := true;

F,P := HomogenizeExample(F,P);

end if;

end if;

Gpols,Grules,b,stats := IncrementalF5(F,ensure_gb);

if isHomogeneous[1] then

print "Input system was homogeneous.";

else

printf "Input system was *not* homogeneous,";

if homogenized then

print " it was homogenized first.";

else

print " but it was not homogenized.
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You’re lucky it terminated at all!";

end if;

end if;

if ensure_gb then

same_ideal := Ideal(F) eq Ideal(Gpols);

print "Generates same ideal:", same_ideal;

else

print "Did not check if G_1 is actually a Groebner basis.";

end if;

print "The time taken is: ", Cputime(t);

readi placeholder; //artificial pause to see running time output

return Gpols,stats, "F5";

end intrinsic;

/***********************************************************

F5

Wrapper for the F5 algorithm, useful for calls from

the Magma console.

Input:
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F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

***********************************************************/

intrinsic F5(F::[]) -> [],[],MonStgElt

{Faugere’s F5 algorithm, not checking that G_i is a Groebner

basis after each step i.}

return F5opt(F,false);

end intrinsic;

/***********************************************************

F5ensure

Wrapper for the F5 algorithm, useful for calls from

the Magma console when debugging the algorithm.
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Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

***********************************************************/

intrinsic F5ensure(F::[]) -> [],[],MonStgElt

{Faugere’s F5 algorithm, checking that G_i is a Groebner

basis after each step i.}

return F5opt(F,true);

end intrinsic;

/***********************************************************

Buchberger’s Algorithm

This is a homemade, totally unoptimized version

of Buchberger’s algorithm.

Input:
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F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

ensureGB a boolean element; if true, the output

is externally verified

Returns:

[Nothing]

************************************************************/

intrinsic BuchAlg(F::[], ensureGB::BoolElt)

{Buchberger’s algorithm.}

t:= Cputime();

placeholder:= 0; // artificial user input variable used to pause

// the program’s output to see running time

G:=[];

error if IsEmpty(F), "F must not be empty!";

pol_ring:=Parent(F[1]);

Z:= Integers();

pair_univ:=car<pol_ring,Z,Z>;

CP:=[pair_univ| ];

// make all input polynomials monic

for i:=1 to #F do
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F[i]:=(1/LeadingCoefficient(F[i]))*F[i];

end for;

// build original set of critical pairs

G:=F;

for i:=1 to #G-1 do

for j:=i+1 to #G do

lcm:=LCM(LM(G[i]),LM(G[j]));

Append(~CP,<lcm,i,j>);

end for;

end for;

Sort(~CP, ~BuchHLDCP);

//meat of Buchberger’s algorithm

while (not IsEmpty(CP)) do

//get first critical pair

pair:=CP[1];

CP:= Reverse(CP);

Prune(~CP);

CP:=Reverse(CP);

//build S-polynomial

u1:= pol_ring!pair[1] div pol_ring!LM(G[pair[3]]);

u2:= pol_ring!pair[1] div pol_ring!LM(G[pair[2]]);

h:=u1*G[pair[2]]-u2*G[pair[3]];
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//get S-polynomial in normal form

h:= NormalForm(h,G);

// if it’s not 0, create more critical pairs and

// add the new polynomial to the Grobner basis

if (h ne 0) then

h:=(1/LeadingCoefficient(h))*h;

for i:=1 to #G do

lcm:=LCM(LM(G[i]),LM(h));

Append(~CP,<lcm,i,#G+1>);

end for;

Append(~G,h);

end if;

Sort(~CP, ~BuchHLDCP);

end while;

// if the user wanted the output verified, notify the user

if (ensureGB eq true) then

GBtest:=IsGroebner(G);

if GBtest then

print "A confirmed Grobner basis was computed!";

else

print "The output is not a Grobner basis!";

end if;

same_ideal := Ideal(F) eq Ideal(G);

if same_ideal then

print "The output generates the same ideal as the input!
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Woohoo!";

else

print "The output generates a different ideal as the input!

Boohoo...";

end if;

end if;

print "The time taken is: ", Cputime(t);

readi placeholder;

print G;

end intrinsic;

/*-------------------------------------------------+

| |

| |

| Reduction of Polynomial Sequences |

| |

| |

| |

+-------------------------------------------------*/

/****************************************************

FindReductor [IsReducible]

Input:
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k0_k: a tuple <k0,k> of integers (see below)

k0: r-index of labeled polynomial to reduce

k: # of global iteration

G: sequence of r-indices of polynomials w.r.t.

which r[k0] is to be reduced

r: "global" list of polynomials

phi_psi_stats

<phi, psi,statsPerDeg, putinD, DD,Mbound>

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

putinD

a boolean that indicates where the output from Reduction

should be added to DD

DD

an index list of polynomials that have been added to DD
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Mbound

a multiple of the Macaulay bound used in Reduction

rules: "global" list of simplification rules

result: variable to receive return value

Returns (in ~result):

A tupel < red, is_top_red >.

is_top_red: false if the polynomial of r[k0] cannot

be top-reduced by the polynomials specified

by G (modulo optimizations)

red: a reductor of r[k0] if r[k0] can be

top-reduced (modulo optimizations)

*****************************************************/

intrinsic FindReductor(k0_k::Tup, ~G::[], ~r::[], ~phi_psi_stats::Tup,

~rules::[], ~result)

{Find a reductor for a given labeled polynomial.}

k0 := k0_k[1];

k := k0_k[2];

psi := phi_psi_stats[2];

pol_ring := Parent(r[k0][3]);
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rule_univ := RuleUniverse(pol_ring);

lt_0 := pol_ring!LeadingMonomial(r[k0][3]);

for j in G do

lt_i := pol_ring!LeadingMonomial(r[j][3]);

k_j := r[j][2];

if not IsDivisibleBy(lt_0,lt_i) then

// discard reductor by criterion (a)

continue;

else

u := lt_0 div lt_i;

ut := u * r[j][1];

if (ut eq r[k0][1]) and (r[j][2] eq r[k0][2]) then

// discard reductor by criterion (d)

continue;

end if;

canBeRewritten := false;

IsRewritable(u,j,k,~r,~rules,~canBeRewritten);

if canBeRewritten then

// discard reductor by criterion (c)

continue;

elif psi(<ut,k_j,1>) then

// discard reductor by criterion (b)

continue;
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else

// conditions (a) through (d) are satisfied

result := < j,true >;

return;

end if;

end if;

end for;

// no reductor found or all discarded

result := < 0,false >;

end intrinsic;

/****************************************************

TopReduction [TopReduction]

Performs a top-reduction using a normalized

reductor on a given labeled polynomial,

if possible. If no normalized reductor can be

found, the polynomial is divided by its leading

coefficient. If the reductor has a larger signature

than the reductee, the reductum is added as a new

labeled polynomial, and the list of simpification

rules is updated.

Input:

k0_k: tuple <k0,k>, see below

k0: the index of a polynomial in r
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that is to be top-reduced

k: # of global iteration

G: list of r-indices of labeled polynomials

w.r.t. which to reduce r[k0]

r: list of labeled polynomials,

might be updated

phi_psi_stats

<phi, psi,statsPerDeg, putinD, DD,Mbound>

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

putinD

a boolean that indicates where the output from Reduction

should be added to DD

DD

an index list of polynomials that have been added to DD

Mbound
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a multiple of the Macaulay bound used in Reduction

R: simplification rules, might be

updated

result: variable to receive return value

Result (in ~result):

result = [* no_red_to_zero, h, red_list *]

no_red_to_zero: false iff the r[k0] was reduced

to zero

red_list: Sequence of r-indices of polynomials

to be reduced, possibly empty;

unspecified if no_red_to_zero is false

h: r-index of any rules for which no normalized

reductor could be found, and hence may be

declared done by Reduction.

If no_red_to_zero is false or red_list is

empty, h is unspecified.

*****************************************************/

intrinsic TopReduction(k0_k::Tup, ~G::[], ~r::[], ~phi_psi_stats::Tup,

~R::[], ~result)

{Reduces a polynomial w.r.t. a list of polynomials.
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Adds new rules as it sees fit.}

k0 := k0_k[1];

k := k0_k[2];

error if k0 gt #r, "TopReduction: Rule index k0 is invalid!";

pol_ring := Parent(r[k0][3]);

old := r[k0];

if r[k0,3] eq Zero(pol_ring) then

printf "Warning, r[%4o] is 0! Input is not a regular sequence.

Stage: %o\n",k0,k;

Stats_RedToZero(~phi_psi_stats[3],k);

result := [* false, 0,[ ] *];

return;

end if;

// k1 corresponds to the index of r’ in Faugere’s paper

FindReductor(<k0,k>, ~G, ~r, ~phi_psi_stats, ~R, ~result);

k1, top_reducible := Explode(result);

lc_0 := LeadingCoefficient(r[k0][3]);

if (not top_reducible) then
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// lc_0 is nonzero (see if-clause above)

normalized_rule := <r[k0][1], r[k0][2], r[k0][3] div lc_0>;

r[k0] := normalized_rule;

result := [* true, k0, [ ] *];

return;

else

lt_0 := LeadingMonomial(r[k0][3]);

lt_1 := LeadingMonomial(r[k1][3]);

lc_1 := LeadingCoefficient(r[k1][3]);

u := pol_ring!lt_0 div pol_ring!lt_1;

new_sig := <u * r[k1][1], r[k1][2]>;

if SignatureLess(new_sig, <r[k0][1],r[k0][2]>) lt 0 then

r[k0][3] := r[k0][3] - lc_0 / lc_1 * u * r[k1][3];

assert AssertReducedTo(old[3],r[k0][3]);

result := [* true, 0, [k0] *];

return;

else

N := #r + 1;

r[N]:=<new_sig[1],new_sig[2],u*r[k1][3]-lc_1/lc_0*r[k0][3]>;
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if r[N][3] eq 0 then //DEBUG

//print "TopRed: Unexpected reduction to zero occurred!";

//TODO what’s so unexp. here?

Stats_RedToZero(~phi_psi_stats[3],k);

result := [* false, 0, [] *];

return;

end if;

AddRule(~R,~r,N,pol_ring);

Stats_PolCreate(~phi_psi_stats[3],[N],~r);

assert AssertReducedTo(r[k0][3],r[N][3]);

result := [* true, 0, [N,k0] *];

// (Segers says k0 is superfluous, but if left out F5 loops)

return;

end if;

end if;

end intrinsic;

/****************************************************

F5tSpecialFindReductor

A helper subroutine for F5tSpecialReduction, this subroutine

is similar to FindReductor above except that no criteria

are used other than head term divisibility.
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Input:

k

an r-index representing a signed polynomial to (attempt to) reduce

reducerset

a list of r-indices representing the polynomial candidates for

reduction of r[k]

r

a list of signed polynomials

phi_psi_stats

<phi, psi,statsPerDeg, putinD, DD,Mbound>

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

putinD

a boolean that indicates where the output from Reduction

should be added to DD

DD
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an index list of polynomials that have been added to DD

Mbound

a multiple of the Macaulay bound used in Reduction

result

a 2-tuple holding the result; the first element holds the r-index of a

reductor, if found; the second element is a boolean, where true

indicates a reductor has been found

Returns: [Nothing]

****************************************************/

intrinsic F5tSpecialFindReductor(~k::RngIntElt, ~reducerset::[], ~r::[],

~phi_psi_stats::Tup, ~result)

{Special subroutine used by F5tSpecialReduction.}

pol_ring := Parent(r[k][3]);

lt_k := pol_ring!LeadingMonomial(r[k][3]);

for j in reducerset do

lt_j := pol_ring!LeadingMonomial(r[j][3]);

if IsDivisibleBy(lt_k, lt_j) then

result := <j, true>;

return;

end if;

end for;

result := <0, false>;

end intrinsic;
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/****************************************************

F5tSpecialReduction

This is a helper routine for the portion of the F5 code that

reduces signed polynomials in DD. It is similar to TopReduction.

Input:

k

an r-index representing a signed polynomial to (attempt to) reduce

reducerset

a list of r-indices representing the polynomial candidates

for reduction of r[k]

r

a list of signed polynomials

phi_psi_stats

<phi, psi,statsPerDeg, putinD, DD,Mbound>

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)
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that might be updated

putinD

a boolean that indicates where the output from Reduction

should be added to DD

DD

an index list of polynomials that have been added to DD

Mbound

a multiple of the Macaulay bound used in Reduction

Returns: [Nothing]

****************************************************/

intrinsic F5tSpecialReduction(~k::RngIntElt, ~reducerset::[],

~r::[], ~phi_psi_stats::Tup)

{Special subroutine used to reduce signed polynomials in DD.}

pol_ring := Parent(r[k][3]);

result := <-42, -42>;

done := 0;

if (r[k][3] eq 0) then

done := 1;

end if;

while (done ne 1) do

r[k] := phi_psi_stats[1](r[k]);

if (r[k][3] eq 0) then

done := 1;

else
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F5tSpecialFindReductor(~k,~reducerset,~r,~phi_psi_stats,~result);

j, tr := Explode(result);

if (tr eq false) then

lc_k := LeadingCoefficient(r[k][3]);

r[k][3] := r[k][3] div lc_k;

done := 1;

else

lt_k := pol_ring!LeadingMonomial(r[k][3]);

lt_j := pol_ring!LeadingMonomial(r[j][3]);

lc_k := LeadingCoefficient(r[k][3]);

lc_j := LeadingCoefficient(r[j][3]);

u := pol_ring!lt_k div pol_ring!lt_j;

newsig := <u*r[j][1], r[j][2]>;

if SignatureLess(newsig, <r[k][1], r[k][2]>) lt 0 then

r[k][3] := r[k][3] - lc_k/lc_j * u * r[j][3];

else

r[k]:= <newsig[1],newsig[2],u*r[j][3]-lc_j/lc_k *r[k][3]>;

end if;

end if;

end if;

if (r[k][3] eq 0) then

done := 1;

end if;

end while;

end intrinsic;

/****************************************************

Reduction [Reduction]
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Input:

todo: sequence of t-indices of representing

polynomials to reduce

G: SeqEnum of indices of r representing

polynomials w.r.t. which to reduce

r set of all labeled polynomials known

(will possibly be updated)

k # of global iteration

phi_psi_stats

<phi, psi,statsPerDeg, putinD, DD,Mbound>

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

putinD

a boolean that indicates where the output from Reduction
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should be added to DD

DD

an index list of polynomials that have been added to DD

Mbound

a multiple of the Macaulay bound used in Reduction

rules: simplification rules, might be

updated

Returns (in ~todo):

sequence of r-indices of labeled polynomials

to be included in the Groebner basis

*****************************************************/

intrinsic ReductionF5(~todo::[], G::[], k::RngIntElt, ~r::[],

~phi_psi_stats::Tup, ~rules::[])

{Reduction step in F5.}

done := [];

pol_ring := Parent(r[k][3]);

// list of reduced S-polynomials known to be in NF w.r.t.

// G_i+1, currently

inNFwrtG_iplus1 := [Integers()| ];

nPolsCreated := 0;
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while (not IsEmpty(todo)) do

//print "#todo is:", #todo;

//TODO could be made more efficient.

//Isn’t this redundant?

IndexRemoveDoubles(~todo,~r,pol_ring,~todo);

cmpFunc := -42; //initialize variable

IndexSignatureLess(~r,~cmpFunc);

Sort(~todo,cmpFunc);

size := #todo;

h := todo[1];

// r-index of polynomial with minimal signature

Remove(~todo,1);

// Moved here from TopRed to be able to avoid

// calling phi more often than necessary

pos := 0;

BinSearch(~inNFwrtG_iplus1,h,~pos);

//TODO #inNFwrtG_iplus1 <= 1, so this is unnecessary?!!

if pos lt 1 then

// r[h] was not reduced by phi yet or has

// changed since then

r[h] := phi_psi_stats[1](r[h]);

else

nPolsCreated +:= 1;

end if;

//DELTA_Pearce:one could pass todo as well, claims Pearce
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GcatDone := done cat G;

result := [];

TopReduction(<h,k>, ~GcatDone, ~r,~phi_psi_stats,

~rules,~result);

is_reg_seq, h1, todo1 := Explode(result);

if #todo1 gt 1 then

// h was not reduced, so we don’t have to call phi(h)

// the next time h is treated

IncludeSorted(~inNFwrtG_iplus1,h);

else

ExcludeSorted(~inNFwrtG_iplus1,h);

end if;

if is_reg_seq then

if IsEmpty(todo1) then

// Faug‘ere doesn’t need this ’if’ as he just

// returns the empty set for h

Append(~done,h1);

else

todo := todo cat todo1;

end if;

end if;

size := #todo;

end while;
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// the additional portion of F5t

ender := 0; // controls when this portion of code can be exited

temp := done;

reducerset1 := [pol_ring|r[i][3]: i in G];

reducerset2 := [pol_ring|r[i][3]:i in phi_psi_stats[5]];

reducerset:=reducerset1 cat reducerset2;

if (IsEmpty(done)) then

ender := 1;

end if;

if ((not IsEmpty(done)) and (2*phi_psi_stats[6] gt

TotalDegree(LT(r[done[1]][3])))) then

ender := 1;

end if;

if (ender eq 0) then

print "Entering special F5t-phase of reduction.";

end if;

while(ender eq 0) do

// grab the first output element of Reduction

b:=done[#done];

Prune(~done);

blah := r[b];

keepgoing := 1;

//controls when the reduction of a polynomial can be terminated

while (keepgoing eq 1) do

print "Still working in F5t-phase of reduction.";
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checker := blah[3];

blah[3]:= NormalForm(blah[3],reducerset);

blah := phi_psi_stats[1](blah);

if (checker eq blah[3]) then

keepgoing := 0;

end if;

if (blah[3] eq 0) then

print "F5t has reduced a polynomial to 0!";

keepgoing := 0;

end if;

end while;

// if the normal form of the chosen polynomial is not 0,

// then halt this portion of code

if (blah[3] ne 0) then

ender := 1;

done:= temp;

end if;

// if all the output from Reduction reduced to 0,

// halt this portion and send the batch to DD

if (IsEmpty(done)) then

ender := 1;

phi_psi_stats[4] := 1;

done := temp;

// remove the rules associated with these polynomials

for p in done do

RemoveRule(~rules, p, ~r);
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end for;

end if;

end while;

todo := done;

end intrinsic;

/*-------------------------------------------------+

| |

| |

| Computation of Critical Pairs |

| and S-Polynomials |

| |

| |

+-------------------------------------------------*/

/***********************************************************

Criteria used to detect non-normalized critical pairs

***********************************************************/

// Both components have index <= i

CRITERION_ONE := 1; //
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// Larger component is not normalized

CRITERION_TWO := 2;

// Smaller component is not normalized

CRITERION_THREE := 3;

// Number of criteria above, used for stats

NUMBER_OF_CRITERIA := 3;

/***********************************************************

Rewrite [Rewritten]

Simplifies a given a pair (u,r[k]) using a list of

simplification rules.

Input:

u: term

k: r-index

iter: # of iteration in F5

r: global list of labeled polynomials

rules: global list of simplification rules

result: tupel to hold the result

Returns (in ~result):

A tupel of the form <u’,k’>, where u is a term

and k’ the highest r-index with r[k’][2]=iter and
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r[k’][1] a divisor of u*r[k’]. In particular

k=k’ if the given pair could not be simplified.

***********************************************************/

intrinsic Rewrite(u::RngMPolElt, k::RngIntElt, iter::RngIntElt,

~r::[], ~rules::[], ~result::Tup)

{Simplifies a given a pair (u,r) using the given list of rules.}

assert LC(u) eq 1;

t := LM(r[k][1]);

i := r[k][2];

assert LC(t) eq 1;

for j in [1..#rules[i]] do

t_j := rules[i,j][1];

k_j := rules[i,j][2];

assert LC(t_j) eq 1;

// assert entry rules[i,j] is correct:

assert LM(r[k_j][1]) eq t_j;

assert r[k_j][2] eq i;

if IsDivisibleBy(u*t,t_j) then

result := < (u*t)div t_j, k_j >;

return;

end if;

end for;
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result := < u, k >; // could not be simplified

end intrinsic;

/***********************************************************

IsRewritable [Rewritten?]

Checks if a term u can be rewritten using a given

labeled polynomial r[k].

Input:

u: term

k: r-index

iter: # of global iteration

r: global list of labeled polynomials

rules: global list of rules

Returns (in ~result):

True if the term u can be rewritten using the

labeled polynomial r_k, false otherwise.

***********************************************************/

intrinsic IsRewritable(u::RngMPolElt,k::RngIntElt, iter::RngIntElt,

~r::[],~rules::[],~result::BoolElt)

{Checks if a term u can be rewritten using

a given labeled polynomial r[k].}

subresult := <-42>;

Rewrite(u,k,iter,~r,~rules,~subresult);

term, l := Explode(subresult);
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assert LC(term) eq 1;

result := l ne k;

//print "Rewritten by ",l;

end intrinsic;

/***********************************************************

CritPair

Given two r-indices i,j, check if one of the two

critical pairs (r_i,r_j), (r_j,r_i) is normalized.

If so, assemble and return it.

Input:

i: r-index of a normalized labeled

polynomial

j: r-index of a normalized labeled

polynomial

r: "global" array of labeled polynomials

k: current iteration in IncrementalF5

psi: function that returns true for a

labeled polynomial x iff x is

top-reducible mod G_{l+1}, where

l = x[2]

Returns (in ~result):
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result a list [* p, is_pair, crit *]

is_pair: is true if this critical pair is

normalized, false otherwise.

p: If is_pair is true, p is a critical

pair, i.e. a tuple <t,u,k,v,l>,

where t is the LCM of the HTs of

the polynomials indexed by k,l,

u is t div HT(r[k]), v is t div

HT(r[l]). {k,l} is {i,j} (not

necessarily [k,l]=[i,j], as the

components may be swapped (cf.

Faug‘ere’s Def. 3). The pair is

guaranteed to be normalized.

crit: number of the criterion used to

identify the pair as redundant

(see constants above)

***********************************************************/

intrinsic CritPair(i::RngIntElt, j::RngIntElt, ~r::[],

iter::RngIntElt, ~psi::Program, ~result::Tup)

{Compute critical pair for two rules, if necessary.}

pol_ring := Parent(r[i][3]);

rule_univ := RuleUniverse(pol_ring);

pair_univ := PairUniverse(pol_ring);

t := LCMCritPair(r[i],r[j]);
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u_1 := pol_ring!t div pol_ring!LM(r[i][3]);

u_2 := pol_ring!t div pol_ring!LM(r[j][3]);

if SignatureLess(<u_1*r[i][1],r[i][2]>,

<u_2*r[j][1],r[j][2]>) lt 0 then

// swap rules

tmp := i;

i := j;

j := tmp;

tmp := u_1;

u_1 := u_2;

u_2 := tmp;

end if;

t_1 := LM(r[i][1]);

t_2 := LM(r[j][1]);

k_1 := r[i][2];

k_2 := r[j][2];

function Criterion1()

if k_1 gt iter then

//TODO: can’t happen!

//printf "crit (1) ruled out pair %o.\n", [i,j];

//if ((i eq 4) and (j eq 23)) then

// print "HA!1";

// readi debugger;
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//end if;

return false;

else

return true;

end if;

end function;

function Criterion2()

if psi(<u_1*t_1,k_1,1>) then

//printf "crit (2) ruled out pair %o\n", [i,j];

//if ((i eq 4) and (j eq 23)) then

// print "HA!2";

// readi debugger;

//end if;

return false;

else

return true;

end if;

end function;

function Criterion3()

if psi(<u_2*t_2,k_2,1>) then //DELTA_Faugere

//printf "crit (3) ruled out pair %o\n", [i,j];

//if ((i eq 4) and (j eq 23)) then

// print "HA!3";

// readi debugger;

//end if;

return false;
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else

return true;

end if;

end function;

pair := pair_univ!<t, u_1, i, u_2, j>;

if not Criterion1() then

result := < pair, false, CRITERION_ONE >;

return;

elif not Criterion2() then

result := < pair, false, CRITERION_TWO >;

return;

elif not Criterion3() then

result := < pair, false, CRITERION_THREE >;

return;

else

//printf "New crit pair: <%o, %o, r_%o, %o, r_%o>\n"

,t,u_1,i,u_2,j;

result := < pair, true, 0 >;

return;

end if;

end intrinsic;

/***********************************************************

Spols [Spol]
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Calculate S-polynomials for a sequence of

critical pairs, eliminating redundant

S-polynomials using simplification rules.

Input:

G_i: current intermediate Groebner

basis of <f_i,...,f_m>

critpairs: sequence of critical pairs

iterandhasbeeninD

<iter,hasbeeninD>

iter: # of current global iteration

hasbeeninD: list of r-indices that have been in DD

r: "global" list of labeled polynomials,

receives any S-polynomials created

rules: "global" list of simplification rules,

is updated if any S-polynomials are

created

F_dropped: tuple, receives the return value

Returns (in ~F_dropped):

F_dropped[1]: sequence of the r-indices of the
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S-polynomials for the given critical

pairs except those that were detected

as unnecessary

F_dropped[2]: sequence of those critical pairs

in critpairs for which the S-polynomial

was dropped, i.e., not inserted into r

***********************************************************/

intrinsic Spols(~G_i::[],~critpairs::[], iterandhasbeeninD::Tup,

~r::[], ~rules::[], ~F_dropped)

{Calculate non-redundant S-polynomials for a sequence of critical pairs.}

iter := iterandhasbeeninD[1];

hasbeeninD := iterandhasbeeninD[2];

cantest := true;

// boolean that will indicate whether a particular critical pair

// can be tested for Rewrite

pol_ring := Parent(r[iter][3]);

rule_univ := RuleUniverse(pol_ring);

// # of S-polynomials that are 0

nZero := 0;

F := [ ];

droppedL := [];
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print "Spols: Total number of pairs to examine:", #critpairs;

for pair in critpairs do

u := pair[2];

v := pair[4];

il := pair[3];

jl := pair[5];

assert il ne jl;

// if one of the two r-indices of the S-polynomial have

// been in DD, cannot Rewrite

for index in hasbeeninD do

if ((index eq il) or (index eq jl)) then

cantest := false;

break;

end if;

end for;

// ** Determine if we need the S-polynomial **

// Criterion 1: is none of the polys zero?

needSpol := (r[il][3] ne 0) and (r[jl][3] ne 0);

lc_il := LC(u*r[il][3]);

lc_jl := LC(v*r[jl][3]);

sp := u*r[il][3]- lc_il / lc_jl * v*r[jl][3];
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if sp eq 0 then

// Skip zeroes

//printf "\nS-Polynomial of pair %o is 0, skipping\n",pair;

//printf "r_%o = %o\n", il, r[il];

//printf "r_%o = %o\n", jl, r[jl];

nZero +:= 1;

continue;

end if;

// Criterion 2: Can the left summand be rewritten?

if ((needSpol) and (cantest)) then

result := false;

IsRewritable(u, il, iter, ~r, ~rules, ~result);

needSpol := not result;

end if;

//end if;

// Criterion 3: Can the right summand be rewritten?

if ((needSpol) and (cantest)) then

IsRewritable(v, jl, iter, ~r, ~rules, ~result);

needSpol := not result;

end if;

//end if;

if needSpol then

N := #r + 1; // "increment" N (it’s actually not global)

assert AssertReducedTo(u*r[il][3],sp);
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assert AssertReducedTo(v*r[jl][3],sp);

r[N] := rule_univ!<u * r[il][1], r[il][2], sp>;

AddRule(~rules,~r,N,pol_ring);

Append(~F,N);

else

droppedL cat:= [pair];

end if;

end for;

cmpFunc := -42; //initialize with dummy value

IndexSignatureLess(~r,~cmpFunc);

Sort(~F, cmpFunc);

if GetAssertions() then

degs := {TotalDegree(r[l][3]): l in F};

error if #degs gt 1,

"S-polynomials have different degrees!:",degs;

end if;

F_dropped := [* F, droppedL *];

end intrinsic;
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