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Plan for the talk

I Number-theoretic background
(Excellent reference: Washington’s Cyclotomic Fields.)

I Some algorithms

I The software

I The hardware

David Harvey Large-scale verification of Vandiver’s conjecture



Number-theoretic background
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Notation

p = an odd prime

ζ = primitive p-th root of unity

K = Q(ζ)

K+ = Q(ζ) ∩ R = Q(ζ + ζ−1)

A, A+ = class groups of K , K+

Ap, A+
p = p-parts of A, A+

h, h+, hp, h+
p = orders of A, A+, Ap, A+

p

G = Gal(K/Q) ∼= (Z/pZ)×

σa = (ζ 7→ ζa) ∈ G for a ∈ (Z/pZ)×.
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Vandiver’s conjecture

Vandiver’s conjecture asserts that h+
p = 1 for all p.

Also known as the Kummer–Vandiver conjecture.

Kummer verified it by hand for p < 200.

Vandiver verified it with a desk calculator up to about 600.

Lehmer verified it up to about 5000 in the late 1940s (one of the
first pure mathematics calculations performed on a computer).

...

Most recent is Buhler et al (2001), verified up to 12,000,000.
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Vandiver’s conjecture

Current project (joint work with Joe Buhler):

I Aim: check it for all p < 39 · 222 = 163,577,856.

I Done so far: verified completely up to about 88,080,384.

I For p < 163,577,856, have done the hard part (computing the
‘irregular indices’), haven’t verified Vandiver yet.

The cost to verify up to X is about O(X 2 log X ), so this
computation is about 200 times larger than the 2001 attempt.

I’ll say more about this computation later.
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Naive heuristics

Suppose that h+
p is “uniformly distributed” modulo p. Then

#{counterexamples ≤ X} ≈
∑
p≤X

1

p
≈ log log X .

Maybe this accounts for not seeing any counterexamples yet.

But “uniformly distributed” is a dangerous assumption. For
example there is good empirical evidence that hp 6= 1 about
39.35% (= 1− e−1/2) of the time.

We can explain this behaviour (at least heuristically) by studying
the structure of Ap as a Zp[G ]-module.
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Galois module structure of Ap

Decompose Ap according to the orthogonal idempotents

εi =
1

p − 1

p−1∑
a=1

ωi (a)σ−1
a ∈ Zp[G ], 0 ≤ i ≤ p − 2,

where ω : (Z/pZ)× → Z×p is the Teichmuller character (lifts a to a
root of unity ω(a) ≡ a (mod p)).

Obtain the decomposition Ap =

p−2⊕
i=0

εiAp.
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Galois module structure of Ap

I ε0Ap = ε1Ap = 0.

I Ribet’s theorem:

εiAp 6= 0 ⇐⇒ p | Bp−i , i = 3, 5, . . . , p − 2,

where Bk is the k-th Bernoulli number.

I Vandiver’s conjecture is equivalent to

εiAp = 0, i = 2, 4, . . . , p − 3.

I The odd and even eigenspaces are related by a reflection
theorem. If i is even, then

dimp(εiAp) ≤ dimp(εp−iAp) ≤ 1 + dimp(εiAp).
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Irregular primes

p is called irregular if p | Bk for some k = 2, 4, . . . , p − 3.

Such an integer k is called an irregular index for p.

The index of irregularity, i(p), is the number of irregular indices
that p has.

Ribet’s theorem says that the non-trivial components εiAp (for odd
i) correspond precisely to the irregular indices for p.
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Irregular primes (examples)

The smallest irregular prime is p = 37. We have

37 | B32 =
−7709321041217

510
,

so k = 32 is an irregular index for 37, and in fact i(37) = 1.
Ribet’s theorem implies that ε5A37 6= 0.

The largest known i(p) is 7, which first occurs for p = 3,238,481.
Ribet’s theorem says that the p-rank of Ap is at least 7.
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Obligatory example Sage session

Let J be an non-principal ideal of Q(ζ37). Then the class of J
must lie in ε5A37, and J37 ∼ (1). We should have

(σ20(J))2J ∼ (J205
)2J ∼ (1).

since 2× 205 ≡ −1 mod 37. Let’s check it:
sage : p r oo f . n umbe r f i e l d ( Fa l s e )
sage : K.<z> = Cyc l o t om i cF i e l d (37)
sage : G = K. c l a s s g r o u p ( ) # about 2 minutes

sage : J = G. gen ( ) . i d e a l ( ) ; J
F r a c t i o n a l i d e a l (94351 , z − 40856)

sage : s igmaJ = K. i d e a l (94351 , z ˆ20 − 40856) ; s igmaJ
F r a c t i o n a l i d e a l (94351 , z + 16284)

sage : L = sigmaJ ∗ s igmaJ ∗ J ; L
F r a c t i o n a l i d e a l ( z ˆ35 + z ˆ33 + z ˆ32 + z ˆ29 + z ˆ28 + 2∗z ˆ27 +

z ˆ26 + z ˆ25 + 2∗z ˆ24 + z ˆ23 + z ˆ21 − z ˆ19 −
z ˆ17 + z ˆ15 − z ˆ14 + z ˆ12 + z ˆ11 + z ˆ10 +
zˆ9 + zˆ7 + zˆ6 + zˆ4 + 2∗z + 1)

sage : L . i s p r i n c i p a l ( )
True
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Heuristics for irregular primes

Assume that Bk is “uniformly distributed” modulo p (for k even),
i.e. is divisible by p with probability 1/p.

Then

P (i(p) = r) =

(1
2(p − 3)

r

)(
1− 1

p

) 1
2
(p−3)−r (1

p

)r

→ e−1/2

2r r !
as p →∞.

Poisson distribution with parameter 1/2.
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Heuristics for irregular primes

Empirical data strongly supports the Poisson hypothesis (but we
can’t even prove there are infinitely many regular primes!):

i(p) #p fraction Poisson prediction

0 5,559,267 0.6066532 0.6065307
1 2,779,293 0.3032894 0.3032653
2 694,218 0.0757563 0.0758163
3 115,060 0.0125559 0.0126361
4 14,425 0.0015741 0.0015795
5 1,451 0.0001583 0.0001580
6 112 0.0000122 0.0000132
7 5 0.0000005 0.0000009

Table: Irregularity statistics for p < 163,577,856
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Cyclotomic units

The best way to verify Vandiver’s conjecture for a single p is via
the cyclotomic units of K .

Let E , E+ be the unit groups of K , K+.

Let C+ ⊆ E+ be the group of real cyclotomic units. It is
generated by elements of the form

ζ
(1−a)

2
1− ζa

1− ζ
=

sin(πa/p)

sin(π/p)
, 1 ≤ a ≤ p − 1.

Fact: C+ is of finite index of E+, and h+ = [E+ : C+].

Vandiver’s conjecture is equivalent to the statement that the
p-part of E+/C+ is trivial.

(Note: A+ is not in general isomorphic to E+/C+!)
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Structure of E+

Let E+
p = Zp ⊗ E+.

Decompose E+
p as a Zp[G ]-module; it turns out that

E+
p =

p−3⊕
i=2

i even

εiE
+
p ,

where each εiE
+
p
∼= Zp.

(This is consistent with Dirichlet’s unit theorem, which says that
rankZ E+ = (p − 3)/2.)
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Structure of E+

The cyclotomic units can be used to explicitly write down elements
of each component εiE

+
p .

Let g ∈ (Z/pZ)× be a primitive root.

Let

Si =

p−1∏
a=1

(
ζ(1−g)/2 1− ζg

1− ζ

)ω(a)iσ−1
a

∈ εiE
+
p .

Then Si is a p-adic limit of cyclotomic units, and is non-trivial (the
latter depends on the fact that Lp(1, ωi ) 6= 0).

However, Si might not generate εiE
+
p
∼= Zp; it might lie in pZp.

Vandiver’s conjecture is equivalent to the statement that each Si

does generate εiE
+
p .
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More heuristics

This suggests another heuristic: suppose that Si lies in pZp with
probability 1/p for each i .

There are (p − 3)/2 indices to choose from. We obtain a Poisson
distribution again...

... so Vandiver’s conjecture should fail for a (fairly large) positive
proportion of primes!

This conclusion seems unlikely given the numerical evidence.

David Harvey Large-scale verification of Vandiver’s conjecture



More heuristics

However, there is an obstruction.

Fact: if Si ∈ pZp, then p | Bi .

Taking this into account, the number of counterexamples ≤ X
should be about∑

p≤X

∞∑
r=0

P(i(p) = r)× P(some Si ∈ εiE
+
p )

=
∑
p≤X

∞∑
r=0

(
e−1/2

2r r !

)(
1−

(
1− 1

p

)r)
=
∑
p≤X

1− e
−1
2p ≈

∑
p≤X

1

2p

∼ 1

2
log log X .

David Harvey Large-scale verification of Vandiver’s conjecture



More heuristics

For example:

I About 1.396 counterexamples less than 12,000,000.

I About 1.467 counterexamples less than 163,577,856.

Chance of success for current project is maybe 7%.

Actually it’s worse than it looks, since the first few (regular) primes
account for the bulk of those estimates.

Taking into account the actual values of i(p) for each p, we obtain
an estimate of 0.748 counterexamples for p < 163,577,856.
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More heuristics (trust me, I’m a mathematician)

One average, expect one counterexample before 1014.

TACC’s archival storage facility (1 petabyte) can barely store a
single polynomial for this computation.

Moore’s law =⇒ get to 1014 by about 2084 AD.

Expect two counterexamples before 10100.

Moore’s law =⇒ get to 10100 in 1000 years.

Universe has insufficiently many particles to represent each
polynomial.

Expect three counterexamples before 10750.

Moore’s law =⇒ get to 10750 in 10000 years.
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Some algorithms
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Some algorithms

Two steps to verify Vandiver’s conjecture for given p:

1. Compute B0,B2, . . . ,Bp−3 modulo p, to locate the irregular
indices for p.

2. For each irregular index k, check whether Sk is a p-th power
in εkE+

p .

Step 1 is much more expensive than step 2.

David Harvey Large-scale verification of Vandiver’s conjecture



Computing Bernoulli numbers modulo p

Two methods for computing B0,B2, . . . ,Bp−3 modulo p:

I The “power series method”.

I The “Voronoi congruence method”.

Both have complexity O(p log2 p) (ignoring log log p terms).

But different implied constants and memory usage.
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The power series method

Simplest version: use the identity

x

ex − 1
=
∑
k≥0

Bk

k!
xk .

Uses a single power series inversion over Z/pZ of length ∼ p.

Fast power series arithmetic yields running time O(p log2 p).

(Pre-1990 algorithms essentially solved this sequentially for
B2,B4,B6, . . ., yielding running time O(p2).)
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The power series method

There are redundancies, e.g. Bk = 0 for k = 3, 5, . . . , p − 2. Can
exploit this via identities like

x2

cosh x − 1
= −2 +

∞∑
k=0

(2n − 1)B2n

(2n)!
x2n.

Only need power series inversion of length ∼ p/2.

More sophisticated ‘multisectioning’ versions exist. We used one
that involves:

I One series inversion of length ∼ p/8.

I Four series multiplications of length ∼ p/8.

This strategy saves a lot of memory.
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The Voronoi congruence method

Let g ∈ Z/pZ be a primitive root, and let

h(x) =

{
x

p

}
− g

{
g−1x

p

}
+

g − 1

2
.

Use the following identity:

B2k ≡
4k

1− g2k

(p−3)/2∑
j=0

g2jk h(g j)

g j
(mod p).

This may be interpreted as a DFT (number-theoretic transform) of
the function j 7→ h(g j)/g j over Z/pZ.

Use Bluestein’s FFT algorithm to convert this to a single
polynomial multiplication of length ∼ p/2 over Z/pZ.
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Verifying Vandiver’s conjecture

Suppose k is an irregular index for p (i.e. p | Bk). Recall that

Sk =

p−1∏
a=1

(
ζ(1−g)/2 1− ζg

1− ζ

)ω(a)kσ−1
a

.

To test whether Sk is a p-th power, we only need consider

S∗k =

p−1∏
a=1

(
ζa(1−g)/2 1− ζag

1− ζa

)ap−1−k

which approximates Sk modulo (E+
p )p.
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Verifying Vandiver’s conjecture

To test whether S∗k is a p-th power, we choose some degree 1
prime ideal ˜̀ in K and check whether S∗k is a p-th power in OK/˜̀.

This corresponds to choosing a prime ` ≡ 1 (mod p), choosing a
p-th root of unity t ∈ Z/`Z, and then checking whether

p−1∏
a=1

(
ta(1−g)/2 1− tag

1− ta

)ap−1−k

is a p-th power in Z/`Z.

If this test fails for one `, we could try a different ` — but so far
this has never been necessary.
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Verifying Vandiver’s conjecture

Besides Vandiver’s conjecture, we also compute the lambda
invariant from Iwasawa theory. Essentially we check that Ap is as
small as possible consistent with the value of i(p) (i.e. that each
nontrivial εiAp is no bigger than Z/pZ).
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The software
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The software

The most expensive part of the computation is finding the
Bernoulli numbers modulo p.

This boils down to fast polynomial arithmetic Z/pZ[x ] — in
particular polynomial multiplication and series inversion.

To make best use of the 64-bit processor, we do everything modulo
two primes simultaneously.

Parallelisation was handled with a simple MPI program (two primes
per task).
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zn poly

We used the zn poly polynomial arithmetic library:

I A C library, released under GPL

I Available from http://cims.nyu.edu/∼harvey/zn poly/

I Under development for about a year

I Included in recent versions of Sage, but no direct interface yet

I Supports any modulus that fits into an unsigned long
(performance is best for odd moduli)

I Good support for multiplication, series inversion, middle
products in high degree case

I Automatically tuned thresholds for all algorithms

I Under heavy development, lots of things still missing
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zn poly multiplication performance
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Figure: Multiplication of polynomials modulo a 48-bit modulus (Opteron)
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Multiplication algorithms

Multiplication algorithms:

I For small degree (say ≤ 4000, depending on modulus size),
uses ordinary or multipoint Kronecker substitution (H., 2008)
reducing the problem to integer multiplication (via GMP).

I For large degree uses Schönhage–Nussbaumer convolution.
Reduces length n multiplication to O(

√
n) multiplications of

length O(
√

n).

I The Schönhage–Nussbaumer convolution uses a cache-friendly
adaptation (H., 2008) of the truncated FFT (van der Hoeven,
2005) for smooth performance.

I Future versions will also use naive classical multiplication for
low degree (currently under development).
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Series inversion algorithms

For series inversion, uses a 1.5M(n) algorithm based on the middle
product (Hanrot–Quercia–Zimmerman, 2004).

The middle product is implemented via the transposition principle
(includes a transposed truncated FFT and IFFT...).
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Integer multiplication

Integer multiplication:

I New GMP assembly code, written especially for the Opteron

I About 25–30% faster than Gaudry’s well-known patch

I Written by Torbjörn Granlund and H.

I Should be released in GMP 4.3, hopefully later this year (more
likely next year)
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The hardware
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Small–to–medium machines

I My laptop (2 × 2.0GHz Core 2 Duo, 1GB RAM)

I sage.math (16 × 1.8GHz Opteron, 64GB RAM)

I alhambra @ Harvard (16 × 2.6GHz Opteron, 96GB RAM)

I Joe Buhler’s cluster (20 × 3.4GHz Pentium 4, 1GB RAM
each)
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Slightly larger machines

TACC clusters:

I Lonestar: 1300 nodes.
I Each node = 4 × 2.66GHz Xeon (Woodcrest), 8GB RAM.
I Total cores = 5200, total RAM = 10 TB.
I We used ≈ 119000 core-hours.

I Ranger: 3936 nodes.
I Each node = 16 × 2.3GHz Opteron (Barcelona), 32GB RAM.
I Total cores = 62976, total RAM = 123 TB.
I We used ≈ 69000 core-hours.

About 21 core-years altogether.

On both machines, have 2GB RAM per core. If p ≈ 163,577,856,
one polynomial of length p/2 requires 0.6 GB to store. Not much
room to move! Managing memory was the biggest challenge of the
computation.
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Machines drawn to scale
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Machines drawn to scale
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Machines drawn to scale
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Thank you!
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