Dokchitser Project for Sage Days 11

TODO:

  1. Modularize the code (break into the following classes and sort dependencies)
    • LSeries


Is already in there (have to free it from the other 3 modules)


Done and documented


To be done


To be done

  1. Stuff still computed using gp:
    • Delta polynomials in _recursions_at_infinity (search for comment below)
    • _without_gp (gamma_series) has this line
      • sinser = sage_eval(rs(gp_eval('Vec(sin(Pi*(%s)))'%(z0+x))))
    • init_Ginf: still uses pari (see below)
    • Ginf: still uses pari to evaluate continued fraction
  2. Doctest everything, making sure it all works 100% and fix issues with coercion, complex inputs, etc., as they are systematically uncovered.
  3. Possibly maybe change from digits to bits prec.
  4. Optimize.


From Jen:

Here's the version (closest to Dokchitser's original pari code) that still uses continued fraction approximation:

http://sage.math.washington.edu/home/jen/sage-3.0.5-x86_64-Linux/l4.py

(needs gamma_series.py to run:

http://sage.math.washington.edu/home/jen/sage-3.0.5-x86_64-Linux/gamma_series.py)

The version with Pade approximation (l5.py) has a negligible speedup but only really works for low precision. I'm not sure if Pade gives us a means of computing bounds (I think Mike Rubinstein said that continued fractions won't). Also, l4.py doesn't work for imaginary inputs yet - some coercion with SymbolicRing that I didn't try.

Dokchiter's Paper: attachment:dokchitser.pdf