Sage days 10, Nancy, France

Implementing the Weil, Tate and Ate pairings using Sage software

Nadia EL MRABET
LIRMM, I3M,
Université Montpellier 2

Saturday $11^{\text {th }}$ October 2008

Outline of the presentation

1. Definition of a pairing
2. Construction of a pairing
3. Implementation of a pairing

What is a pairing?

Properties

Let G_{1}, G_{2} and G_{3} be three groups with the same order r. A pairing is a map:

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

which verifies the following properties:

- Non degenerate;
$\diamond \forall P \in G_{1}\{0\} \exists Q \in G_{2} / e(P, Q) \neq 1$
$\diamond \forall Q \in G_{2}\{0\} \exists P \in G_{1} / e(P, Q) \neq 1$
- Bilinearity : $\forall P, P^{\prime} \in G_{1}, \forall Q, Q^{\prime} \in G_{2}$
$\diamond e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right)$
$\diamond e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)$

What is a pairing?
 Properties

Let G_{1}, G_{2} and G_{3} be three groups with the same order r. A pairing is a map :

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

which verifies the following properties:

- Non degenerate;
- Bilinearity;

Consequence

$$
\forall j \in \mathbb{N}, e([j] P, Q)=e(P, Q)^{j}=e(P,[j] Q)
$$

Elliptic Curve Cryptography and pairings

Part 1 - Cryptanalyse

The MOV/Frey Rück attack against the DLP on elliptic curves in 1993, 1994 :
using pairings, the DLP on elliptic curves becomes a DLP on finite field.

- Given P and $Q=\alpha P \in E\left(\mathbb{F}_{q}\right)$, the DLP on $E\left(\mathbb{F}_{q}\right)$ consists in finding α.
- Let $S \in E\left(\mathbb{F}_{q}\right)$ be a point such that $e(P, S) \neq 1$, let $e(P, S)=g$ and $e(Q, S)=h \in E\left(\mathbb{F}_{q}\right)$, then
- the DLP becomes finding α such that $h=g^{\alpha}$ in a finite field.

Elliptic Curve Cryptography and pairings Part 2 - Cryptography

Pairings allow the construction of novel protocols and simplification of existing protocols.

- The tri partite Diffie Hellman key exchange protocol (Joux 2001)
- The Identity Based Encryption (Boneh and Franklin 2001)
- Short signature scheme (Boneh, Lynn, Schackamm 2001)
- Group signatures schemes (Boneh, Schackamm, 2004)

Elliptic Curve Cryptography and pairings

Pairings used

Four pairings are principally used in cryptography:

- the Weil pairing,
- the Tate pairing,
- the η_{T} pairing,
- the Ate pairing.

I focused only on the pairings constructed by the same way. The Miller algorithm constructing the function $f_{r, P}$ is a central step for the Weil, Tate and Ate pairings.

Construction of the pairings Data

To compute a pairing, we need the following elements :

- E an elliptic curve over \mathbb{F}_{q} :
$E: y^{2}=x^{3}+a x+b$, where $a, b \in \mathbb{F}_{q}$.
- r a prime dividing $\operatorname{card}\left(E\left(\mathbb{F}_{q}\right)\right)$, consider $E[r]: E[r]=\left\{P \in E\left(\overline{\mathbb{F}_{q}}\right),[r] P=P_{\infty}\right\}$.
- The embedding degree k : minimal integer such that $r \mid\left(q^{k}-1\right):$
If $\operatorname{gcd}(r, q)=1$, then $E[r] \cong \mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$,
If $k>1$ then $E[r]=E\left(\mathbb{F}_{q^{k}}\right)[r]$.
- A function $f_{r, P}$ described lately.

Construction of the pairings

The Weil pairing

Let $P \in E[r]$ and $Q \in E[r]$
The Weil pairing is the bilinear map :

$$
\begin{gathered}
e_{W}: E[r] \times E[r] \rightarrow \mathbb{F}_{q^{k}}^{*} \\
(P, Q) \rightarrow \frac{f_{r, P}(Q)}{f_{r, Q}(P)}
\end{gathered}
$$

Construction of the pairings

The Tate pairing

Let $P \in E\left(\mathbb{F}_{q}\right)[r], Q \in E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$ and k be the embedding degree of the elliptic curve.

The Tate pairing is the bilinear map :

$$
\begin{gathered}
e_{T}: E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} \\
(P, Q) \rightarrow f_{r, P}(Q)^{\frac{q^{k}-1}{r}}
\end{gathered}
$$

Construction of the pairings

The Ate pairing

The Ate pairing is the latest optimisation of the Tate pairing. It is constructed by the same way.

The Ate pairing eats the T in Tate, and uses it in order to be computed with less iterations.
Let π_{q} be the Frobenius map over the elliptic curve :

$$
\pi_{q}([x, y])=\left[x^{q}, y^{q}\right]
$$

t denotes the trace of the Frobenius over $E\left(\mathbb{F}_{q}\right)$ and $T=t-1$.

Construction of the pairings

The Ate pairing

Let $P \in E[r] \cap \operatorname{Ker}\left(\pi_{q}-[1]\right)$ and $Q \in E[r] \cap \operatorname{Ker}\left(\pi_{q}-[q]\right)$, i.e. Q verifying $\pi_{q}(Q)=[q] Q$.
The Ate pairing is the bilinear map :

$$
\begin{gathered}
e_{A}: E[r] \cap \operatorname{Ker}\left(\pi_{q}-[1]\right) \times E[r] \cap \operatorname{Ker}\left(\pi_{q}-[q]\right) \rightarrow \mathbb{F}_{q^{k}}^{*} \\
(P, Q) \rightarrow f_{T, P}(Q)^{\frac{q^{k}-1}{r}}
\end{gathered}
$$

Miller algorithm
 The function $f_{r, P}$

In order to compute the pairings, we need to compute the function $f_{r, P}$. The principal property of this function is that:

$$
\operatorname{Div}\left(f_{r, P}\right)=r \operatorname{Div}(P)-r \operatorname{Div}\left(P_{\infty}\right)
$$

Victor Miller established the Miller equation :

$$
f_{i+j, P}=f_{i, P} \times f_{j, P} \times \frac{l_{[i] P,[j] P}}{v_{[i+j] P}}
$$

where $\Lambda_{[i] P+[j] P}$ is the line joining the points $[i] P$ and $[j] P$, and $v_{[i+j] P}$ is the vertical line passing through point $[i+j] P$.

Miller algorithm

Example

We want to compute $f_{7, P}$:

- $7=6+1$
- $f_{7, P}=f_{6, P} \times f_{1, P} \times \frac{I_{[6] P, P}}{v_{[7] P}}$
$f_{1, P}=1$
$f_{7, P}=f_{6, P} \times \frac{I_{[6] P, P}}{v_{[7] P}}$
- $f_{6, P}=f_{3, P} \times f_{3, P} \times \frac{l_{[3] P,[3] P}}{v_{[6] P}}$
when $i=j$, the line l is the tangent at point $[i] P$
- $f_{6, P}=f_{3, P}^{2} \times \frac{I_{[3] P,[3] P}}{v_{[6] P}}$

$$
f_{7, P}=f_{3, P}^{2} \times \frac{I_{[3] P,[3] P}}{v_{[6] P}} \times \frac{l_{[6] P, P}}{v_{[7] P}}
$$

Miller algorithm
Example

We want to compute $f_{7, P}$:

- $f_{7, P}=f_{3, P}^{2} \times \frac{I_{[3] P,[3] P}}{v_{[6] P}} \times \frac{I_{[6] P, P}}{v_{[7] P}}$
- $f_{3, P}=f_{2, P} \times f_{1, P} \times \frac{l_{[2] P, P}}{v_{[3] P}}$
$f_{3, P}=f_{2, P} \times \frac{I_{[2] P, P}}{v_{[3] P}}$
- $f_{2, P}=f_{1, P} \times f_{1, P} \times \frac{I_{P, P}}{v_{[2] P}}$
- $f_{7, P}=\left(\frac{I_{P, P}}{v_{[2] P}} \times \frac{I_{[2] P, P}}{v_{[3] P}}\right)^{2} \times \frac{I_{[3] P,[3] P}}{v_{[6] P}} \times \frac{I_{[6] P, P}}{v_{[7] P}}$

Computing pairings

Miller algorithm : return $f_{r, P}(Q)$

Data: $r=\left(r_{n} \ldots l_{0}\right)_{2}$,

$$
P \in E\left(\mathbb{F}_{q}\right) \text { and } Q
$$

$\in E\left(\mathbb{F}_{q^{k}}\right)$;
Result: $f_{r, P}(Q) \in \mathbb{F}_{q^{k}}^{*}$;
$1: T \leftarrow P, f_{1} \leftarrow 1, f_{2} \leftarrow 1$;
for $i=n-1$ to 0 do
$2: T \leftarrow[2] T$;
3: $f_{1} \longleftarrow f_{1}^{2} \times I_{1}(Q)$;
$4: f_{2} \longleftarrow f_{2}^{2} \times v_{2}(Q)$;
if $r_{i}=1$ then

$$
5: T \leftarrow T+P ;
$$

end
end
return

Doubling on an elliptic curve

Computing pairings

Miller algorithm : return $f_{r, P}(Q)$

Data: $r=\left(r_{n} \ldots l_{0}\right)_{2}$,

$$
P \in E\left(\mathbb{F}_{q}\right) \text { and } Q
$$

$$
\in E\left(\mathbb{F}_{q^{k}}\right) ;
$$

Result: $f_{r, P}(Q) \in \mathbb{F}_{q^{k}}^{*}$;
$1: T \leftarrow P, f_{1} \leftarrow 1, f_{2} \leftarrow 1$;
for $i=n-1$ to 0 do
$2: T \leftarrow[2] T$,;
3: $f_{1} \longleftarrow f_{1}^{2} \times I_{d}(Q)$;
$4: f_{2} \longleftarrow f_{2}^{2} \times v_{d}(Q)$;
if $r_{i}=1$ then
$5: T \leftarrow T+P$;
6: $f_{1} \longleftarrow f_{1} \times l_{a}(Q)$;
$7: f_{2} \longleftarrow f_{2} \times v_{a}(Q) ;$
end
end
return $\frac{f_{1}}{f_{2}}$

Addition on an elliptic curve

Implementation using Sage

Good points of Sage

- easy to write operation on the elliptic curve $P+Q$, and $2 * P$ for adding and multiplying point.
- the trace of the Frobenius is implemented
- random point on the elliptic curve
- the worksheet is very nice to use
- python quite easy to learn

Conclusion

To compute pairings, we have :

- arithmetic of finite field
- operation on elliptic curves

It is very easy to implement with Sage.
A "naive" implementation gives good result compare to Magma. I have to improve my implementation, in order to have better performances.

