
Sage: Introduction and Status Report

Sage Days 11, Austin, TX

Craig Citro

November 7, 2008

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

What is Sage?

Sage is open source math software that aims to be a viable, high-quality,
free and open source alternative to Magma, Maple, Mathematica, and
Matlab.

Sage is about “building the car instead of reinventing the wheel.” This
means that as much as possible, Sage uses existing open source libraries
and packages instead of spending time repeating existing efforts.

Sage is built on Python. This means that anything built by the (massive)
Python community can be used from within Sage. (I think that choosing
Python for Sage was probably the single best decision William Stein made
in the whole process.)

What is Sage?

Sage consists of four major “pieces”:

A distribution of a large number of open source math software packages,
currently numbering around 70 packages.

A library of new code, currently over 200,000 lines, providing new
functionality.

Interfaces to lots of other existing math software, both free (e.g. Pari/GP,
Singular) and non-free (e.g. Magma, Mathematica, Maple, Matlab).

A friendly and open community of users and developers.

Why? A Call to Arms . . .

J. Neubüser, Creator of GAP

You can read Sylow’s Theorem and its proof in Huppert’s book in the library
without even buying the book and then you can use Sylow’s Theorem for the
rest of your life free of charge, but . . . for many computer algebra systems
license fees have to be paid regularly for the total time of their use. . . . You
can press buttons and you get answers in the same way as you get the bright
pictures from your television set but you cannot control how they were made in
either case.

With this situation two of the most basic rules of conduct in mathematics are
violated: In mathematics information is passed on free of charge and everything
is laid open for checking. Not applying these rules to computer algebra systems
that are made for mathematical research . . . means moving in a most
undesirable direction. Most important: Can we expect somebody to believe a
result of a program that he is not allowed to see? Moreover: Do we really want
to charge colleagues in Moldava several years of their salary for a computer
algebra system?

Why? A frightening quote . . .

Mathematica Tutorial:

Particularly in more advanced applications of Mathematica, it may sometimes
seem worthwhile to try to analyze internal algorithms in order to predict which
way of doing a given computation will be the most efficient. And there are
indeed occasionally major improvements that you will be able to make in
specific computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the internals of
Mathematica are quite complicated, and even given a basic description of the
algorithm used for a particular purpose, it is usually extremely difficult to
reach a reliable conclusion about how the detailed implementation of this
algorithm will actually behave in particular circumstances.

Sage – What’s inside?

Sage comes standard with over 70 packages, including:

Arithmetic GMP, MPFR, Givaro, MPFI

Commutative Algebra PolyBoRi, SINGULAR (libSINGULAR)
Linear Algebra LinBox, M4RI, IML, fpLLL

Cryptosystems GnuTLS, PyCrypto

Integer Factorization FlintQS, ECM

Group Theory GAP

Combinatorics Symmetrica, sage-combinat

Graph Theory NetworkX

Number Theory PARI, NTL, Flint, mwrank, eclib

Numerical Computation GSL, Numpy, Scipy, ATLAS

Calculus, Symbolic Comp. Maxima, Sympy, Pynac

Statistics R

User Interface Sage Notebook, jsmath, Moin wiki, IPython

Graphics Matplotlib, Tachyon, libgd, JMol

Networking Twisted

Databases ZODB, SQLite, SQLAlchemy, Python pickle
Programming Language Python, Cython (compiled)

Sage’s many uses:

Neil Sloane

From: N. J. A. Sloane <njas@research.att.com>
Date: 8 Nov 2007 06:28
Subject: Re: dumb question about installing pari-gp with fink

I would like to thank everyone who responded to
my question about installing PARI on an iMAC.

The consensus was that it would be simplest to install sage,
which includes PARI and many other things.

I tried this and it worked!

Thanks!

Neil

(It is such a shock when things actually work!!)

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

Sage via the Terminal

The first interface to Sage is exactly what everyone would expect, a simple
command line interface. Here’s a screenshot:

Sage via the web

Sage also has a snazzy web interface:

Some of Sage’s Interface features:

Notebook

One can use the Sage notebook as a front-end for any of the systems that
Sage has an interface to. It can also be used to work on your machine
remotely with only a web browser, or to share work with others.

Tab Completion & Source Introspection

Sage has full tab completion and command history, even between sessions.
Sage also can use ? and ?? to see documentation and source for any Sage
function, right from the command line or Notebook. This helps lower the
bar for moving from “user” to “developer.”

2D and 3D Graphics

We have full support for 2D and 3D graphics, both from the command
line and in the Notebook. For 2D graphics, we use several tools, especially
Matplotlib. For 3D graphics, we have Jmol for interactive 3D, as well as
the Tachyon3D ray tracer.

Let’s try it!

Demo

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

Making Python Fast

Cython is a fork of the Pyrex project by Greg Ewing. Cython is a
Python-to-C compiler aimed at taking Python code and giving it the speed
of pure C.

Cython also allows you to mix Python with C/C++ code, giving a very
fast and smooth interface between your Python code and existing libraries.

Cython allows one to fully take advantage of the “90/10” rule in the
context of Python.

Wind it up and watch it go . . .

Demo

The answer to Manipulate

Interact was first developed by William Stein as the answer to
Mathematica’s Manipulate command. Interact is still not as full-featured,
but is amazingly useful, both for teaching and research.

Interact is surprisingly useful in the following situation: when you have a
few choices of input, and you want to repeatedly run a handful of
commands in series with those inputs. Interact is basically an abstract tool
that makes this incredibly smooth, with no work on the user’s part.

Interacting with Interact

Demo

Modern programmers do it in parallel . . .

Sage also includes 2 1
2

tools for taking advantage of multiple cores and
machines:

The @interact decorator, built using the pyprocessing Python
extension. This gives a quick and easy way to take advantage of multiple
cores.

DSage (Distributed Sage) is a system for distributed computing with
Sage. Sadly, DSage has languished since its primary developer (Yi Qiang)
graduated from UW. Volunteers?

IPython now includes an architecture for parallel computing (what was
once known as the ipython1 branch). No one has yet added code to Sage
to take advantage of this.

All together now . . .

Demo

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

How’s our coding? Call 1-800-www.sagemath.org

Sage is a thriving project. We have a new release roughly every three weeks,
and an active community of over 100 developers. Almost every recent release
has had several first-time contributors to the project. The sage-devel mailing
list has 675 subscribers, and sage-support has 810. We also maintain an
active IRC channel: #sage-devel on irc.freenode.net. Come and visit us!

Where’s Antarctica?

But do you trust it?

Before every single release, we:

build Sage on dozens of different combinations of CPU and operating
system (the “build farm”),

run the doctest suite on every one of these machines, currently 78085
doctests,

ask volunteers on sage-devel to do the same, and

report all issues, and wait to release until these are fixed.

We also keep track of all known bugs on our bug tracker,
http://trac.sagemath.org.

Sage: Immediate Goals

So here are what I think the current focus of development should be, in order:

doctest timing and regression testing

the pickle jar

doctest coverage (currently: 62.9%)

The first two are already underway, and the doctest coverage should be 100%

by . . . February?

Sage: Next Big Goals

In the longer term, i.e. in the next year, I think that our biggest goals should
be:

DOCUMENTATION!!!

DOCUMENTATION!!!

DOCUMENTATION!!!

In particular, I’m talking about high level documentation, and introductory

documentation. This is already underway, but I think that we need a serious
effort from the core Sage developers on this front.

How are you doing this?

When most people hear about Sage, they explain all the reasons that Sage
must fail. Sage is already a success. Two important factors drive Sage
development:

a huge amount of extremely hard, mostly volunteer work, and

refusal to acknowledge that Sage is impossible.

We’re working hard, but we need your help.

Who pays for all this?

Sage has been lucky enough to receive generous funding from all kinds of
sources. One of the most important factors in getting funding: we apply for

lots of funding. Our generous sponsors include all of the following:

THANK YOU UT AUSTIN!

A few words from our sponsors . . .

Upcoming Sage Days

The number of Sage Days conferences has been staggering. Even if we ignore
the “underground” Sage Days, here are the numbers for the last few years:

2006: 2

2007: 4

2008: 8

William Stein, Aug 23 2007:

At this rate, soon every day will be a Sage Day.

Given that the average Sage Workshop lasts 5 days, this means that by the
2010-2011 school year, William Stein will have to quit his job at UW and
continuously travel between Sage Days conferences.

Here are some upcoming Sage Days:

Sage Days: Austin

Sage Days: San Diego, January 2009

Sage Days: Athens, February 2009

Sage Days: MSRI, March 2009

Sage Days: Seattle, May 2009

Sage Days: Oklahoma ... unlikely!

Outline

1 What is Sage?

2 Using Sage

3 Killer Features
Cython
Interact
Parallel Computing

4 Sage: The Project

5 Number Theory and Modular Forms in Sage

Yeah, about that . . .

I’m sure I’m out of time by now. However, William just gave three very nice
talks on the state of number theory and modular forms functionality in Sage, at
a conference in Bordeaux. You can find his talk here:

http://www.wstein.org/papers/2008-bordeaux/

Or, if you want to know if Sage can do something, just come ask me. If I don’t
know, I’ll know who to ask.

Any questions?

Thanks for listening!

	What is Sage?
	Using Sage
	Killer Features
	Cython
	Interact
	Parallel Computing

	Sage: The Project
	Number Theory and Modular Forms in Sage

