Large-scale verification of Vandiver's conjecture

David Harvey

November 9, 2008

Plan for the talk

- Number-theoretic background (Excellent reference: Washington's Cyclotomic Fields.)
- Some algorithms
- The software
- The hardware

Number-theoretic background

Notation

$p=$ an odd prime
$\zeta=$ primitive p-th root of unity
$K=\mathbf{Q}(\zeta)$
$K^{+}=\mathbf{Q}(\zeta) \cap \mathbf{R}=\mathbf{Q}\left(\zeta+\zeta^{-1}\right)$
$A, A^{+}=$class groups of K, K^{+}
$A_{p}, A_{p}^{+}=p$-parts of A, A^{+}
$h, h^{+}, h_{p}, h_{p}^{+}=$orders of $A, A^{+}, A_{p}, A_{p}^{+}$
$G=\operatorname{Gal}(K / \mathbf{Q}) \cong(\mathbf{Z} / p \mathbf{Z})^{\times}$
$\sigma_{a}=\left(\zeta \mapsto \zeta^{a}\right) \in G$ for $a \in(\mathbf{Z} / p \mathbf{Z})^{\times}$.

Vandiver's conjecture

Vandiver's conjecture asserts that $h_{p}^{+}=1$ for all p.
Also known as the Kummer-Vandiver conjecture.
Kummer verified it by hand for $p<200$.
Vandiver verified it with a desk calculator up to about 600.
Lehmer verified it up to about 5000 in the late 1940s (one of the first pure mathematics calculations performed on a computer).

Most recent is Buhler et al (2001), verified up to $12,000,000$.

Vandiver's conjecture

Current project (joint work with Joe Buhler):

- Aim: check it for all $p<39 \cdot 2^{22}=163,577,856$.
- Done so far: verified completely up to about $88,080,384$.
- For $p<163,577,856$, have done the hard part (computing the 'irregular indices'), haven't verified Vandiver yet.

The cost to verify up to X is about $O\left(X^{2} \log X\right)$, so this computation is about 200 times larger than the 2001 attempt.

I'll say more about this computation later.

Naive heuristics

Suppose that h_{p}^{+}is "uniformly distributed" modulo p. Then

$$
\#\{\text { counterexamples } \leq X\} \approx \sum_{p \leq X} \frac{1}{p} \approx \log \log X
$$

Maybe this accounts for not seeing any counterexamples yet.
But "uniformly distributed" is a dangerous assumption. For example there is good empirical evidence that $h_{p} \neq 1$ about $39.35 \%\left(=1-e^{-1 / 2}\right)$ of the time.

We can explain this behaviour (at least heuristically) by studying the structure of A_{p} as a $\mathbf{Z}_{p}[G]$-module.

Galois module structure of A_{p}

Decompose A_{p} according to the orthogonal idempotents

$$
\varepsilon_{i}=\frac{1}{p-1} \sum_{a=1}^{p-1} \omega^{i}(a) \sigma_{a}^{-1} \in \mathbf{Z}_{p}[G], \quad 0 \leq i \leq p-2
$$

where $\omega:(\mathbf{Z} / p \mathbf{Z})^{\times} \rightarrow \mathbf{Z}_{p}^{\times}$is the Teichmuller character (lifts a to a root of unity $\omega(a) \equiv a(\bmod p)$).
Obtain the decomposition $A_{p}=\bigoplus_{i=0}^{p-2} \varepsilon_{i} A_{p}$.

Galois module structure of A_{p}

- $\varepsilon_{0} A_{p}=\varepsilon_{1} A_{p}=0$.
- Ribet's theorem:

$$
\varepsilon_{i} A_{p} \neq 0 \Longleftrightarrow p \mid B_{p-i}, \quad i=3,5, \ldots, p-2
$$

where B_{k} is the k-th Bernoulli number.

- Vandiver's conjecture is equivalent to

$$
\varepsilon_{i} A_{p}=0, \quad i=2,4, \ldots, p-3 .
$$

- The odd and even eigenspaces are related by a reflection theorem. If i is even, then

$$
\operatorname{dim}_{p}\left(\varepsilon_{i} A_{p}\right) \leq \operatorname{dim}_{p}\left(\varepsilon_{p-i} A_{p}\right) \leq 1+\operatorname{dim}_{p}\left(\varepsilon_{i} A_{p}\right)
$$

Irregular primes

p is called irregular if $p \mid B_{k}$ for some $k=2,4, \ldots, p-3$.
Such an integer k is called an irregular index for p.
The index of irregularity, $i(p)$, is the number of irregular indices that p has.

Ribet's theorem says that the non-trivial components $\varepsilon_{i} A_{p}$ (for odd $i)$ correspond precisely to the irregular indices for p.

Irregular primes (examples)

The smallest irregular prime is $p=37$. We have

$$
37 \left\lvert\, B_{32}=\frac{-7709321041217}{510}\right.
$$

so $k=32$ is an irregular index for 37 , and in fact $i(37)=1$. Ribet's theorem implies that $\varepsilon_{5} A_{37} \neq 0$.

The largest known $i(p)$ is 7 , which first occurs for $p=3,238,481$. Ribet's theorem says that the p-rank of A_{p} is at least 7 .

Obligatory example Sage session

Let J be an non-principal ideal of $\mathbf{Q}\left(\zeta_{37}\right)$. Then the class of J must lie in $\varepsilon_{5} A_{37}$, and $J^{37} \sim(1)$. We should have

$$
\left(\sigma_{20}(J)\right)^{2} J \sim\left(J^{20^{5}}\right)^{2} J \sim(1)
$$

since $2 \times 20^{5} \equiv-1 \bmod 37$. Let's check it:

```
sage: proof.number_field(False)
sage: K.<z> = CyclotomicField(37)
sage: G = K.class_group() # about 2 minutes
sage: J= G.gen().ideal(); J
Fractional ideal (94351, z - 40856)
sage: sigmaJ = K.ideal(94351, z^20 - 40856); sigmaJ
Fractional ideal (94351, z + 16284)
sage: L = sigmaJ * sigmaJ * J; L
```



```
    z^26 + z^25 + 2*z^24 + z^23 + z^21 - z^19 -
    z^17 + z^15 - z^14 + z^12 + z^11 + z^10 +
    z^9 + z^7 + z^6 + z^4 + 2*z + 1)
```

sage: L.is_principal()
True

Heuristics for irregular primes

Assume that B_{k} is "uniformly distributed" modulo p (for k even), i.e. is divisible by p with probability $1 / p$.

Then

$$
\begin{aligned}
P(i(p)=r) & =\binom{\frac{1}{2}(p-3)}{r}\left(1-\frac{1}{p}\right)^{\frac{1}{2}(p-3)-r}\left(\frac{1}{p}\right)^{r} \\
& \rightarrow \frac{e^{-1 / 2}}{2^{r} r!} \text { as } p \rightarrow \infty
\end{aligned}
$$

Poisson distribution with parameter $1 / 2$.

Heuristics for irregular primes

Empirical data strongly supports the Poisson hypothesis (but we can't even prove there are infinitely many regular primes!):

$i(p)$	$\# p$	fraction	Poisson prediction
0	$5,559,267$	0.6066532	0.6065307
1	$2,779,293$	0.3032894	0.3032653
2	694,218	0.0757563	0.0758163
3	115,060	0.0125559	0.0126361
4	14,425	0.0015741	0.0015795
5	1,451	0.0001583	0.0001580
6	112	0.0000122	0.0000132
7	5	0.0000005	0.0000009

Table: Irregularity statistics for $p<163,577,856$

Cyclotomic units

The best way to verify Vandiver's conjecture for a single p is via the cyclotomic units of K.

Let E, E^{+}be the unit groups of K, K^{+}.
Let $C^{+} \subseteq E^{+}$be the group of real cyclotomic units. It is generated by elements of the form

$$
\zeta^{\frac{(1-a)}{2}} \frac{1-\zeta^{a}}{1-\zeta}=\frac{\sin (\pi a / p)}{\sin (\pi / p)}, \quad 1 \leq a \leq p-1
$$

Fact: C^{+}is of finite index of E^{+}, and $h^{+}=\left[E^{+}: C^{+}\right]$.
Vandiver's conjecture is equivalent to the statement that the p-part of E^{+} / C^{+}is trivial.
(Note: A^{+}is not in general isomorphic to E^{+} / C^{+}!)

Structure of E^{+}

Let $E_{p}^{+}=\mathbf{Z}_{p} \otimes E^{+}$.
Decompose E_{p}^{+}as a $\mathbf{Z}_{p}[G]$-module; it turns out that

$$
E_{p}^{+}=\bigoplus_{\substack{i=2 \\ i \text { even }}}^{p-3} \varepsilon_{i} E_{p}^{+}
$$

where each $\varepsilon_{i} E_{p}^{+} \cong \mathbf{Z}_{p}$.
(This is consistent with Dirichlet's unit theorem, which says that rankz $E^{+}=(p-3) / 2$.)

Structure of E^{+}

The cyclotomic units can be used to explicitly write down elements of each component $\varepsilon_{i} E_{p}^{+}$.
Let $g \in(\mathbf{Z} / p \mathbf{Z})^{\times}$be a primitive root.
Let

$$
S_{i}=\prod_{a=1}^{p-1}\left(\zeta^{(1-g) / 2} \frac{1-\zeta^{g}}{1-\zeta}\right)^{\omega(a)^{i} \sigma_{a}^{-1}} \in \varepsilon_{i} E_{p}^{+}
$$

Then S_{i} is a p-adic limit of cyclotomic units, and is non-trivial (the latter depends on the fact that $\left.L_{p}\left(1, \omega^{i}\right) \neq 0\right)$.

However, S_{i} might not generate $\varepsilon_{i} E_{p}^{+} \cong \mathbf{Z}_{p}$; it might lie in $p \mathbf{Z}_{p}$.
Vandiver's conjecture is equivalent to the statement that each S_{i} does generate $\varepsilon_{i} E_{p}^{+}$.

More heuristics

This suggests another heuristic: suppose that S_{i} lies in $p \mathbf{Z}_{p}$ with probability $1 / p$ for each i.

There are $(p-3) / 2$ indices to choose from. We obtain a Poisson distribution again...
... so Vandiver's conjecture should fail for a (fairly large) positive proportion of primes!

This conclusion seems unlikely given the numerical evidence.

More heuristics

However, there is an obstruction.
Fact: if $S_{i} \in p \mathbf{Z}_{p}$, then $p \mid B_{i}$.
Taking this into account, the number of counterexamples $\leq X$ should be about

$$
\begin{aligned}
& \sum_{p \leq X} \sum_{r=0}^{\infty} P(i(p)=r) \times P\left(\text { some } S_{i} \in \varepsilon_{i} E_{p}^{+}\right) \\
& =\sum_{p \leq X} \sum_{r=0}^{\infty}\left(\frac{e^{-1 / 2}}{2^{r} r!}\right)\left(1-\left(1-\frac{1}{p}\right)^{r}\right) \\
& =\sum_{p \leq X} 1-e^{\frac{-1}{2 p}} \approx \sum_{p \leq X} \frac{1}{2 p} \\
& \sim \frac{1}{2} \log \log X
\end{aligned}
$$

More heuristics

For example:

- About 1.396 counterexamples less than 12,000,000.
- About 1.467 counterexamples less than $163,577,856$.

Chance of success for current project is maybe 7%.
Actually it's worse than it looks, since the first few (regular) primes account for the bulk of those estimates.

Taking into account the actual values of $i(p)$ for each p, we obtain an estimate of 0.748 counterexamples for $p<163,577,856$.

More heuristics (trust me, I'm a mathematician)

One average, expect one counterexample before 10^{14}.
TACC's archival storage facility (1 petabyte) can barely store a single polynomial for this computation.

Moore's law \Longrightarrow get to 10^{14} by about 2084 AD.
Expect two counterexamples before 10^{100}.
Moore's law \Longrightarrow get to 10^{100} in 1000 years.
Universe has insufficiently many particles to represent each polynomial.
Expect three counterexamples before 10^{750}.
Moore's law \Longrightarrow get to 10^{750} in 10000 years.

Some algorithms

Some algorithms

Two steps to verify Vandiver's conjecture for given p :

1. Compute $B_{0}, B_{2}, \ldots, B_{p-3}$ modulo p, to locate the irregular indices for p.
2. For each irregular index k, check whether S_{k} is a p-th power in $\varepsilon_{k} E_{p}^{+}$.

Step 1 is much more expensive than step 2.

Computing Bernoulli numbers modulo p

Two methods for computing $B_{0}, B_{2}, \ldots, B_{p-3}$ modulo p :

- The "power series method".
- The "Voronoi congruence method".

Both have complexity $O\left(p \log ^{2} p\right)$ (ignoring $\log \log p$ terms).
But different implied constants and memory usage.

The power series method

Simplest version: use the identity

$$
\frac{x}{e^{x}-1}=\sum_{k \geq 0} \frac{B_{k}}{k!} x^{k}
$$

Uses a single power series inversion over $\mathbf{Z} / p \mathbf{Z}$ of length $\sim p$.
Fast power series arithmetic yields running time $O\left(p \log ^{2} p\right)$.
(Pre-1990 algorithms essentially solved this sequentially for $B_{2}, B_{4}, B_{6}, \ldots$, yielding running time $O\left(p^{2}\right)$.)

The power series method

There are redundancies, e.g. $B_{k}=0$ for $k=3,5, \ldots, p-2$. Can exploit this via identities like

$$
\frac{x^{2}}{\cosh x-1}=-2+\sum_{k=0}^{\infty} \frac{(2 n-1) B_{2 n}}{(2 n)!} x^{2 n} .
$$

Only need power series inversion of length $\sim p / 2$.
More sophisticated 'multisectioning' versions exist. We used one that involves:

- One series inversion of length $\sim p / 8$.
- Four series multiplications of length $\sim p / 8$.

This strategy saves a lot of memory.

The Voronoi congruence method

Let $g \in \mathbf{Z} / p \mathbf{Z}$ be a primitive root, and let

$$
h(x)=\left\{\frac{x}{p}\right\}-g\left\{\frac{g^{-1} x}{p}\right\}+\frac{g-1}{2} .
$$

Use the following identity:

$$
B_{2 k} \equiv \frac{4 k}{1-g^{2 k}} \sum_{j=0}^{(p-3) / 2} g^{2 j k} \frac{h\left(g^{j}\right)}{g^{j}} \quad(\bmod p)
$$

This may be interpreted as a DFT (number-theoretic transform) of the function $j \mapsto h\left(g^{j}\right) / g^{j}$ over $\mathbf{Z} / p \mathbf{Z}$.

Use Bluestein's FFT algorithm to convert this to a single polynomial multiplication of length $\sim p / 2$ over $\mathbf{Z} / p \mathbf{Z}$.

Verifying Vandiver's conjecture

Suppose k is an irregular index for p (i.e. $p \mid B_{k}$). Recall that

$$
S_{k}=\prod_{a=1}^{p-1}\left(\zeta^{(1-g) / 2} \frac{1-\zeta^{g}}{1-\zeta}\right)^{\omega(a)^{k} \sigma_{a}^{-1}}
$$

To test whether S_{k} is a p-th power, we only need consider

$$
S_{k}^{*}=\prod_{a=1}^{p-1}\left(\zeta^{a(1-g) / 2} \frac{1-\zeta^{a g}}{1-\zeta^{a}}\right)^{a^{p-1-k}}
$$

which approximates S_{k} modulo $\left(E_{p}^{+}\right)^{p}$.

Verifying Vandiver's conjecture

To test whether S_{k}^{*} is a p-th power, we choose some degree 1 prime ideal $\tilde{\ell}$ in K and check whether S_{k}^{*} is a p-th power in $\mathcal{O}_{K} / \tilde{\ell}$.

This corresponds to choosing a prime $\ell \equiv 1(\bmod p)$, choosing a p-th root of unity $t \in \mathbf{Z} / \ell \mathbf{Z}$, and then checking whether

$$
\prod_{a=1}^{p-1}\left(t^{a(1-g) / 2} \frac{1-t^{a g}}{1-t^{a}}\right)^{a^{p-1-k}}
$$

is a p-th power in $\mathbf{Z} / \ell \mathbf{Z}$.
If this test fails for one ℓ, we could try a different ℓ - but so far this has never been necessary.

Verifying Vandiver's conjecture

Besides Vandiver's conjecture, we also compute the lambda invariant from Iwasawa theory. Essentially we check that A_{p} is as small as possible consistent with the value of $i(p)$ (i.e. that each nontrivial $\varepsilon_{i} A_{p}$ is no bigger than $\mathbf{Z} / p \mathbf{Z}$).

The software

The software

The most expensive part of the computation is finding the Bernoulli numbers modulo p.

This boils down to fast polynomial arithmetic $\mathbf{Z} / p \mathbf{Z}[x]$ - in particular polynomial multiplication and series inversion.

To make best use of the 64-bit processor, we do everything modulo two primes simultaneously.

Parallelisation was handled with a simple MPI program (two primes per task).

zn_poly

We used the zn_poly polynomial arithmetic library:

- A C library, released under GPL
- Available from http://cims.nyu.edu/~harvey/zn_poly/
- Under development for about a year
- Included in recent versions of Sage, but no direct interface yet
- Supports any modulus that fits into an unsigned long (performance is best for odd moduli)
- Good support for multiplication, series inversion, middle products in high degree case
- Automatically tuned thresholds for all algorithms
- Under heavy development, lots of things still missing

zn_poly multiplication performance

Figure: Multiplication of polynomials modulo a 48-bit modulus (Opteron)

Multiplication algorithms

Multiplication algorithms:

- For small degree (say ≤ 4000, depending on modulus size), uses ordinary or multipoint Kronecker substitution (H., 2008) reducing the problem to integer multiplication (via GMP).
- For large degree uses Schönhage-Nussbaumer convolution. Reduces length n multiplication to $O(\sqrt{n})$ multiplications of length $O(\sqrt{n})$.
- The Schönhage-Nussbaumer convolution uses a cache-friendly adaptation (H., 2008) of the truncated FFT (van der Hoeven, 2005) for smooth performance.
- Future versions will also use naive classical multiplication for low degree (currently under development).

Series inversion algorithms

For series inversion, uses a $1.5 M(n)$ algorithm based on the middle product (Hanrot-Quercia-Zimmerman, 2004).

The middle product is implemented via the transposition principle (includes a transposed truncated FFT and IFFT...).

Integer multiplication

Integer multiplication:

- New GMP assembly code, written especially for the Opteron
- About 25-30\% faster than Gaudry's well-known patch
- Written by Torbjörn Granlund and H.
- Should be released in GMP 4.3, hopefully later this year (more likely next year)

The hardware

Small-to-medium machines

- My laptop ($2 \times 2.0 \mathrm{GHz}$ Core 2 Duo, 1GB RAM)
- sage.math ($16 \times 1.8 \mathrm{GHz}$ Opteron, 64 GB RAM)
- alhambra @ Harvard ($16 \times 2.6 \mathrm{GHz}$ Opteron, 96GB RAM)
- Joe Buhler's cluster ($20 \times 3.4 \mathrm{GHz}$ Pentium 4, 1GB RAM each)

Slightly larger machines

TACC clusters:

- Lonestar: 1300 nodes.
- Each node $=4 \times 2.66 \mathrm{GHz}$ Xeon (Woodcrest), 8GB RAM.
- Total cores $=5200$, total RAM $=10$ TB.
- We used ≈ 119000 core-hours.
- Ranger: 3936 nodes.
- Each node $=16 \times 2.3 \mathrm{GHz}$ Opteron (Barcelona), 32GB RAM.
- Total cores $=62976$, total RAM $=123$ TB.
- We used ≈ 69000 core-hours.

About 21 core-years altogether.
On both machines, have 2GB RAM per core. If $p \approx 163,577,856$, one polynomial of length $p / 2$ requires 0.6 GB to store. Not much room to move! Managing memory was the biggest challenge of the computation.

Machines drawn to scale

My laptop 1

sage.math

Machines drawn to scale

Lonestar

 MY（17
 MY HY

中H中 M1
廿中中｜ H｜ HP中 Mi \＃

Machines drawn to scale

Ranger

Thank you!

