Shifted combinatorial Hopf algebras from K-theory

Eric Marberg Hong Kong University of Science and Technology

Sage Days 114, July 2022

Eric Marberg (HKUST)

Shifted combinatorial Hopf algebras

Sage Days 114, July 2022 1/24

Outline and setup

- Goal: introduce some interesting bases of (quasi)symmetric functions from the perspective of combinatorial Hopf algebras and K-theory.
- Will start with some classical objects (already implemented in Sage), then discuss some semi-classical things (partially implemented), finally talk about new constructions (not yet implemented).
 Results joint w/ Yu-Cheng Chiu, Joel Lewis, Brendan Pawlowski.
- Conventions: all maps f are linear, meaning \mathbb{Z} -linear with

$$f\left(\sum_{i\in I}a_i\right)=\sum_{i\in I}f(a_i)$$

even for infinite sums. Choice of scalar ring \mathbb{Z} is mostly arbitrary, could be replaced by any integral domain.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebras, coalgebras, and bialgebras

 Two commutative algebras: polynomials Z[x] and power series Z[[x]]. We have a natural nondegenerate bilinear form Z[x] × Z[[x]] → Z:

$$\langle f,g\rangle := g(\frac{d}{dx})f(x)\big|_{x=0} \quad \Rightarrow \quad \langle x^m,x^n\rangle = \frac{d^n}{dx^n}x^m\big|_{x=0} = n!\cdot\delta_{mn}.$$

• Define $\Delta : \mathbb{Z}[x] \to \mathbb{Z}[x] \otimes \mathbb{Z}[x]$ and $\Delta : \mathbb{Z}[\![x]\!] \to \mathbb{Z}[\![x]\!] \,\hat{\otimes} \, \mathbb{Z}[\![x]\!]$ by

 $\langle \Delta(f), g_1 \otimes g_2 \rangle = \langle f, g_1 g_2 \rangle$ and $\langle f_1 \otimes f_2, \Delta(g) \rangle = \langle f_1 f_2, g \rangle$

Here we evaluate $\langle f_1 \otimes f_2, g_1 \otimes g_2 \rangle := \langle f_1, g_1 \rangle \langle f_2, g_2 \rangle.$

Both Δ's are linear and co-associative: (1 ⊗ Δ) ∘ Δ = (Δ ⊗ 1) ∘ Δ.
 Small miracle: both maps Δ are algebra morphisms. Can compute

$$\Delta(x^n) = \sum_{i+j=n} {n \choose i} x^i \otimes x^j.$$

Conclusion: $\mathbb{Z}[x]$ and $\mathbb{Z}[x]$ are dual bialgebras via the form $\langle \cdot, \cdot \rangle$.

Antipodes and Hopf algebras

 Suppose H is a bialgebra with product ∇ : f ⊗ g → fg, coproduct Δ. The set End(H) of linear maps f : H → H is an algebra with product

$$f_1 * f_2 := \nabla \circ (f_1 \otimes f_2) \circ \Delta.$$

The unit of this **convolution algebra** is **not** the identity map id_H . Instead, it is the composition $\iota \circ \epsilon$ of the **unit** and **counit** of *H*.

- In all examples today, H will be a subset of formal power series, and the composition $\iota \circ \epsilon$ is just the map setting all variables to zero.
- If id_H has 2-sided inverse $S : H \to H$ for * then H is a Hopf algebra with antipode S. If S exists then it is unique, and S(ab) = S(b)S(a).
- Both $\mathbb{Z}[x]$ and $\mathbb{Z}[\![x]\!]$ are Hopf algebras with $\mathbf{S}(x) = -x$ as

$$(\mathbf{S} * \mathrm{id})(x^n) = (\mathrm{id} * \mathbf{S})(x^n) = \sum_{i+j=n} {n \choose i} (-x)^i x^j = (x-x)^n = x^n \big|_{x=0}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Malvenuto-Reutenauer algebra and symmetric functions

- A packed word $w = w_1 w_2 \cdots w_p$ has $\{w_1, \dots, w_p\} = \{1, \dots, n\}$ for some $n \leq p$. If v, w are packed words with $\max(v) = m$ then let $v \sqcup w = \sum (\text{shuffles of } v \text{ and } (w_1 + m)(w_2 + m) \cdots (w_p + m)).$ Example: $21 \sqcup 12 = 3421 + 3241 + 3214 + 2341 + 2314 + 2134 + 2134$. • **Perm** = infinite linear comb's of **permutations** $w \in \bigsqcup_{n \ge 0} S_n$, **Perm** = finite linear comb's of permutations \rightsquigarrow both algebras for \sqcup . • $\widehat{\mathbf{Sym}}$ = symmetric power series in $\mathbb{Z}[\![x_1, x_2, \ldots]\!]$, Sym = power series in Sym of bounded degree.
- Define $\langle \cdot, \cdot \rangle$: Sym \times Sym $\rightarrow \mathbb{Z}$ by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$ for Schur functions. Define $\langle \cdot, \cdot \rangle$: Perm \times Perm $\rightarrow \mathbb{Z}$ by $\langle v, w \rangle = \delta_{v^{-1}w}$ for $v, w \in \bigsqcup_{n \ge 0} S_n$.

Theorem

Sym and $\widehat{S}ym$ (resp. Perm and $\widehat{P}erm$) are dual Hopf algebras via $\langle \cdot, \cdot \rangle$.

Quasisymmetric functions

For compositions $\alpha = (\alpha_1, \ldots, \alpha_k)$ let $M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}$. Define $\widehat{\mathbf{QSym}}$ = infinite linear combinations of M_{α} 's. This is an algebra.

Proposition

 $\widehat{\mathbf{Q}}$ Sym is a Hopf algebra for $\Delta(M_{\alpha}) := \sum_{i=0}^{k} M_{(\alpha_1,...,\alpha_i)} \otimes M_{(\alpha_{i+1},...,\alpha_k)}$.

- A combinatorial Hopf algebra is a Hopf algebra H with an algebra morphism ζ : H → Z[[t]] satisfying counit condition ζ(h)|_{t=0} = ε(h).
- Call ζ the character of H. We view $\widehat{\mathbf{QSym}}$ as a combinatorial Hopf algebra for the character $\zeta_{\mathbf{Q}}$ that sets $x_1 = t$ and $x_2 = x_3 = \cdots = 0$.

Theorem (Aguiar-Bergeron-Sottile, 2006)

For each combinatorial Hopf algebra (H, ζ) there is a unique Hopf algebra morphism $\Psi : H \to \widehat{\mathbf{Q}}\mathbf{Sym}$ such that $\zeta = \zeta_{\mathbf{Q}} \circ \Psi$.

Eric Marberg (HKUST)

- 3

イロト イポト イヨト イヨト

Fundamental quasisymmetric functions

For an *n*-letter word *w* let $\alpha(w)$ be composition of *n* giving lengths of maximal increasing subwords. For example $\alpha(\underline{1346}\overline{279}\underline{58}) = (4,3,2)$.

Define $\zeta_{<}(w) = t^n$ if $w = 123 \cdots n$ and $\zeta_{<}(w) = 0$ if w not increasing.

Proposition

There is a unique Hopf alg. morph. Ψ : $\widehat{\mathbf{Perm}} \to \widehat{\mathbf{Q}}\mathbf{Sym}$ with $\zeta_{\leq} = \zeta_{\mathbf{Q}} \circ \Psi$. This map has $\Psi(v) = \Psi(w)$ for permutations v, w iff $\alpha(v) = \alpha(w)$.

Define
$$L_{\alpha} = \Psi(w)$$
 for w with $\alpha = \alpha(w)$ and $R_{\alpha} = \sum_{\alpha(w) = \alpha} w \in \mathbf{Perm}$.

 $\{L_{\alpha}\}$ is basis for $\widehat{\mathbf{Q}}\mathbf{Sym}$, $\{R_{\alpha}\}$ is basis for a subalgebra $\mathbf{NSym} \subset \mathbf{Perm}$.

Theorem

NSym and **QSym** are dual Hopf algebras via form with $\langle R_{\alpha}, L_{\gamma} \rangle = \delta_{\alpha\gamma}$.

Eric Marberg (HKUST)

Shifted combinatorial Hopf algebras

A D N A B N A B N A B N

A diagram of Hopf algebras

These objects fit into the classical diagram:

- The vertical lines indicate dualities via the three forms $\langle\cdot,\cdot
 angle.$
- Each $f : A_1 \hookrightarrow A_2$ is an inclusion and each $g : B_2 \twoheadrightarrow B_1$ is surjective. These maps come in adjoint pairs satisfying $\langle f(a_1), b_2 \rangle = \langle a_1, g(b_2) \rangle$.
- The bottom right map sends $w \mapsto L_{\alpha(w)}$.
- Top left map sends $R_{\alpha} \mapsto s_{\lambda/\mu}$ where λ/μ is the **ribbon of type** α . For example if $\alpha = (2, 3, 4)$ then $\lambda = (7, 4, 2)$ and $\mu = (3, 1)$ so that

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sage implementations

- All of the objects here (at least in top row) are in Sage See documentation for "Combinatorial Hopf algebras"
- Perm is called FQSym "free quasisymmetric functions"
- NSym is called NCSF "non-commutative symmetric functions"
- L_{α} 's are the QSym.F basis while R_{α} 's are the NCSF.ribbon basis.

イロト イポト イヨト イヨト 二日

Polynomials from K-theory

- Let Mat_{n×n} be the set of n × n matrices over C.
 Let B be the group upper-triangular invertible n × n matrices over C.
- B acts on Mat_{n×n} on left and right, orbits are indexed by (partial) permutation matrices w. Let X_w be the closure of orbit of w ∈ S_n.
- T-equivariant K-theory class of X_w is an inhomogeneous polynomial

$$\mathfrak{G}_w \in \mathbb{Z}[x_1, x_2, \ldots, x_n] = K_T(\mathsf{Mat}_{n \times n}).$$

These Grothendieck polynomials have a few special properties:

𝔅_w = 𝔅_w + (higher degree) where 𝔅_w is Schubert polynomial.
If w × 1^k = [w | 0 / 0 / 1_k] then 𝔅_w = 𝔅_{w×1^k}.
If 1^k × w = [I_k | 0 / 0 / w] then 𝔅_w := lim_{k→∞} 𝔅_{1^k×w} ∈ Ŝym - Sym.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Stable Grothendieck polynomials

- If w_{λ} is the **dominant permutation** of shape λ then $\mathfrak{G}_{w_{\lambda}} = x^{\lambda}$. Example: if $\lambda = (2, 1, 1)$ then $w_{\lambda} = \begin{bmatrix} \square & \square & 1 \\ \square & \square & 1 \\ \square & 1 & 1 \end{bmatrix}$ and $\mathfrak{G}_{w_{\lambda}} = x_1^2 x_2 x_3$.
- Define stable Grothendieck polynomial G_λ := G_{w_λ} for partitions λ.
 One has G_λ = s_λ + (higher degree terms) where s_λ is Schur function.
 ⇒ {G_λ} is a basis for Sym, but each G_λ has unbounded degree.
- Define $\{g_{\lambda}\}$ to be unique symmetric functions with $\langle g_{\lambda}, \mathcal{G}_{\mu} \rangle = \delta_{\lambda\mu}$.

Theorem (Buch, 2002)

Each G_w and $G_\lambda G_\mu$ is in (finite) \mathbb{N} -span $\{G_\nu\} \Rightarrow \{G_\nu\}$ generates a ring.

Later: G_{λ} and g_{λ} have certain explicit weight generating functions. Some authors work with equivalent defn. $G_{\lambda}^{(\beta)} := \frac{1}{\beta^{|\lambda|}} G_{\lambda}(\beta x_1, \beta x_2, ...).$

- 3

11 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

K-theoretic Hopf algebras of multipermutations

Define \sim on packed words by $w = w_1 \cdots w_i \cdots w_m \sim w_1 \cdots w_i w_i \cdots w_m$. This means that $121 \sim 1121 \sim 1221 \sim 1211 \sim 11221 \sim \cdots$ and so forth.

- Define mPerm = (infinite linear span of elements [[w]] := ∑_{v∼w} v).
 Define MPerm = (linear span of packed words) / ⟨v w : v ~ w⟩.¹
 These spaces are algebras for shifted shuffle product □.
- Bases given by { [[w]] } and {w} as w ranges over multipermutations: packed words like 13243212 with no adjacent repeated letters.
 Let ⟨·, ·⟩ : MPerm × mPerm → Z be the form with ⟨v, [[w]]⟩ = δ_{vw} for multipermutations v, w.

Theorem (Lam-Pylyavskyy, 2007)

The algebras \mathfrak{M} **Perm** and \mathfrak{m} **Perm** are dual Hopf algebras via $\langle \cdot, \cdot \rangle$.

¹This linear span of packed words should be given a different algebra structure dual to the shuffle product \sqcup . The correct definition is a little too involved to include here and the shuffle product \sqcup .

Eric Marberg (HKUST)

Shifted combinatorial Hopf algebras

Sage Days 114, July 2022 12 / 24

Multifundamental quasisymmetric functions

Recall: $\zeta_{<}(w) = t^{n}$ if $w = 123 \cdots n$ and $\zeta_{<}(w) = 0$ for all other w.

Can evaluate $\zeta_{<}$ on sums $\llbracket w \rrbracket$, sends $\llbracket w \rrbracket \mapsto t^{\ell(w)}$ if w strictly increasing.

Proposition (Lam-Pylyavskyy, 2007)

 $\exists ! Hopf algebra morphism \Psi_{<} : \mathfrak{m}\widehat{\mathbf{Perm}} \to \widehat{\mathbf{Q}}\mathbf{Sym} \text{ with } \zeta_{<} = \zeta_{\mathbf{Q}} \circ \Psi_{<}.$ One has $\Psi_{<}(\llbracket v \rrbracket) = \Psi_{<}(\llbracket w \rrbracket)$ for multipermutations v, w iff $\alpha(v) = \alpha(w)$.

Define $\tilde{L}_{\alpha} := \Psi_{<}(\llbracket w \rrbracket) \in \widehat{\mathbf{Q}}\mathbf{Sym}$ for any multiperm w with $\alpha = \alpha(w)$.

 $\mathsf{Define} \left| \tilde{R}_{\alpha} := \sum_{\alpha(w) = \alpha} \llbracket w \rrbracket \in \mathfrak{M}\mathsf{Perm} \right| (\mathsf{sum over multipermutations } w).$

 $\{\tilde{L}_{\alpha}\}\$ is basis for $\widehat{\mathbf{Q}}\mathbf{Sym}$, $\{\tilde{R}_{\alpha}\}\$ is basis for subalgebra $\mathfrak{M}\mathbf{NSym} \subset \mathfrak{M}\mathbf{Perm}$.

Theorem (Lam-Pylyavskyy, 2007)

 $\mathfrak{M}NSym$ and $\widehat{\mathbf{Q}}Sym$ are dual Hopf algebras via form with $\langle \widetilde{R}_{\alpha}, \widetilde{L}_{\gamma} \rangle = \delta_{\alpha\gamma}$.

Eric Marberg (HKUST)

13/24

(日)

A diagram K-theoretic Hopf algebras

These objects fit into the following modified diagram:

- Vertical lines are again dualities via the three forms $\langle \cdot, \cdot \rangle$.
- The \hookrightarrow maps are inclusions, while \twoheadrightarrow maps are adjoint surjections.
- The bottom right map sends $\llbracket w \rrbracket \mapsto \tilde{L}_{\alpha(w)}$.
- Top left map sends $\tilde{R}_{\alpha} \mapsto g_{\lambda/\mu}$ where λ/μ is the ribbon of type α .

Theorem (Lam-Pylyavskyy, 2007)

Each G_{λ} expands as (potentially infinite) \mathbb{N} -linear combination of \tilde{L}_{α} 's.

Eric Marberg (HKUST)

Shifted combinatorial Hopf algebras

Sage Days 114, July 2022 14 / 24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generating functions for stable Grothendieck polynomials

Recall $s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^{T}$ is sum over semistandard Young tableaux.

A set-valued tableau of shape λ is a weakly increasing filling of λ by finite nonempty sets of positive integers, no repetitions in a column:

$$T = \underbrace{\begin{array}{c|cccc} 12 & 256 & 6 & 6 \\ \hline 34 & 7 & \end{array}}_{6} \in \mathsf{SVT}(\lambda) \quad \text{and} \quad x^{\mathsf{T}} = x_1 x_2^2 x_3 x_4 x_5 x_6^3 x_7.$$

A reverse plane partition (RPP) of shape λ is a weakly increasing filling T of λ by positive integers. The weight of T is wt(T) = ($a_1, a_2, ...$) where a_i is number of **distinct columns** containing *i*:

$$T = \boxed{\begin{array}{c|c} 1 & 2 & 2 \\ \hline 1 & 3 \end{array}} \in \mathsf{RPP}(\lambda) \quad \text{and} \quad x^{\mathsf{wt}(T)} = x_1 x_2^3 x_3.$$

Theorem (Buch, 2002; Lam-Pylyavskyy, 2007)

One has $G_{\lambda} = \sum_{T \in \text{SVT}(\lambda)} x^T$ and $g_{\lambda} = \sum_{T \in \text{RPP}(\lambda)} (-1)^{|\lambda|} (-x)^{\text{wt}(T)}$.

Shifted set-valued tableaux

Fix a strict partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$ with all distinct parts. The shifted diagram of λ is formed by shifting row *i* to the right by *i* - 1:

$$\lambda = (4, 2, 1) = \square \quad \rightsquigarrow \quad \square$$

A shifted set-valued tableau of shape λ is a weakly increasing filling of shifted diagram by finite nonempty subsets of $\{1' < 1 < 2' < 2 < ...\}$, no primed (resp., unprimed) numbers repeated in a row (resp., column):

$$T = \underbrace{\begin{vmatrix} 1'1 & 1 & 23' & 3 \\ 2' & 3'3 \\ 4 \end{vmatrix}} \in ShSVT(\lambda) \text{ and } x^T = x_1^3 x_2^2 x_3^4 x_4.$$
Define
$$\boxed{GQ_{\lambda} := \sum_{T \in ShSVT(\lambda)} x^T}_{T \in ShSVT(\lambda)} \text{ and } \boxed{GP_{\lambda} := \sum_{T \in ShSVT(\lambda)} x^T}_{\text{no primes on diagonal}} = O(C)$$
Eric Marberg (HKUST) Shifted combinatorial Hopf algebras Sage Days 114, July 2022 16/24

Shifted stable Grothendieck polynomials

For strict λ : $GQ_{\lambda} = Q_{\lambda} + (\text{higher order})$ and $GP_{\lambda} = P_{\lambda} + (\text{higher order})$.

Theorem (Ikeda-Naruse, 2013)

Both $\{GQ_{\lambda}\}\$ and $\{GP_{\lambda}\}\$ are linearly independent subsets of $\widehat{Sym} - Sym$.

Let $\widehat{\mathbf{G}}\mathbf{Q}$ and $\widehat{\mathbf{G}}\mathbf{P}$ be infinite linear spans of $\{GQ_{\lambda}\}$ and $\{GP_{\lambda}\}$.

Theorem (Ikeda-Naruse, Clifford-Thomas-Yong, 2014; Lewis-M., 2022+)

Both $\widehat{\mathbf{G}}\mathbf{Q}$ and $\widehat{\mathbf{G}}\mathbf{P}$ are subalgebras of $\widehat{\mathbf{S}}\mathbf{ym}$. More strongly, the sets $\{GQ_{\lambda}\}$ and $\{GP_{\lambda}\}$, λ ranging over strict partitions, each generate a ring.

Theorem (M.-Pawlowski, 2020)

 GQ_{λ} and GP_{λ} are stable limits of equivariant K-theory representatives of B-orbit closures in varieties of **symmetric** and **skew-symmetric matrices**.

One has $Q_{\lambda} = 2^{\ell(\lambda)} P_{\lambda}$. Likewise GQ_{λ} is a finite \mathbb{Z} -linear comb of GP_{μ} 's.

Shifted reverse plane partitions

Continue to let $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_k > 0)$ be a strict partition.

A shifted RPP of shape λ is a weakly increasing filling T of shifted diagram by numbers in $\{1' < 1 < 2' < 2 < ...\}$. The weight of T is

$$wt(T) = (a_1 + b_1, a_2 + b_2, \dots)$$

where a_i (resp., b_i) counts **columns** (resp., **rows**) containing *i* (resp., *i'*):

$$T = \underbrace{\begin{bmatrix} 1' & 1' & 3 & 3 \\ 2 & 3 & 3 \end{bmatrix}}_{3} \in ShRPP(\lambda) \text{ and } x^{wt(T)} = x_1 x_2 x_3^2.$$

$$Define \begin{cases} gq_{\lambda} := \sum_{T \in ShRPP(\lambda)} (-1)^{|\lambda|} (-x)^{wt(T)} \\ F \in ShRPP(\lambda) \\ all \text{ diagonal entries primed} \end{cases}$$
Eric Marberg (HKUST) Shifted combinatorial Hopf algebras Sage Days 114, July 2022 18/24

Shifted dual stable Grothendieck polynomials

For strict λ : $gq_{\lambda} = Q_{\lambda} + (\text{lower order}) \text{ and } gp_{\lambda} = P_{\lambda} + (\text{lower order}).$

Theorem (Lewis-M., 2022+)

Both $\{gq_{\lambda}\}\$ and $\{gp_{\lambda}\}\$ are linearly independent subsets of **Sym**.

Theorem (Lewis-M., 2022+)

Both $\mathbf{gq} := \mathbb{Z}$ -span $\{gq_{\lambda}\}$ and $\mathbf{gp} := \mathbb{Z}$ -span $\{gp_{\lambda}\}$ are algebras.

Define bilinear forms $[\cdot,\cdot]:\textbf{gq}\times\widehat{\textbf{G}}\textbf{P}\to\mathbb{Z}$ and $[\cdot,\cdot]:\textbf{gp}\times\widehat{\textbf{G}}\textbf{Q}\to\mathbb{Z}$ by

 $[gq_{\lambda}, GP_{\mu}] = [gp_{\lambda}, GQ_{\mu}] = \delta_{\lambda\mu}. \quad \text{This form is not } \langle \cdot, \cdot \rangle \neq [\cdot, \cdot].$

Theorem (Lewis-M., 2022+)

gq and $\widehat{\mathbf{GP}}$ (resp., **gp** and $\widehat{\mathbf{GQ}}$) are dual Hopf algebras via $[\cdot, \cdot]$.

These results were conjectured by Nakagawa and Naruse (2018).

Eric Marberg (HKUST)

Shifted combinatorial Hopf algebras

Sage Days 114, July 2022

19/24

A diagram of shifted K-theoretic Hopf algebras

These objects fit into larger diagram of Hopf algebras (not all yet defined):

Hopf algebras Π̂Sym_Q and Π̂Sym_P have bases {K_α} and {K
_α} indexed by peak compositions α with α_i ≥ 2 for i < ℓ(α).

Theorem (Lewis-M., 2019)

 GP_{λ} expands positively into \bar{K}_{α} 's and GQ_{λ} expands positively into K_{α} 's.

- Hopf algebras \mathfrak{MPeak}_Q and \mathfrak{MPeak}_P are free as algebras, with generators $\{\pi q_n\}$ and $\{\pi p_n\}$. The top left and right maps are surjections sending $\pi q_n \mapsto gq_\lambda$ and $\pi p_n \mapsto gp_\lambda$ for $\lambda = (n)$.
- If scalars are \mathbb{Q} not \mathbb{Z} then P- and Q-versions of each object coincide.

Multi-peak quasisymmetric functions

For an *n*-letter word *w* let $\alpha_{peak}(w)$ be composition of *n* giving lengths of maximal " \vee " subwords. For example $\alpha_{peak}(\underline{321234}\overline{321232}) = (6, 5, 1)$.

• Recall
$$\zeta_{<}(\llbracket w \rrbracket) = t^n$$
 if $w = 123 \cdots n$ and $\zeta_{<}(\llbracket w \rrbracket) = 0$ otherwise.

• Define $\zeta_{>}(\llbracket w \rrbracket) = t^n$ if $w = n \cdots 321$ and $\zeta_{>}(\llbracket w \rrbracket) = 0$ otherwise.

• Also \exists unique morphism $\Psi_{>} : \mathfrak{mPerm} \to \widehat{\mathbf{QSym}}$ with $\zeta_{>} = \zeta_{\mathbf{Q}} \circ \Psi_{>}$. But $\{\Psi_{>}(\llbracket w \rrbracket) :$ multiperms $w\} = \{\Psi_{<}(\llbracket w \rrbracket) :$ multiperms $w\}$.

To get something new, let $\zeta_{>|<} := \nabla \circ (\zeta_> \otimes \zeta_<) \circ \Delta : \mathfrak{m}\widehat{\mathsf{P}}\mathsf{erm} \to \mathbb{Z}\llbracket t \rrbracket.$

Proposition (Lewis-M., 2019)

 $\exists ! Hopf algebra morphism \Psi : \mathfrak{m}\widehat{\mathsf{P}}\mathsf{erm} \to \widehat{\mathsf{Q}}\mathsf{Sym} \text{ with } \zeta_{>|<} = \zeta_{\mathsf{Q}} \circ \Psi.$ One has $\Psi(\llbracket v \rrbracket) = \Psi(\llbracket w \rrbracket)$ for multiperms v, w iff $\alpha_{\mathsf{peak}}(v) = \alpha_{\mathsf{peak}}(w).$

Define $\mathcal{K}_{\alpha} := \Psi(\llbracket w \rrbracket) \in \widehat{\mathbf{QSym}}$ for any multiperm with $\alpha = \alpha_{\mathsf{peak}}(w)$.

Multi-peak algebras

Restrict α to **peak compositions**: all parts but last must be at least two. Can (indirectly) define \bar{K}_{α} by relation $\boxed{K_{\alpha} = \sum_{\delta \in \{0,1\}^{\ell(\alpha)}} 2^{\ell(\alpha) - |\delta|} \bar{K}_{\alpha+\delta}}$. Let $\widehat{\Pi} \mathbf{Sym}_{Q}$ and $\widehat{\Pi} \mathbf{Sym}_{P}$ be infinite linear spans of $\{K_{\alpha}\}$ and $\{\bar{K}_{\alpha}\}$.

Theorem (Lewis-M., 2019)

 $\widehat{\Pi}$ **Sym**_Q and $\widehat{\Pi}$ **Sym**_P are subalgebras of $\widehat{\mathbf{Q}}$ **Sym** with bases { K_{α} } and { \overline{K}_{α} }.

Define $\pi p_{\alpha} := \sum_{\alpha_{\text{peak}}(w)=\alpha} w \in \mathfrak{M}\mathbf{Perm}$ (over multipermutations w).

Define
$$\left| \pi q_{\alpha} := \sum_{\delta \in \{0,1\}^{\ell(\alpha)}} 2^{\ell(\alpha) - |\delta|} \pi p_{\alpha - \delta} \in \mathfrak{M}$$
Perm $\right|$

Then $\{\pi p_{\alpha}\}\$ and $\{\pi q_{\alpha}\}\$ are bases for subalgebras $\mathfrak{M}\mathbf{Peak}_{P}$ and $\mathfrak{M}\mathbf{Peak}_{Q}$.

Theorem (Lewis-M., 2022+)

The algebras \mathfrak{MPeak}_P and $\widehat{\Pi}Sym_Q$ (resp., \mathfrak{MPeak}_Q and $\widehat{\Pi}Sym_P$) are dual Hopf algebras via the bilinear form with $[\pi p_{\alpha}, K_{\gamma}] = [\pi q_{\alpha}, \bar{K}_{\gamma}] = \delta_{\alpha\gamma}$.

Eric Marberg (HKUST)

Open problems

- Schur expansions of G_{λ} and g_{λ} are known (Lenart, 2000).
- Expansion of GP_{λ} into G_{μ} 's is known. (M.-Pawlowski, 2020).
- Littlewood-Richardson rules to expand products $G_{\lambda}G_{\mu}$, $g_{\lambda}g_{\mu}$, and $GP_{\lambda}GP_{\mu}$ are known (Buch, 2000; Clifford-Thomas-Yong, 2014).
- Most antipode formulas known (in terms of certain conjugate bases).
- Expansion of GQ_{λ} into G_{μ} 's not yet known. Expansion of gp_{λ} and gq_{λ} into g_{μ} 's not yet known.
- LR rule to expand $GQ_{\lambda}GQ_{\mu} \in \mathbb{N}$ -span $\{GQ_{\nu}\}$ not yet known. LR rule to expand $gp_{\lambda}gp_{\mu} \in \mathbb{N}$ -span $\{gp_{\nu}\}$ not yet known. LR rule to expand $gq_{\lambda}gq_{\mu} \in \mathbb{N}$ -span $\{gq_{\nu}\}$ not yet known.
- Great opportunities to implement these symmetric functions in Sage.

イロト 不得下 イヨト イヨト 二日

Thanks!

Eric Marberg (HKUST)	
----------------	--------	--

Shifted combinatorial Hopf algebras

Sage Days 114, July 2022

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

24 / 24

3