Shifted combinatorial Hopf algebras from K-theory

Eric Marberg
Hong Kong University of Science and Technology

Sage Days 114, July 2022

Outline and setup

- Goal: introduce some interesting bases of (quasi)symmetric functions from the perspective of combinatorial Hopf algebras and K-theory.
- Will start with some classical objects (already implemented in Sage), then discuss some semi-classical things (partially implemented), finally talk about new constructions (not yet implemented).
Results joint w/ Yu-Cheng Chiu, Joel Lewis, Brendan Pawlowski.
- Conventions: all maps f are linear, meaning \mathbb{Z}-linear with

$$
f\left(\sum_{i \in I} a_{i}\right)=\sum_{i \in I} f\left(a_{i}\right)
$$

even for infinite sums. Choice of scalar ring \mathbb{Z} is mostly arbitrary, could be replaced by any integral domain.

Algebras, coalgebras, and bialgebras

- Two commutative algebras: polynomials $\mathbb{Z}[x]$ and power series $\mathbb{Z} \llbracket x \rrbracket$. We have a natural nondegenerate bilinear form $\mathbb{Z}[x] \times \mathbb{Z} \llbracket x \rrbracket \rightarrow \mathbb{Z}$:

$$
\langle f, g\rangle:=\left.g\left(\frac{d}{d x}\right) f(x)\right|_{x=0} \quad \Rightarrow \quad\left\langle x^{m}, x^{n}\right\rangle=\left.\frac{d^{n}}{d x^{n}} x^{m}\right|_{x=0}=n!\cdot \delta_{m n}
$$

- Define $\Delta: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x] \otimes \mathbb{Z}[x]$ and $\Delta: \mathbb{Z} \llbracket x \rrbracket \rightarrow \mathbb{Z} \llbracket x \rrbracket \hat{\otimes} \mathbb{Z} \llbracket x \rrbracket$ by

$$
\left\langle\Delta(f), g_{1} \otimes g_{2}\right\rangle=\left\langle f, g_{1} g_{2}\right\rangle \quad \text { and } \quad\left\langle f_{1} \otimes f_{2}, \Delta(g)\right\rangle=\left\langle f_{1} f_{2}, g\right\rangle
$$

Here we evaluate $\left\langle f_{1} \otimes f_{2}, g_{1} \otimes g_{2}\right\rangle:=\left\langle f_{1}, g_{1}\right\rangle\left\langle f_{2}, g_{2}\right\rangle$.

- Both Δ 's are linear and co-associative: $(1 \otimes \Delta) \circ \Delta=(\Delta \otimes 1) \circ \Delta$. Small miracle: both maps Δ are algebra morphisms. Can compute

$$
\Delta\left(x^{n}\right)=\sum_{i+j=n}\binom{n}{i} x^{i} \otimes x^{j}
$$

Conclusion: $\mathbb{Z}[x]$ and $\mathbb{Z} \llbracket x \rrbracket$ are dual bialgebras via the form $\langle\cdot, \cdot\rangle$.

Antipodes and Hopf algebras

- Suppose H is a bialgebra with product $\nabla: f \otimes g \mapsto f g$, coproduct Δ. The set $\operatorname{End}(H)$ of linear maps $f: H \rightarrow H$ is an algebra with product

$$
f_{1} * f_{2}:=\nabla \circ\left(f_{1} \otimes f_{2}\right) \circ \Delta .
$$

The unit of this convolution algebra is not the identity map id_{H}. Instead, it is the composition $\iota \circ \epsilon$ of the unit and counit of H.

- In all examples today, H will be a subset of formal power series, and the composition $\iota \circ \epsilon$ is just the map setting all variables to zero.
- If id_{H} has 2-sided inverse $\mathbf{S}: H \rightarrow H$ for $*$ then H is a Hopf algebra with antipode \mathbf{S}. If \mathbf{S} exists then it is unique, and $\mathbf{S}(a b)=\mathbf{S}(b) \mathbf{S}(a)$.
- Both $\mathbb{Z}[x]$ and $\mathbb{Z} \llbracket x \rrbracket$ are Hopf algebras with $\mathbf{S}(x)=-x$ as

$$
(\mathbf{S} * \operatorname{id})\left(x^{n}\right)=(\operatorname{id} * \mathbf{S})\left(x^{n}\right)=\sum_{i+j=n}\binom{n}{i}(-x)^{i} x^{j}=(x-x)^{n}=\left.x^{n}\right|_{x=0} .
$$

Malvenuto-Reutenauer algebra and symmetric functions

- A packed word $w=w_{1} w_{2} \cdots w_{p}$ has $\left\{w_{1}, \ldots, w_{p}\right\}=\{1, \ldots, n\}$ for some $n \leq p$. If v, w are packed words with $\max (v)=m$ then let

$$
v \amalg w=\sum\left(\text { shuffles of } v \text { and }\left(w_{1}+m\right)\left(w_{2}+m\right) \cdots\left(w_{p}+m\right)\right) .
$$

Example: 21 ш $12=3421+3241+3214+2341+2314+2134+2134$.

- $\widehat{\text { Perm }}=$ infinite linear comb's of permutations $w \in \bigsqcup_{n \geq 0} S_{n}$, Perm = finite linear comb's of permutations \leadsto both algebras for \amalg.
- $\widehat{\text { Semm }}=$ symmetric power series in $\mathbb{Z} \llbracket x_{1}, x_{2}, \ldots \rrbracket$, Sym $=$ power series in Sym of bounded degree.
- Define $\langle\cdot, \cdot\rangle: \mathbf{S y m} \times \widehat{\mathbf{S}} \mathbf{y m} \rightarrow \mathbb{Z}$ by $\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda \mu}$ for Schur functions. Define $\langle\cdot, \cdot\rangle:$ Perm $\times \widehat{\mathbf{P} e r m} \rightarrow \mathbb{Z}$ by $\langle v, w\rangle=\delta_{v^{-1} w}$ for $v, w \in \bigsqcup_{n \geq 0} S_{n}$.

Theorem

Sym and $\widehat{\text { Sym }}$ (resp. Perm and $\widehat{\text { Perm }}$) are dual Hopf algebras via $\langle\cdot, \cdot\rangle$.

Quasisymmetric functions

For compositions $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ let $M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$. Define $\widehat{\mathbf{Q}} \mathbf{S y m}=$ infinite linear combinations of $M_{\alpha}{ }^{\prime}$ s. This is an algebra.

Proposition

$\widehat{\mathbf{Q}} \mathbf{S y m}$ is a Hopf algebra for $\Delta\left(M_{\alpha}\right):=\sum_{i=0}^{k} M_{\left(\alpha_{1}, \ldots, \alpha_{i}\right)} \otimes M_{\left(\alpha_{i+1}, \ldots, \alpha_{k}\right)}$.

- A combinatorial Hopf algebra is a Hopf algebra H with an algebra morphism $\zeta: H \rightarrow \mathbb{Z} \llbracket t \rrbracket$ satisfying counit condition $\left.\zeta(h)\right|_{t=0}=\epsilon(h)$.
- Call ζ the character of H. We view $\widehat{\mathbf{Q}} \mathbf{S y m}$ as a combinatorial Hopf algebra for the character ζ_{Q} that sets $x_{1}=t$ and $x_{2}=x_{3}=\cdots=0$.

Theorem (Aguiar-Bergeron-Sottile, 2006)

For each combinatorial Hopf algebra (H, ζ) there is a unique Hopf algebra morphism $\Psi: H \rightarrow \widehat{\mathbf{Q}} \mathbf{S y m}$ such that $\zeta=\zeta_{\mathbf{Q}} \circ \Psi$.

Fundamental quasisymmetric functions

For an n-letter word w let $\alpha(w)$ be composition of n giving lengths of maximal increasing subwords. For example $\alpha(\underline{134627958})=(4,3,2)$.

Define $\zeta_{<}(w)=t^{n}$ if $w=123 \cdots n$ and $\zeta_{<}(w)=0$ if w not increasing.

Proposition

There is a unique Hopf alg. morph. $\Psi: \widehat{\mathbf{P e r m}} \rightarrow \hat{\mathbf{Q} S y m}$ with $\zeta_{<}=\zeta_{Q} \circ \Psi$. This map has $\Psi(v)=\Psi(w)$ for permutations v, w iff $\alpha(v)=\alpha(w)$.

Define $L_{\alpha}=\Psi(w)$ for w with $\alpha=\alpha(w)$ and $R_{\alpha}=\sum_{\alpha(w)=\alpha} w \in$ Perm $\left\{L_{\alpha}\right\}$ is basis for $\hat{\mathbf{Q}} \mathbf{S y m},\left\{R_{\alpha}\right\}$ is basis for a subalgebra NSym \subset Perm.

Theorem

NSym and $\widehat{\mathbf{Q} S y m}$ are dual Hopf algebras via form with $\left\langle R_{\alpha}, L_{\gamma}\right\rangle=\delta_{\alpha \gamma}$.

A diagram of Hopf algebras

These objects fit into the classical diagram:

- The vertical lines indicate dualities via the three forms $\langle\cdot, \cdot\rangle$.
- Each $f: A_{1} \hookrightarrow A_{2}$ is an inclusion and each $g: B_{2} \rightarrow B_{1}$ is surjective. These maps come in adjoint pairs satisfying $\left\langle f\left(a_{1}\right), b_{2}\right\rangle=\left\langle a_{1}, g\left(b_{2}\right)\right\rangle$.
- The bottom right map sends $w \mapsto L_{\alpha(w)}$.
- Top left map sends $R_{\alpha} \mapsto s_{\lambda / \mu}$ where λ / μ is the ribbon of type α. For example if $\alpha=(2,3,4)$ then $\lambda=(7,4,2)$ and $\mu=(3,1)$ so that

$$
\lambda / \mu=\stackrel{\cdot \cdot \square \square \square}{\cdot \square \square}
$$

Sage implementations

- All of the objects here (at least in top row) are in Sage See documentation for "Combinatorial Hopf algebras"
- Perm is called FQSym "free quasisymmetric functions"
- NSym is called NCSF "non-commutative symmetric functions"
- L_{α} 's are the QSym.F basis while R_{α} 's are the NCSF.ribbon basis.

Polynomials from K-theory

- Let Mat ${ }_{n \times n}$ be the set of $n \times n$ matrices over \mathbb{C}. Let B be the group upper-triangular invertible $n \times n$ matrices over \mathbb{C}.
- B acts on Mat ${ }_{n \times n}$ on left and right, orbits are indexed by (partial) permutation matrices w. Let X_{w} be the closure of orbit of $w \in S_{n}$.
- T-equivariant K-theory class of X_{w} is an inhomogeneous polynomial

$$
\mathfrak{G}_{w} \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=K_{T}\left(\text { Mat }_{n \times n}\right) .
$$

These Grothendieck polynomials have a few special properties:

- $\mathfrak{G}_{w}=\mathfrak{S}_{w}+$ (higher degree) where \mathfrak{S}_{w} is Schubert polynomial.
- If $w \times 1^{k}=\left[\begin{array}{c|c}w & 0 \\ \hline 0 & I_{k}\end{array}\right]$ then $\mathfrak{G}_{w}=\mathfrak{G}_{w \times 1^{k}}$.
- If $1^{k} \times w=\left[\begin{array}{c|c}I_{k} & 0 \\ \hline 0 & w\end{array}\right]$ then $G_{w}:=\lim _{k \rightarrow \infty} \mathfrak{G}_{1^{k} \times w} \in \widehat{\mathbf{S}} \mathbf{y m}-\mathbf{S y m}$.

Stable Grothendieck polynomials

- If w_{λ} is the dominant permutation of shape λ then $\mathfrak{G}_{w_{\lambda}}=x^{\lambda}$. Example: if $\lambda=(2,1,1)$ then $w_{\lambda}=\left[\begin{array}{cc}\square & 1 \\ D_{1} & 1 \\ 1 & \\ \hline\end{array}\right]$ and $\mathfrak{G}_{w_{\lambda}}=x_{1}^{2} x_{2} x_{3}$.
- Define stable Grothendieck polynomial $G_{\lambda}:=G_{w_{\lambda}}$ for partitions λ. One has $G_{\lambda}=s_{\lambda}+$ (higher degree terms) where s_{λ} is Schur function. $\Rightarrow\left\{G_{\lambda}\right\}$ is a basis for $\widehat{\mathbf{S}} \mathbf{y m}$, but each G_{λ} has unbounded degree.
- Define $\left\{g_{\lambda}\right\}$ to be unique symmetric functions with $\left\langle g_{\lambda}, G_{\mu}\right\rangle=\delta_{\lambda \mu}$.

Theorem (Buch, 2002)

Each G_{w} and $G_{\lambda} G_{\mu}$ is in (finite) \mathbb{N}-span $\left\{G_{\nu}\right\} \Rightarrow\left\{G_{\nu}\right\}$ generates a ring.
Later: G_{λ} and g_{λ} have certain explicit weight generating functions. Some authors work with equivalent defn. $G_{\lambda}^{(\beta)}:=\frac{1}{\beta|\lambda|} G_{\lambda}\left(\beta x_{1}, \beta x_{2}, \ldots\right)$.

K-theoretic Hopf algebras of multipermutations

Define \sim on packed words by $w=w_{1} \cdots w_{i} \cdots w_{m} \sim w_{1} \cdots w_{i} w_{i} \cdots w_{m}$. This means that $121 \sim 1121 \sim 1221 \sim 1211 \sim 11221 \sim \cdots$ and so forth.

- Define $\mathfrak{m} \widehat{\text { Perm }}=\left(\right.$ infinite linear span of elements $\llbracket w \rrbracket:=\sum_{v \sim w} v$). Define MPerm $=\left(\right.$ linear span of packed words) $/\langle v-w: v \sim w\rangle .{ }^{1}$ These spaces are algebras for shifted shuffle product $ш$.
- Bases given by $\{\llbracket w \rrbracket\}$ and $\{w\}$ as w ranges over multipermutations: packed words like 13243212 with no adjacent repeated letters. Let $\langle\cdot, \cdot\rangle: \mathfrak{M P e r m} \times \mathfrak{m P e r m} \rightarrow \mathbb{Z}$ be the form with $\langle v, \llbracket w \rrbracket\rangle=\delta_{v w}$ for multipermutations v, w.

Theorem (Lam-Pylyavskyy, 2007)

The algebras $\mathfrak{M P e r m}$ and $\mathfrak{m} \widehat{P}$ erm are dual Hopf algebras via $\langle\cdot, \cdot\rangle$.

[^0]
Multifundamental quasisymmetric functions

Recall: $\zeta_{<}(w)=t^{n}$ if $w=123 \cdots n$ and $\zeta_{<}(w)=0$ for all other w.
Can evaluate $\zeta_{<}$on sums $\llbracket w \rrbracket$, sends $\llbracket w \rrbracket \mapsto t^{\ell(w)}$ if w strictly increasing.

Proposition (Lam-Pylyavskyy, 2007)

$\exists!$ Hopf algebra morphism $\Psi_{<}: \mathfrak{m} \widehat{\mathrm{P}} \mathrm{rm} \rightarrow \widehat{\mathbf{Q}} \mathbf{S y m}$ with $\zeta_{<}=\zeta_{Q} \circ \Psi_{<}$. One has $\Psi_{<}(\llbracket v \rrbracket)=\Psi_{<}(\llbracket w \rrbracket)$ for multipermutations v, w iff $\alpha(v)=\alpha(w)$.
Define $\tilde{L}_{\alpha}:=\Psi_{<}(\llbracket w \rrbracket) \in \widehat{\mathbf{Q}} \mathbf{S y m}$ for any multiperm w with $\alpha=\alpha(w)$.
Define $\tilde{R}_{\alpha}:=\sum_{\alpha(w)=\alpha} \llbracket w \rrbracket \in \mathfrak{M P}$ (sum over multipermutations w).
$\left\{\tilde{L}_{\alpha}\right\}$ is basis for $\widehat{\mathbf{Q}} \mathbf{S y m},\left\{\tilde{R}_{\alpha}\right\}$ is basis for subalgebra $\mathfrak{M N S y m} \subset \mathfrak{M P}$ Perm.

Theorem (Lam-Pylyavskyy, 2007)

$\mathfrak{M N S y m}$ and $\widehat{\mathbf{Q} S y m}$ are dual Hopf algebras via form with $\left\langle\tilde{R}_{\alpha}, \tilde{L}_{\gamma}\right\rangle=\delta_{\alpha \gamma}$.

A diagram K-theoretic Hopf algebras

These objects fit into the following modified diagram:

- Vertical lines are again dualities via the three forms $\langle\cdot, \cdot\rangle$.
- The \hookrightarrow maps are inclusions, while \rightarrow maps are adjoint surjections.
- The bottom right map sends $\llbracket w \rrbracket \mapsto \tilde{L}_{\alpha(w)}$.
- Top left map sends $\tilde{R}_{\alpha} \mapsto g_{\lambda / \mu}$ where λ / μ is the ribbon of type α.

Theorem (Lam-Pylyavskyy, 2007)

Each G_{λ} expands as (potentially infinite) \mathbb{N}-linear combination of \tilde{L}_{α} 's.

Generating functions for stable Grothendieck polynomials

 Recall $s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} X^{T}$ is sum over semistandard Young tableaux. A set-valued tableau of shape λ is a weakly increasing filling of λ by finite nonempty sets of positive integers, no repetitions in a column:$$
T=\begin{array}{|c|c|c|c|}
\hline 12 & 256 & 6 & 6 \\
\hline 34 & 7 & & \\
\hline
\end{array} \in \operatorname{SVT}(\lambda) \quad \text { and } \quad x^{T}=x_{1} x_{2}^{2} x_{3} x_{4} x_{5} x_{6}^{3} x_{7}
$$

A reverse plane partition (RPP) of shape λ is a weakly increasing filling T of λ by positive integers. The weight of T is $\mathrm{wt}(T)=\left(a_{1}, a_{2}, \ldots\right)$ where a_{i} is number of distinct columns containing i :

$$
T=\begin{array}{|l|l|l}
1 & 2 & 2 \\
\hline 1 & 2 & \\
\hline
\end{array} \in \operatorname{RPP}(\lambda) \quad \text { and } \quad x^{\mathrm{wt}(T)}=x_{1} x_{2}^{3} x_{3} .
$$

Theorem (Buch, 2002; Lam-Pylyavskyy, 2007)

One has $G_{\lambda}=\sum_{T \in \operatorname{SVT}(\lambda)} x^{T}$ and $g_{\lambda}=\sum_{T \in \operatorname{RPP}(\lambda)}(-1)^{|\lambda|}(-x)^{\mathrm{wt}(T)}$.

Shifted set-valued tableaux

Fix a strict partition $\lambda=\left(\lambda_{1}>\cdots>\lambda_{k}>0\right)$ with all distinct parts. The shifted diagram of λ is formed by shifting row i to the right by $i-1$:

$$
\lambda=(4,2,1)=\square \square \square
$$

A shifted set-valued tableau of shape λ is a weakly increasing filling of shifted diagram by finite nonempty subsets of $\left\{1^{\prime}<1<2^{\prime}<2<\ldots\right\}$, no primed (resp., unprimed) numbers repeated in a row (resp., column):

Define $G Q_{\lambda}:=\sum_{T \in \operatorname{ShSVT}(\lambda)} x^{T}$ and $G P_{\lambda}:=\sum_{\begin{array}{c}T \in \operatorname{ShSVT}(\lambda) \\ \text { no primes on diagonal }\end{array}} x^{T}$

Shifted stable Grothendieck polynomials

For strict $\lambda: G Q_{\lambda}=Q_{\lambda}+($ higher order $)$ and $G P_{\lambda}=P_{\lambda}+($ higher order $)$.

Theorem (Ikeda-Naruse, 2013)

Both $\left\{G Q_{\lambda}\right\}$ and $\left\{G P_{\lambda}\right\}$ are linearly independent subsets of $\widehat{\mathbf{S}} \mathbf{y m}-\mathbf{S y m}$.
Let $\widehat{\mathbf{G}} \mathbf{Q}$ and $\widehat{\mathbf{G}} \mathbf{P}$ be infinite linear spans of $\left\{G Q_{\lambda}\right\}$ and $\left\{G P_{\lambda}\right\}$.

Theorem (Ikeda-Naruse, Clifford-Thomas-Yong, 2014; Lewis-M., 2022+)

Both $\widehat{\mathbf{G}} \mathbf{Q}$ and $\widehat{\mathbf{G}} \mathbf{P}$ are subalgebras of $\widehat{\mathbf{S}} \mathbf{y m}$. More strongly, the sets $\left\{G Q_{\lambda}\right\}$ and $\left\{G P_{\lambda}\right\}, \lambda$ ranging over strict partitions, each generate a ring.

Theorem (M.-Pawlowski, 2020)

$G Q_{\lambda}$ and $G P_{\lambda}$ are stable limits of equivariant K-theory representatives of B-orbit closures in varieties of symmetric and skew-symmetric matrices.

One has $Q_{\lambda}=2^{\ell(\lambda)} P_{\lambda}$. Likewise $G Q_{\lambda}$ is a finite \mathbb{Z}-linear comb of $G P_{\mu}$'s.

Shifted reverse plane partitions

Continue to let $\lambda=\left(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}>0\right)$ be a strict partition. A shifted RPP of shape λ is a weakly increasing filling T of shifted diagram by numbers in $\left\{1^{\prime}<1<2^{\prime}<2<\ldots\right\}$. The weight of T is

$$
\mathrm{wt}(T)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right)
$$

where a_{i} (resp., b_{i}) counts columns (resp., rows) containing $i\left(\right.$ resp., $\left.i^{\prime}\right)$:

$$
T=\begin{array}{l|l|l|l}
\hline 1^{1} & 1^{\prime} & 3 & 3 \\
\hline 2 & 3 & \\
\hline & 3
\end{array} \in \operatorname{ShRPP}(\lambda) \quad \text { and } \quad x^{\mathrm{wt}(T)}=x_{1} x_{2} x_{3}^{2} .
$$

Shifted dual stable Grothendieck polynomials

For strict $\lambda: g q_{\lambda}=Q_{\lambda}+($ lower order $)$ and $g p_{\lambda}=P_{\lambda}+$ (lower order).

Theorem (Lewis-M., 2022+)

Both $\left\{g q_{\lambda}\right\}$ and $\left\{g p_{\lambda}\right\}$ are linearly independent subsets of Sym.

Theorem (Lewis-M., 2022+)

Both $\mathbf{g q}:=\mathbb{Z}$-span $\left\{g q_{\lambda}\right\}$ and $\mathbf{g p}:=\mathbb{Z}$-span $\left\{g p_{\lambda}\right\}$ are algebras.
Define bilinear forms $[\cdot, \cdot]: \mathbf{g q} \times \widehat{\mathbf{G}} \mathbf{P} \rightarrow \mathbb{Z}$ and $[\cdot, \cdot]: \mathbf{g p} \times \widehat{\mathbf{G}} \mathbf{Q} \rightarrow \mathbb{Z}$ by

$$
\left[g q_{\lambda}, G P_{\mu}\right]=\left[g p_{\lambda}, G Q_{\mu}\right]=\delta_{\lambda \mu} . \quad \text { This form is not }\langle\cdot, \cdot\rangle \neq[\cdot, \cdot] .
$$

Theorem (Lewis-M., 2022+)

$\mathbf{g q}$ and $\widehat{\mathbf{G}} \mathbf{P}$ (resp., gp and $\widehat{\mathbf{G}} \mathbf{Q}$) are dual Hopf algebras via $[\cdot, \cdot]$.
These results were conjectured by Nakagawa and Naruse (2018).

A diagram of shifted K-theoretic Hopf algebras

These objects fit into larger diagram of Hopf algebras (not all yet defined):

- Hopf algebras $\widehat{\Pi} \mathbf{S y m}_{Q}$ and $\widehat{\Pi} \operatorname{Sym}_{P}$ have bases $\left\{K_{\alpha}\right\}$ and $\left\{\bar{K}_{\alpha}\right\}$ indexed by peak compositions α with $\alpha_{i} \geq 2$ for $i<\ell(\alpha)$.

Theorem (Lewis-M., 2019)

$G P_{\lambda}$ expands positively into \bar{K}_{α} 's and $G Q_{\lambda}$ expands positively into K_{α} 's.

- Hopf algebras $\mathfrak{M P e a k}_{Q}$ and $\mathfrak{M P e a k}{ }_{P}$ are free as algebras, with generators $\left\{\pi q_{n}\right\}$ and $\left\{\pi p_{n}\right\}$. The top left and right maps are surjections sending $\pi q_{n} \mapsto g q_{\lambda}$ and $\pi p_{n} \mapsto g p_{\lambda}$ for $\lambda=(n)$.
- If scalars are \mathbb{Q} not \mathbb{Z} then P - and Q-versions of each object coincide.

Multi-peak quasisymmetric functions

For an n-letter word w let $\alpha_{\text {peak }}(w)$ be composition of n giving lengths of maximal " \vee " subwords. For example $\alpha_{\text {peak }}(\underline{32123432123} 2)=(6,5,1)$.

- Recall $\zeta_{<}(\llbracket w \rrbracket)=t^{n}$ if $w=123 \cdots n$ and $\zeta_{<}(\llbracket w \rrbracket)=0$ otherwise.
- Define $\zeta_{>}(\llbracket w \rrbracket)=t^{n}$ if $w=n \cdots 321$ and $\zeta_{>}(\llbracket w \rrbracket)=0$ otherwise.
- Also \exists unique morphism $\Psi_{>}: \mathfrak{m P e r m} \rightarrow \widehat{\mathbf{Q} S y m}$ with $\zeta_{>}=\zeta_{Q} \circ \Psi_{>}$. But $\left\{\Psi_{>}(\llbracket w \rrbracket)\right.$: multiperms $\left.w\right\}=\left\{\Psi_{<(\llbracket w \rrbracket)}\right.$: multiperms $\left.w\right\}$. To get something new, let $\zeta_{>\mid<}:=\nabla \circ\left(\zeta_{>} \otimes \zeta_{<}\right) \circ \Delta: \mathfrak{m} \widehat{\text { Perm }} \rightarrow \mathbb{Z} \llbracket t \rrbracket$.

Proposition (Lewis-M., 2019)

$\exists!$ Hopf algebra morphism $\Psi: \mathfrak{m P e r m} \rightarrow \widehat{\mathbf{Q}} \mathbf{S y m}$ with $\zeta_{>\mid<}=\zeta_{Q} \circ \psi$. One has $\Psi(\llbracket v \rrbracket)=\Psi(\llbracket w \rrbracket)$ for multiperms v, w iff $\alpha_{\text {peak }}(v)=\alpha_{\text {peak }}(w)$.

Define $K_{\alpha}:=\Psi(\llbracket w \rrbracket) \in \widehat{\mathbf{Q}} \mathbf{S y m}$ for any multiperm with $\alpha=\alpha_{\text {peak }}(w)$.

Multi-peak algebras

Restrict α to peak compositions: all parts but last must be at least two.
Can (indirectly) define \bar{K}_{α} by relation $K_{\alpha}=\sum_{\delta \in\{0,1\}^{\ell(\alpha)}} 2^{\ell(\alpha)-|\delta|} \bar{K}_{\alpha+\delta}$.
Let $\widehat{\Pi} \mathbf{S y m}_{Q}$ and $\widehat{\Pi} \mathbf{S y m}_{P}$ be infinite linear spans of $\left\{K_{\alpha}\right\}$ and $\left\{\bar{K}_{\alpha}\right\}$.

Theorem (Lewis-M., 2019)

$\widehat{\Pi} \mathbf{S y m}_{Q}$ and $\widehat{\Pi} \mathbf{S y m}_{P}$ are subalgebras of $\widehat{\mathbf{Q}} \mathbf{S y m}$ with bases $\left\{K_{\alpha}\right\}$ and $\left\{\bar{K}_{\alpha}\right\}$.
Define $\pi p_{\alpha}:=\sum_{\alpha_{\text {peak }}(w)=\alpha} w \in \mathfrak{M P e r m}$ (over multipermutations w).
Define $\left.\pi q_{\alpha}:=\sum_{\delta \in\{0,1\}}\right\}^{\ell(\alpha)} 2^{\ell(\alpha)-|\delta|} \pi p_{\alpha-\delta} \in \mathfrak{M P}$ Perm.
Then $\left\{\pi p_{\alpha}\right\}$ and $\left\{\pi q_{\alpha}\right\}$ are bases for subalgebras $\mathfrak{M P e a k}_{P}$ and $\mathfrak{M P e a k}_{Q}$.

Theorem (Lewis-M., 2022+)

The algebras $\mathfrak{M P e a k}_{P}$ and $\hat{\Pi}_{\text {Sym }_{Q}}\left(\right.$ resp., MPeak $_{Q}$ and $\left.\widehat{\Pi} \mathrm{Sym}_{P}\right)$ are dual Hopf algebras via the bilinear form with $\left[\pi p_{\alpha}, K_{\gamma}\right]=\left[\pi q_{\alpha}, \bar{K}_{\gamma}\right]=\delta_{\alpha \gamma}$.

Open problems

- Schur expansions of G_{λ} and g_{λ} are known (Lenart, 2000).
- Expansion of $G P_{\lambda}$ into G_{μ} 's is known. (M.-Pawlowski, 2020).
- Littlewood-Richardson rules to expand products $G_{\lambda} G_{\mu}, g_{\lambda} g_{\mu}$, and $G P_{\lambda} G P_{\mu}$ are known (Buch, 2000; Clifford-Thomas-Yong, 2014).
- Most antipode formulas known (in terms of certain conjugate bases).
- Expansion of $G Q_{\lambda}$ into G_{μ} 's not yet known. Expansion of $g p_{\lambda}$ and $g q_{\lambda}$ into g_{μ} 's not yet known.
- LR rule to expand $G Q_{\lambda} G Q_{\mu} \in \mathbb{N}$-span $\left\{G Q_{\nu}\right\}$ not yet known. LR rule to expand $g p_{\lambda} g p_{\mu} \in \mathbb{N}$-span $\left\{g p_{\nu}\right\}$ not yet known. LR rule to expand $g q_{\lambda} g q_{\mu} \in \mathbb{N}$-span $\left\{g q_{\nu}\right\}$ not yet known.
- Great opportunities to implement these symmetric functions in Sage.

Thanks!

[^0]: ${ }^{1}$ This linear span of packed words should be given a different algebra structure dual to the shuffle product \amalg. The correct definition is a little too involved to include here.

